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Abstract: Measurement technologies and visualisation techniques are changing the way public 
audiences engage with televised coverage of sport. However, the adoption of measurement 
technologies for broadcast coverage of running—to engage audiences and improve public 
understanding of performance—has been limited. This might reflect measurement challenges of 
athletic competition environments; athlete-worn measurement devices can be impractical, and 
video-based analyses typically require well-defined input videos for analysis (e.g., calibration, etc.). 
Recently, single-camera and calibration-independent video processing has advanced practical 
analyses of running performance in sports environments. This paper presents (1) the application of 
a method to quantify temporal running parameters using broadcast footage of 100 m sprint and 1-
mile endurance running, (2) the application of human posture detection to quantify spatial running 
parameters using hand-held action camera footage and (3) examples of co-developed data 
visualisations, aimed at improving public engagement and understanding of running performance. 
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1. Introduction 

Measurement technologies and visualisation techniques are changing the way public audiences 
engage with televised coverage of sport. In sports such as football, cricket and tennis, ball tracking 
technologies are used to officiate matches as well as provide engaging commentary and performance 
analysis material. However, the adoption of measurement technologies in broadcast coverage of 
running, to engage audiences and improve public understanding of athletic performance, has been 
limited. This might reflect measurement challenges in athletic competition. For example, athlete-
worn measurement devices are often impractical. Further, video-based analyses typically require 
well-defined input videos to allow effective analyses and to derive meaningful information. For 
example, video-based systems can often require extensive camera setup and calibration, limiting their 
use in competitive sport environments. This has limited the translation of applied sport science and 
understanding, to aid public understanding of running performance. 

Gait analysis has many applications, ranging from clinical assessment to athletic performance 
analysis. Running velocity is the product of step length and step frequency; to improve running 
performance, one or both must be improved [1]. For athletes, the ability to measure and monitor these 
key performance metrics, would aid training and performance. For public audiences, the ability to 
understand and engage with these performance metrics would aid public engagement and 
understanding of athletic performance. Non-invasive analysis systems, developed to automatically 
measure key performance metrics with minimal intrusion to performance, have been developed [1]. 
The Gait Analyser system at Sheffield Hallam University City Athletics Stadium (SHUCAS) 
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automatically measures spatio-temporal sprint running parameters (e.g., step length, step frequency 
and running velocity) in situ (outdoors), without applying markers or sensors to the athlete or 
running track. Further, results are fed back to Wi-Fi enabled devices ~2–3 s after capture, allowing 
flexible and near-immediate analyses of athletic performance (e.g., Figure 1). 

 
Figure 1. Example of sprint performance feedback provided by Gait Analyser (adapted from Dunn 
and Kelley [1]). Relationship between step rate, step length and sprint velocity indicated by circle size 
and contours. Circle colour corresponds to each athlete; best performances are indicated by a star. 

Whilst such tools are useful to assess an athlete’s sprint strategy, spatial measures require 
calibration, which is not always possible. Calibrating intrinsic and extrinsic camera parameters can 
be time consuming or impracticable to calculate in sports environments. Further, camera perspective, 
which determines the physical resolution of individual pixels in calibrated space, often determines 
camera filming location and thus the feasibility of analyses. Camera calibration, which allows spatial 
gait parameter measurement, can therefore limit the flexibility of gait analysis. However, temporal 
analyses of running—which do not require camera calibration—can provide informative 
performance metrics, such as step frequency and step count. Further, body posture detection [2] 
algorithms, which self-scale posture information and are thus camera-agnostic, represent a flexible 
approach to capturing spatial-temporal metrics, such as step length and joint angle information. Both 
represent a flexible approach for analysing broadcast footage of competitive sport performances, and 
as such represent an opportunity to aid public engagement and understanding. This paper presents 
(1) a method to quantify temporal running parameters using broadcast footage of 100 m sprint and 
1-mile endurance running, (2) an application of a posture detection algorithm to quantify spatial-
temporal running parameters using a hand-held action camera and (3) examples of co-developed 
visualisations, to improve engagement and public understanding of running performance. 

