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Abstract

To obtain good predictions in the presence of imbalance classes has posed significant

challenges in the data science community. Imbalanced classed data is a term used to

describe a situation where there are unequal number of classes or groups in datasets.

In most real-life datasets one of the classes are always higher in number than others

and is called the majority class, while the smaller classes are called the minority

class. During classifications even with very high accuracy, the classified minority

groups are usually very small when compared to the total number of minority in

the datasets and more often than not, the minority classes are what is being sought.

This work is specifically concern with providing techniques to improve classifications

performance by eliminating or reducing negative effects of class imbalance. Real-life

datasets have been found to contain different types of error in combination with

class imbalance. While these errors are easily corrected, but the solutions to class

imbalance have remained elusive.

Previously, machine learning (ML) technique has been used to solve the problems

of class imbalanced. There are notable shortcomings that have been identified while

using this technique. Mostly, it involve fine-tuning and changing parameters of the

algorithms and this process is not standardised because of countless numbers of algo-

rithms and parameters. In general, the results obtained from these unstandardised

(ML) technique are very inconsistent and cannot be replicated with similar datasets

and algorithms

We present a novel technique for dealing with imbalanced classes called variance

ranking features selection, that enables machine learning algorithms to classify more

of minority classes during classification, hence reducing the negative effects of class

imbalance. Our approaches utilised the intrinsic property of the datasets called

the variance. As the variance is one of the measures of central tendency of the

data items concentration within the datasets vector space. We demonstrated the

selections of features at different level of performance threshold thereby providing an

opportunity for performance and feature significance to be assessed and correlated at

different levels of prediction. In the evaluations we compared our features selections

with some of the best known features selections techniques using proximity distance

comparison techniques and verify all the results with different datasets, both binary

and multi classed with varying degree of class imbalance. In all the experiments, the
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results we obtained showed a significant improvement when compared with other

previous work in class imbalance.
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Chapter 1

Introduction

Never in the history of humanity has the importance and usage of data has been

as it is presently, with the improvement in computer processing power and general

mechanism of collecting data have made the availability of any type of data possible.

Data could be obtained from practically anything and anywhere due to the robust-

ness of sensors and related technology. Even some activities like leisurely taking a

walk or jogging which were not intended to be used for data collections have become

very rich sources of data. The Internet which is one of the biggest inventions of our

time is just an ocean of data itself.

Collected and stored data could be Structured, Unstructured or Semi-structured

[1][2]. A dataset is said to be Structured if it is in any form of an organized format

like in databases, flat file, etc, where it could be searched, updated and manipulated

with an appreciable level of consistency. Semi-structured data has some level of

organizations within the data set but not as much as that of Structured data, while

Unstructured does not have any form of organizational formalism within them.

The usage of this data has given rise to a complex field of study aptly called data

science which includes but not limited to fields like data mining, machine learning,

artificial intelligence. Data science disciplines are ubiquitous and the techniques used

for dealing with issues relating to the discipline are equally so. The aims of data

science are to extract information and knowledge from data to support decision-

making processes. Most real-life datasets have some inherent problems. The nature

of input data is a major factor for a dependable result in any data analysis exercise

and decision making, therefore input data have to be processed and put into a for-

mat that would enable the extractions of knowledge to take place [3][4], processing

data before the extraction of knowledge therein has brought the problems associated

in dealing with real-life datasets to the fore. In the preceding session, some of the

problems would be reviewed.
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CHAPTER 1. INTRODUCTION

1.1 Problems with real life data sets

Collected data in Real-life that has not undergone any form of treatment are often

referred to as raw or dirty data, it thus means that literally and logically. Its rawness

stem from the fact that more often than not, it is not impossible to use such data

without some forms of treatments, this is known as data pre-processing. Data pre-

processing is an extensive exercise that involves series of activities which depends

on the type of problems identified in the raw data, some of the common prob-

lems associated with raw data could be categorized into the following; Imbalanced

classes, Structuralization, Data Cleaning, Data Transformations etc. Figure 1.1 is a

representation of these problems

 

Figure 1.1: Problems of Real-Life data sets

1.1.1 Imbalanced class

This whole work is dedicated to the problems of imbalance classes in real-life data

and it would be dealt with exhaustively in consequent sessions, meanwhile Figure 1.1

showed that most real-life data set has classed imbalanced problems in combinations
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with other problems, for example in a binary scenario (two-class -yes or no, 1 or

0) and even multi-classed (more than two classes) the data are usually not evenly

divided. One group will always be dominant as such the sensitivities of most machine

learning algorithms are always predicting more of the dominant group at the expense

of the minority groups. The dominant groups with higher number are called majority

class, while the smaller group are called minority class. The ratio of the majority

class to the minority class is refers to as the imbalanced ratio (IR).

Imbalanced classed is not peculiar to only granular data, but many life scenarios

have an imbalanced problem, below are some of the examples, but the list is endless.

• Oil spillage - in identifying oil spillage in the ocean, small area of image

or water sample with the contamination compared to the large area of water

without contamination produces an imbalanced image or data respectively.

• Tracking migrations of species like birds - Tracking migrations of species

like birds; large areas of topography compared to a very small area dotted with

migrating species produces an imbalanced image of topographical identifica-

tions.

• In security image recognition - In the security image recognition; police

tracking a single or few suspects by using a CCTV Camera in a crowd of

people produce an imbalanced image recognition scenario.

• In health or intrusion data - The minority may be the few patients that

have lung cancer compared to a large amount of data of patient without cancer

or in intrusion detection data the few times that hackers have successfully

breached the network compared to millions of successful login.

Traditional approaches to classifications in the context of imbalanced classed

distributions in data sets has serious limitations, these will be introduced and dealt

with very well in chapter 2 and later chapters, but Figure 1.1 have left us with

compelling evidence of the the pervasiveness of the problem and how easily a data

set which exhibit imbalance problems could be mistaken for other problems and vice

versa. For example if a predictive modelling produces poor accuracy, this should

raise some important questions like, is the poor accuracy due to missing values or

other errors or due to uneven classes? What part of the poor performance are due

to imbalanced classes and what parts are due to other problems? could the causes

easily be identified ? eliminated or minimised?

The effect of class imbalance is a domain constant error inherent in most real life
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scenario and manifest in what ever form is used to represent the scenario be it

granular or non granular data. Most machine learning (ML) algorithm have proven

inadequate [5] in dealing with the imbalanced. In the next sessions some of the errors

associated with data sets but are not due to imbalance classes will be reviewed.

1.1.2 Data structuralization

This is the process of giving a structure to a collected data in a data set. The extent

to which a dataset is organized is a measure of its level of structuralization, highly

organized data set possibly stored in databases, flat files or others that enables

manipulation of any sort, integration with other interfaces and software to aid and

support exploitation with algorithms and other forms of data processing techniques

with a view of extracting information and knowledge from the data are said to

be structured [6]. On the other hand, Unstructured data are opposite of this, in

that its a collection of data with no identifiable level of organizational formalism,

hence Unstructured data cannot be manipulated, queried, integrate or worked on

like Structured data.

One of the first activities of a Data Scientist is to improve the level of the structure

of the collected data through formalizing the data items structural organizations

based on the required and expected usage. Structuring the Unstructured data could

be as simple as importing or exporting into a database table by tabulating it with

identifiable rows and columns headings, another way may be exporting data into

a text or Comma-separated values (CSV) files with identifiable columns and rows.

Some could also involve using sophisticated processes and software that could enable

any item in the data set to be identified and queried using unique metadata for

extractions of a specific data item [7]. Whatever techniques used in structuring

unstructured data, the result is that the data set will become more organized and

any single data item could be identified and manipulated.

1.1.3 Dirty data

Is a term used in describing the different states of raw data that could impact on

its quality, the dirty data must be clean by the process of detecting, correcting or

removing inappropriate data item in the data set. To put it in perspective, what

makes a data dirty? Dirty data are regarded as having the following common issues

as listed below among many others.

• Incomplete data: If any position were a data item should be, have been left

blank, nothing is written in the position.
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• Duplicate data: mistakenly repeating row in a table more than once.

• Inaccurate data type: the data item input is not correct, for example, if the

correct value for age is 36 year, but 360 is written.

• Incorrect data type: this is when wrong data types were used for example if for

the age of a person is 36 years, an error was made by inputting the alphabet

”wy” in place of 36 due to typographic error.