2. Materials and Methods 

All procedures were approved by the Research Ethics Committee of the Faculty of Health and 
Wellbeing, Sheffield Hallam University. 

2.1. 100 m Sprint: Temporal Analysis 

Overhead camera footage (PAL encoded at 25 Hz) of the 2015 World Championships men’s 100 
m final in Beijing—in which Usain Bolt won gold in a time of 9.79 s—was obtained from BBC Sport 
(British Broadcasting Corporation, London, UK). Due to the unique camera perspective and nature 
of a finals race (i.e., slowest time was 10.06 s), all athletes remained in the field-of-view. Therefore, 
Section 2.1 considers the analysis of step frequency and step count for all competing athletes (n = 9) 
throughout the entire 100 m race. An open-source tracker [3] was manually initialised for each athlete 
(bounding box enclosing athlete’s head) and executed sequentially. Horizontal coordinate tracking 
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data for each athlete were then extracted and decomposed using a Daubechies 10 wavelet (level three 
decomposition). Using derived wavelet coefficients, a single branch, 1D signal for each athlete was 
reconstructed using the same wavelet and decomposition level. Finally, peak detection was 
performed for step signal minima and maxima (foot contacts corresponding to lateral extremes of 
horizontal athlete motion). Figure 2a presents extracted athlete tracking data (horizontal direction) 
for all athletes and Figure 2b presents corresponding wavelet-based step signals for all athletes (Usain 
Bolt plotted in solid-green, maxima and minima represent foot contacts). 

  

(a) (b) 
Figure 2. (a) Athlete tracking data (n = 9); (b) Wavelet-based step signals extracted for analysis (Usain 
Bolt plotted in solid green; foot contacts are highlighted by red circles). 

2.2. 1-Mile Endurance: Temporal Analysis 

The New Balance 5th Avenue Mile race is a mile-long race held in New York City. Broadcast 
race footage of the 2017 and 2018 women’s events was obtained from New Balance (New Balance 
Athletics, Boston, MA, USA). Race footage from both races (NTSC encoded at 30 Hz) comprised of 
footage from stationary cameras (e.g., panning and zooming) and moving cameras (e.g., motorcycle 
mounted). A single athlete was selected for analysis as the athlete won both events, running 
predominantly from the front of the pack, minimising camera-athlete occlusion. Image sequence 
windows suitable for analysis were identified and athlete tracking (as Section 2.1) applied. 
Subsequently, wavelet decomposition (as Section 2.1) was applied to vertical coordinate tracking 
data; peak detection was performed for step signal minima as foot contacts corresponding to vertical 
oscillation minima, and windowed analyses were aligned to race time. Figure 3a presents an example 
of a windowed (~12–20 s into race) wavelet-based step signal, and 3b presents corresponding step 
time intervals. The application of a discretised smoothing spline (based on generalised cross 
validation) [4] across captured and missing (e.g., camera view change, athlete occlusion etc.) step 
interval data allowed step frequency (e.g., red line; Figure 3b) and step count to be estimated for the 
entire 1-mile race. 

  

(a) (b) 

Figure 3. (a) Windowed (~12–20 s into race) wavelet-based step signal (foot contacts are red circles); 
(b) corresponding step time intervals (coloured circles) and filtered step frequency estimate (red line). 
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2.3. Training Setting: Spatial-Temporal Analysis 

Four male participants (age = 41.3 ± 9.3 years; stature = 1.85 ± 0.05 m; mass = 76.8 ± 10.2 kg) were 
recruited and written informed consent was obtained. Participants were asked to run (three trials) at 
a self-selected pace along the final 10 m of the 100 m straight at SHUCAS. All trials were filmed with 
a hand-held action camera (near sagittal plane view) capturing at 60 Hz (Hero7 Black, GoPro, USA). 
Action camera images were processed using the LCR-Net++ 3D pose detection method [2] with a 
Microsoft Azure Virtual Machine. Output body location data, comprising self-scaled 3D world 
coordinates of identified joints, were processed using MATLAB (2019b, MathWorks, USA). The scalar 
product of thigh and shank vectors (defined by 3D coordinates of corresponding hip, knee and ankle 
joints) was used to estimate knee angle data (e.g., Figure 4c). Foot lift and foot strike events, based on 
sagittal plane ankle trajectories, were used to define step frequency and step length (product of mean 
swing foot velocity and corresponding step time). Figure 4 presents a sample camera image with 
identified joints highlighted (Figure 4a), 3D self-scaled world coordinates (Figure 4b) and estimated 
left and right leg knee joint angle (Figure 4c). 