1.1.4 Cleaning by data transformation

The first part of this transformation is known as unit integration where the unit of

measurement of the variables must be equalized [8]. This part of Pre-processing data

is usually bespoke and context-dependent because the data transformation is based

on local rules and standard compliance [9]. For instance, in a data set that contains

a variable of prices of item in Pound Sterling and USA Dollars must be transformed

to the same Unit of Currency and scale because one USA Dollar is not equal to

One Pound Sterling. Also if in a data set where Date is written in DD/MM/YY

and is to be combined with another data set where the date DD/MM/YYYY, the

proper transformations must be done before any data mining and machine learn-

ing processes should be applied. The Unit integration processes are too numerous

to mention but depend on local context and standard, mostly they are typically

grouped into what is known as Extractions Transformation and Loading (ETL).

Most data mining tools and software have ETL supporting facilities that do this,

but the data scientist must know what data item is to be transformed and why.

1.1.5 Identifying outliers and noise

Outliers are values of a data item that are very much different from other values,

but noise is wrong values though may appear as real values or may not, in any

observation some values may be totally far away from others they are not wrong

values these are Outliers, in most cases the observation differs so much from others

hence become noticeable immediately [10]. For instance, if observations of adult age

contain a value of 400 as age, this would arise suspicious because no living adult is as

old as that, this is a noise because is a wrong value. For example, lets consider the

average annual income of six middle class adult as $45000, $59000, $66000, $48000,

$56000, $60000, $1500000 while most earned a five figure income the last person

earned seven figure income, if this is correct such a data is an outlier because is

remarkably different from the rest, but noise is just an incorrect data.
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There are various ways to detect the presence of outliers in a data set, bar charts and

histograms are one of the easiest ways of visually identifying the outliers in data sets.

Another way of identifying suspected outlier is to use a statistical analysis known as

Interquartile Range (IQR). To find the (IQR) we have to define the following

terms Q1 which is the first quartile of all the data point from minimum, Q3 is the

third quartile of all the data point from the minimum. These are illustrated in

Figure 1.2.

Figure 1.2: Interquartile Range

IQR = Q3 −Q1 (1.1)

To deduce Outliers= Multiply 1.5 and IQR

1.5 ∗ IQR
Upper Outliers are values greater than (1.5 ∗ IQR) +Q3

Lower Outliers are values lower than Q1 − (1.5 ∗ IQR)

Outliers could also be identified by using Box and Whiskers, Figure 1.3 is example

of Box and Whiskers.

Outlier could be shown using Box and Whisker, in general the rule of thumb in

identifying the outlier are data points that lie more than 1.5 IQR below the min or

1.5 IQR above the max are most likely to be Outliers, but the red flag could also lie

within Q1 and Q3 . Having been able to identify the outliers in your data set, the

implications and meaning of the outliers must be ascertained [11]. Is all Outliers

a dirty data? the answers is ”NO”, you must infer if the outlier constitute a dirty

data that must be corrected or done away with or it may be the ”gold” you are

mining for.

In a variable of ages of adults, if a value of 500 as the age is identified, is very

possible that it is an error and thus a dirty data for obvious reasons that no living

person should have such age and it must be appropriately treated like replacing it

or out-rightly removing it. But if the data set is for computer network intrusion
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Figure 1.3: Box and Whiskers

detection, the outlier may represent the few times that hackers have breached the

network, therefore such outlier may be the ”gold” you are mining for hence should

be investigated further to ascertain what it stands for. It, therefore, comes down to

the domain knowledge of Business Understanding to be able to explain the meaning

and the implications of the discovered outliers or data items that are significantly

different from others.

1.1.6 High dimensionality

To put it simply dimensionality refers to the number of attributes or features in a

data set, if a data set is made of n rows; representing each data item and p columns

representing features or attributes, the comparative values of sizes of n to p defines

the order of dimensionality of the data set [12], while it has not been conclusively

established the values of p that is high dimension due to context domain dependent,

but is generally accepted that a data set is regarded as high dimension when p >

n. In some areas like Bioinformatics, Astronomy, Image Recognition and Finance,

data set with thousands of features are not uncommon [13], microarray which are

used to measure expression level of gene, Deoxyribonucleic Acid (DNA) information

are notoriously known for high dimensionality. The curse of dimensionality is the

difficulty associated with extracting the required information from data set due to

8
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the high dimensionality. Techniques for reducing the dimensionality of data set into

manageable dimensions is an active areas of research, please see [14] [15] [16].

1.2 Motivation

This research is motivated by the inability of most predictive algorithm in dealing

effectively with imbalanced classes in real-life data set. For the fact that imbalanced

classed situations in context and concept are pervasive and recognizable in many

aspects of our life, therefore providing solutions to this problem will greatly improve

all aspects of predictive modeling. In both industries and academia, lots of predictive

algorithms are used daily to solve problems or arrive at decisions but the performance

of these algorithms varies in accuracy. These variations have been traceable to

imbalanced class situational context. To be specific, this research is motivated by

the following reasons.

• As depicted in Figure 1.1 imbalanced classed is a default problem that are

always present in associations with other (one or more) raw data problems.

Consequently, is a systematic error [17] [18] that is inherent in the dataset in

combination to other errors that the datasets has. Therefore to say that if it

is minimised or eliminated, the general result of all predictive modelling could

improve will be an understatement.

• To bring it into situational perspective, this work quest to find the answers

to questions like; “why is it that most algorithm could only predict less of

the minority classes and in most cases far less than 30% of these minority”?

[19], could these limitations in the predictions be attributed to the fault of

the algorithms, wrong processes and techniques or because of an underlying

characteristic of the data set, furthermore if imbalanced classes can never

be eliminated, at what threshold of imbalanced ratio should the result of a

classifier begins to loose its dependability, can we quantify these dependability

in comparison to the imbalanced ratio?

• It is obvious that much of the general performance of most classifier are limited

to their ability to deal with the imbalanced class issues, the data analysis

life circle, that are often referred to as Cross Industry Standard Process for

Data Mining (CRISP-DM) [20] is a bit silent in this regard for not factoring

imbalanced classes to any of its stages, for this we wished to investigate and

proffer solutions as to what stage imbalanced will be treated, more precisely we

would delve into the applications of this (ML) algorithm and the relationship to

9
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the properties of the data item, we would deduce a quantitative and qualitative

generic influences of the algorithms and intrinsic data properties on the (IR)

and make recommendation on how to effectively treat imbalanced classes at

the appropriate stage in the life circle.

• Imbalanced Ratio(IR) varies significantly, from moderate to severe so are the

performance of the (ML) algorithms on the data during classification. But

most research have visibly avoided to investigate the relationship of the de-

gree of imbalanced to performance of classifiers. The research will establish

the correlations of the variations of imbalanced to the properties of the data

item and the performance of the (ML) on various levels of imbalance. This

will enable overview of the expected performance to be estimated before a de-

tailed analysis is carried out and also an informed decision on the type (ML),

data preprocessing and many other activities that would make sensitivities of

existing Machine learning (ML) to be able to target minority in an imbalanced

dataset while eliminating the negative influenced of class imbalanced .

Special emphasis will be paid to both binary and multi-classed imbalance with a

view of inventing a process that could be applied in both scenario ie binary and

multi-classed data. Perhaps since imbalance classes problems cannot be completely

eliminated but with the right processes the effects could be reduced to the barest

minimum, for this we would produce a system where the threshold of dependable

result will be known or estimated .

1.3 Aims

The aims of this research are to provide techniques to eliminate skewness of algo-

rithms towards identifying more of the dominant majority group during the imbal-

anced classes classification modelling. This will improve the accuracy and general

predictive performance in both binary and multi-classed datasets. The ubiquitous

nature of real-life datasets is such that a formalized approaches will be invented

to find the threshold of imbalanced ratio at which a classifier results becomes less

reliable. Finally, the correlation of the degree of overlapping and imbalance will be

demonstrated, this will also help in minimising the skewness of algorithm towards

capturing more of the dominant majority group(s) instead of the small minority

classes that are usually the reasons for the predictive modelling.

10
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1.4 Contributions

In course of achieving the research aims, new processes and procedures will be in-

vented to provide alternatives to already existing techniques in dealing with imbal-

ance data, the solutions we proffer here is a significant contribution, consequently,

the work will itemize all major novelty and contribution as follows.