  

(a) (b) (c) 

Figure 4. (a) Sagittal plane image and identified 2D locations; (b) frontal view of 3D world coordinates 
for self-scaled locations; (c) knee joint angle estimates for left (green) and right (blue) legs. 

2.4. Data Assessment and Data Visualisation 

For temporal analyses, the time of identified foot contacts and derived step frequency (quotient 
of one second and the absolute time difference between foot contacts) was assessed by manually 
identifying the perceived instant of mid-stance. To assess reliability of manual identification, foot 
contact instants (n = 22) were identified on five repeat occasions for broadcast footage (25 Hz) used 
in Section 2.1. Standard error of the mean was <0.01 s; maximum time difference for repeat identified 
foot contacts was 0.04 s. For the 1-mile endurance race (Section 2.2), analysis was performed for only 
2017 footage. For spatial-temporal analyses, step length and step frequency data were compared to 
corresponding reference data, captured concurrently by the Gait Analyser system [1] (operating at 50 
Hz). For all step frequency and step length measures, agreement was assessed using Bland and 
Altman 95% limits of agreement (LOA). In the case of heteroscedasticity (i.e., |r2| > 0.1), ratio LOA 
(dimensionless) was reported. Further, root-mean square error (RMSE) was calculated. For 100 m 
sprint performance footage, step count and step frequency information were rendered in broadcast 
video using athlete tracking data. For 2018 footage of the Women’s New Balance 5th Avenue Mile, a 
feedback ‘information centre’ was developed with the New Balance Advanced Concepts team. The 
purpose of the ‘information centre’ was to present relevant and easily interpretable running 
performance data, alongside original broadcast video. For training setting videos, recruited 
participants were invited to review captured video and data derived from their training runs. This 
session was also used to allow participants to express feedback information pertinent to them, as well 
as to co-design individualised feedback visualisations. 
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3. Results 

Table 1 presents step identification rate, LOA and RMSE for step frequency and step length. 
Temporal analysis identified 100% and 97.6% of steps in 100 m sprint and 1-mile endurance running, 
respectively. Step frequency estimates for 100 m sprint and 1-mile endurance analyses were 
heteroscedastic: 95% of ratios were between 44.2% and 7.5% of mean ratios respectively. RMSE for 
100 m sprint and 1-mile endurance step frequency estimates was 0.12 and 0.17 Hz, respectively. 
Spatial-temporal analysis identified 100% of steps in training settings. Step frequency and step length 
estimates were heteroscedastic: 95% of ratios were between 15.0% and 27.4% of mean ratios, 
respectively. RMSE for training step frequency and step length were 0.31 Hz and 0.85 m, respectively. 

Table 1. Identification rate, LOA and RMSE for step frequency and step length estimates. 

 Environment Identified Steps Absolute LOA r2 Ratio LOA RMSE 

Step Frequency 
(Hz) 

100 m sprint 400/400 (100%) −0.12 ± 1.74 0.24 0.98 (×/÷1.43) 0.12 
1-mile endurance 827/847 (97.6%) 0.06 ± 0.32 0.12 1.02 (×/÷1.10) 0.17 
Training setting 56/56 (100%) 0.09 ± 0.59 0.47 1.03 (×/÷1.21) 0.31 

Step Length (m) Training setting 56/56 (100%) 0.79 ± 0.59 0.91 1.81 (×/÷1.42) 0.85 