• This research produced a novel technique called Variance Ranking Attribute

Selection (VR) to handle imbalanced classes in both binary and multiclass

datasets. Though, it has been referred to as Variance Ranking in many in-

stances through out this thesis. The superiority of the (VR) over the exist-

ing techniques of dealing with class imbalanced have been demonstrated by

producing better results, being able to deal with overlapping classes more ef-

fectively and being algorithm independent. For the proof of concept (POC)

seven major dataset were used. These are further explained in chapter three

session 3.1.1

• A novel method of choosing significant attributes based on Peak Threshold

Performance -(PTP), which is defined as the point at which the predictive

model accuracy is at his highest, hence two types of (PTP) is identified these

are (PTP )Accuracy and (PTP )minority. The (PTP )Accuracy is the point in the

predictive model were the highest accuracy occurred, while (PTP )minority is

the point at which the predictive model has the highest recall of the minority

class group. This would also help to identify the threshold of attributes that

are required to obtain dependable results based on the context of discourse

and at the point where the significant attributes will be selected. These are

further explained in chapter five from session 5.0.1 to section 5.0.20.

• An introduction to a new similarity measurement techniques called Ranked

Order Similarity-(ROS), as a techniques to quantify the similarities among a

sets of items that may contain the same elements but ranked in different order.

To accomplished this, a novel distance measure called ”proximity distance”

that assessed the distances of comparative items were defined. The (ROS) is

a novel similarity measure that is applicable in situations where the existing

similarity measure is inadequate for example were similarities is by ranked.

These are further explained in chapter four session 4.4.
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1.4.1 Terms Definitions

Effort have been made for all the invented (coined) words, phrases and nouns used

in the thesis to have a specific meaning as will be explained wherever such words

are used. When there are more than one words that refers to the same meaning and

is unavoidable to used one of the word for example this three words refers to the

same meaning; ”Variable”,”Attribute” and ”Feature”. The three words will be used

interchangeably as it has always been used in most academic reports and journals

and will comply to academic writing best practises.

One of the main concept is Variance Ranking Attributes selection (VR) and may be

referred to as Variance, particularly in some table where there is no enough space.

In any other places were any terms or words would appear differently the meaning

will be obvious or it will be explained or defined appropriately. Reader’s attentions

will be drawn to some common coined words that will be used through out this

thesis, these are listed below.

• Peak Threshold Performance (PTP); this is the position that at which the

highest accuracy and recall of the minority class groups were obtained. They

are two types of (PTP), these are , (PTP )Accuracy and (PTP )minority.

• Element Percentage Weighting (EPW). This is the sum total percentage quan-

tity of elements in two sets that are going to be compared; see section 4.4.

• Unit Element Percentage Weighting (EPW/n). This is the percentage weight-

ing of a single element in a set; see section 4.4.

• proximity distance; this is the number of steps a Unit element in a set moves

to align itself with a similar element in the another set, when both sets are

being compared;see section 4.4.

1.5 Research Methodology

The goal of this research is to produce a process that could limit or eliminate the

skewness of algorithm toward identifying more of the dominant majority group as

against the smaller minority that are often sought when using imbalanced classed

datasets. These goal has been fully articulated in the project specification vis-à-vis

the aims, and contributions therein. In so doing it will encompass every aspect of

relevant discussions that will ensure a wholistic conclusion with adequate proof of

validity, reliability of the assertions made in this document.

The techniques and resources used is to ensure that the primary research aims and
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its objective are emphasised and not entwined in verbose research discourse [21],

hence the general research methodology, the Proof of Concept (POC), results will

be precise and straight to the point in order that the experiments could be replicated.

The sequence of flow of the research will be in a particular order from inception to

finish. Though these order boundaries are not strictly define, but to act as a guide to

enable clarity, understanding, and coherency of thought. The sequence is as follows;

• Problem Definition and Specifications and introductions to the real life context

of imbalanced data.

• Reviews of state of the art literature in dealing with imbalance data and met-

rics of evaluating the Binary and Multi-classed data classifications.

• Data acquisition, preparations, and sampling methodology.

• The re-coding of multi-classed into n Binary, where n represent the number

of classes in the multi-classed datasets.

• Experiment for Variance Ranking Attribute Selection Technique.

• Comparison of Variance Ranking Attribute Selection with two states of the

art Attribute Selection using the Pearson Correlation (PC) and Information

Gain (IG)

• Comparing the attributes ranked by (PC), (IG) and (VR) using the (ROS).

• Validation experiment of Variance Significant Ranking Attribute Selection us-

ing some major (ML) algorithms.

• Comparison by estimating the degree of similarity Variance Ranking Attribute

Selection with two sampling technique of dealing with class imbalance.

• Final discussion of results and conclusions.

Software, Hardware, and Algorithms

The list of all the major resources that were used in this research is as follows.

• Weka data mining software. That could be downloaded at [22].

• Python(v3) programming language. A very robust programming lan-

guage for scientific computation and data analysis. As at the time of writing

this thesis it has version 2 and version 3. The version used here is 3.
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• Microsoft Office (Word, Excel, Paint, etc). A popular documentation

for PC mac book.

• Datasets all downloaded from [23]. This was downloaded from the university

of California dataset archive.

• Hardware, PC and laptop. The only hardware used is PC,laptop with

win10. There was no special capacity, any regular PC or laptop will do.

• Latex documentation. Thesis documentation carried out in Latex [24].

Though lots of latex editor online and those that could be installed on the

desktops , but I had used specifically the online overleaf that have been cited

earlier, I found it more convenient because being online made it accessible

anywhere.

• Algorithms used. There are two major processes derived in this research,

these are (VR) and (ROS). Each of these processes is as a result of other al-

gorithms. The major algorithm that was used to derived the (VR) processes

is one of the measure of central tendency called the ”Variance”, this is fur-

ther explained in chapter three, session 3.1.1. The (ROS) is derived from the

Levenshtein Similarity, this is futher explained in chapter four,session 4.3.1

A clear attempt will be made throughout this work to ensure that the aims, con-

tributions, and processes being carried out are very clear to the reader sometimes

through ”repetitions of the aims”, ”similar experimentation that emphasis the same

results” and other techniques, this is to ensure that the conclusion will be proven

beyond any reasonable doubt and to reinforce the sequence of understanding of the

research work.

The work is for Doctor of Philosophy and every aspect of this work must be made

to show deep thinking and originality and creation of knowledge. In presenting this

documentation, It seek to make sure it complies to be ” Clear Precise and Accurate”

according to [25].

1.5.1 List of Publication

• Ebenuwa, S.H., Sharif, M.S., Alazab, M. and Al-Nemrat, A., 2019. Variance

ranking attributes selection techniques for binary classification problem in im-

balance data. IEEE Access, 7, pp.24649-24666.

• Ebenuwa, S.H., Sharif, M.S., Al-Nemrat, A., Al-Bayatti, A.H., Alalwan, N.,

Alzahrani, A.I. and Alfarraj, O., 2019. Variance Ranking for Multi-Classed
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Imbalanced Datasets: A Case Study of One-Versus-All. Symmetry, 11(12),

p.1504.

1.5.2 Summary of Thesis Report Layout

Chapter One(Introduction). In the introduction, we made the case for the

research topic by introducing the background of the study as being the general

problems encountered when working with real-life datasets. The positing of imbal-

anced classes as being very prevalent in additions to other real-life dataset issues

was made here. A detailed explanations of other data sets issues as an addition to

imbalanced class was presented. Furthermore, an explanation of similar imbalanced

scenario, processes of dealing with raw data. Clear problems definition by explaining

the research motivation, aims and contribution to knowledge was firmly rooted in

this chapter.

Chapter Two(literature Review). The chapter is an extensive presentation

of previous work that has been done in dealing with imbalanced class distribution

in data sets, we engage the argument of using data-centric research like data mining

and machine learning to provide a solution in real-life scenario, hence the extent and

attempt that has been made to provide solutions were explored here in a broader per-

spective. The metrics of evaluations for classifiers were introduced for both binary

and multi-classed data sets, we provided detailed explanation for 2 by 2 confusion

matrix for binary classification and One-Versus-All for multi-classed scenario

Chapter Three(Variance Ranking Attribute Selection (VR) Tech-

nique) In this chapter we presented the Variance Ranking Attribute Selection tech-

nique for handling the imbalanced classed distribution, a detailed explanations of

the datasets and data preparations, the theoretical basis of formula derivative used

throughout the report and the experiments result were also included in this chapter.

Chapter Four(Comparison of Variance Ranking Attribute Selection

(VR) Technique with the Bench Mark) In this chapter a comparison of Vari-

ance Ranking Attribute Selection(VR) and other bench mark in attribute selection

is provided , also a new similarity measurement techniques ”The Ranked Order

Similarity measurement-ROS” was used to compare and quantify the similarities

between the Variance Ranking Attribute Selection (VR) and two main bench marks

which are Pearson Correlation and Information Gain. The novelty of The Ranked
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Order Similarity measurement-ROS was invented here.