4. Discussion 

The flexibility of video-based gait analysis, an important tool in public engagement and 
understanding of athletic performance, can be limited by camera calibration. However, novel 
temporal (Sections 2.1 and 2.2) and posture detection [2] analyses represent flexible approaches for 
improving public understanding. Video footage used in the current study present challenging 
environments for analyses, encompassing fixed panning cameras, zooming and moving cameras, 
which experience extreme vibration (e.g., motorcycle mounted filming; Video S1). Regardless, 100 m 
sprint and training setting analyses identified 100% of steps. For 1-mile endurance race analyses,  
97.6% of steps were identified; step detection discrepancies reflect windowed, rather than continuous 
analyses, whereby step signal minima detection occasionally missed steps at window limits. 
Continuous tracking would resolve this; however, view changes are common in endurance race 
footage, and represents a potential limitation. All step frequency estimates exhibit heteroscedasticity, 
with larger step frequencies (i.e., shorter step time interval) exhibiting larger errors. This highlights 
the temporal resolution of current broadcast video as insufficient for accurate determination of mid-
stance and reflects a need for higher frame rate broadcast video in sport. Finally, training setting step 
length estimate residuals exhibited a strong positive correlation (i.e., heteroscedasticity; Table 1). 
Strong correlation might reflect the self-scaling nature of posture detection algorithms [2]. Participant 
stature was automatically scaled for current analyses. Whilst not indicative of stature, mean distance 
between head and ankle locations was 1.47 ± 0.01 m, indicating that stature was underestimated. Step 
length estimates will also be influenced by their calculation (i.e., Section 2.3); however, scaling 
limitations likely explain heteroscedasticity observed in step length estimates. Figure 5 presents a 
visualisation for the 2015 World Championships men’s 100 m final; step frequency data (Figure 5b) 
highlight Bolt’s and Gatlin’s performances (solid green and red respectively). Temporal analysis 
highlighted that Bolt took fewer steps (41 vs. 43) at a lower average step frequency (4.5 Hz vs. 4.8 
Hz), whilst an interesting ‘in phase’ period, observed in Bolt and Gatlin’s step frequencies (~4–5 s; 
Figure 5b), might reflect competitive interaction between athletes. 
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(a) (b) 

Figure 5. (a) Broadcast footage with step count and frequency information. (b) Step frequency for all 
athletes (Bolt and Gatlin highlighted by solid green and red lines respectively) aligned to race time. 

Figure 6a presents the New Balance 5th Avenue Mile visualisation, with co-developed 
‘information centre’ displaying step count and frequency information. Live, step-by-step updates for 
step count and frequency data provides viewers with objective and engaging performance 
information, which visually corresponds to the race. Figure 6b presents a training setting video, 
illustrating feedback elements. The ‘step-circle’, indicative of idealistic lower-limb motion, with 
swing foot trajectory (e.g., blue shading), highlight technique aspects pertinent to economic running. 
Further, body alignment (e.g., red circle is mid-hip) to the head and point-of-support vector identifies 
body lean, another important aspect of technique. Finally, whilst knee joint angle (Figure 4c) data 
identify gait phases, accuracy was not addressed. The apparent suppression of angle magnitudes 
might be systematic, and thus potentially useful in training; however, this should be investigated. 

  

(a) (b) 

Figure 6. (a) Broadcast footage of the Women’s 2018 New Balance 5th Avenue Mile with co-designed 
New Balance Athletics ‘information centre’, presenting Jenny Simpson’s current step count and step 
frequency. (b) Training setting footage, with co-designed, spatial-temporal feedback visualisations. 

5. Conclusions 

This paper presents the utility of video technologies to aid public engagement and 
understanding in running. Presented technologies are flexible in their application and derive useful 
information; visualisations can be tailored to specific audiences to aid public engagement in sport. 

Supplementary Materials: Video S1: ‘Temporal running analyses using broadcast video’, available online at: 
www.youtube.com/playlist?list=PLU0PmTP_JoKd9sEo4s1kc_rhKzr4p_KkG. 
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