Chapter Five(Validation) In this chapter predictive modelling experiments

were carrieed out using three machine learning algorithm and seven data set (four

binary and three multi classed). The accuracy , precision , recall etc were noted.

The capturing of the minority class group in the imbalanced situation were proven,

hence attesting to the efficacy of the (VR) techniques. More importantly, the com-

parison of Variance Ranking with (SMOTE) and ADASYN techniques. The chapter

provided and consolidated the reasons for the failure of using the algorithm based

methods which have been the the conventional means and made a case why the

(VR), (SMOTE) and (ADASYN) techniques that rely mostly on the numbers of the

class groups is the right approaches to use.

Chapter Six (Summary Discussion and Conclusions) This chapter high-

lighted the major achievements of the research with a blow by blow summary of how

the aims, and contributions were achieved, we also highlighted the shot comings of

the existing techniques of handling the imbalanced data set problems. We provided

a distinctive yet succinct presentations of all aspects of research that that made it

possible to any reader to be familiar with the central knowledge that have been

claimed achieved, we made ac case for the relevance of (VR) and the future work.
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Chapter 2

Literature Review

2.1 Overview of imbalance data

Class imbalance is a major problem in using real-life data for predictive modelling.

A data set is said to be imbalanced when there is unequal number of groups, mean-

ing that one group is more than the others, the larger groups are the majority classes

while the smaller groups are called the minority classes, the ratio of the majority

class to the minority class is often referred to as the imbalance ratio (IR) in binary

classed imbalanced data. In the multi-classed imbalanced, the (IR) will be defined

according to the techniques that will be used to express the imbalanced, the Figure

2.1 is a representation of different types of imbalance, for the binary classed, the

(IR) is 9:1 or 90%, this is straight forward. But for the multi-classed, the (IR) is

50:30:10:5:3:2, to expressed the (IR) as a percentage will depend on the technique of

decomposition of the multi-classed using either ”one-versus-one” or ”one-versus-all”

please see sections 2.3.2.

The problems caused by imbalance classes could affect all known predictive cate-

gories; like supervised, unsupervised, and hybrid. In supervised learning, classifi-

cation could be multi-classed or binary classed, the multi-class is when the target

groups are more than two while binary is when the target groups are only two (Yes

or No, Positive or Negative), [26] [27].

The effect of class imbalance in binary context is that, the accuracy of the predic-

tion could be as high as 90% yet no minority class group has been captured by the

prediction [28]. For example, if a data set has a total of 1000 instances, assuming

that 900 are negative while 100 are positive case, if a binary classification predicted

all the 1000 cases as negative will still appear to be 90% accurate, whereas none of

the 100 minority class group have been captured.
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Figure 2.1: Imbalanced and Balance data

The same wrong predictions in binary class is also very noticeable in a multi-

classed data as shown in Figure 2.1, consider a data set with classes as follows 50%,

30%, 10%, 5%, 3%, 2% being able to predict the small percentage groups (minority

classes) by using the conventional machine learning algorithm and processes is next

to impossible because by design and applications these algorithms assumed equal

classes, and during implementations the process is usually optimized for accuracy

thereby enhancing the capturing of the same majority classes. The irony is that, in

most prediction; binary or multi-classed using real-life data, the minority groups are

usually the interest or what we are looking to predict. Consider the case of binary

classification in intrusion detection dataset. The minority is the few times the net-

work may have been breached, in cancer research dataset, the minority group may

be the few patients that have cancer, while in clinical trial of drug interactions, the

few adverse interactions are usually the interest groups. In a multi-classed dataset

were the prediction of various numbers in group membership is required like the ages

of Abalones based on the numbers of rings [29], predicting a protein localization site

in the Deoxyribonucleic acid (DNA) [30]. The smaller groups are impossible to cap-

ture using the conventional machine learning algorithm and processes.

It is quite obvious that if a technique could be found to eliminate the problems of

class imbalance, the performance of most predictive algorithm will improve dras-

tically. At this juncture, let us provide a precise definition of the term predictive

modelling. What is predictive modelling? ”This a term used to describe processes

and techniques that use Statistics and machine learning to predict future events,

outcomes or items, while using earlier events, data or observations as inputs during

the process.”
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2.2 Techniques for handling imbalance class dis-

tribution

Imbalance classes have been a problem in predictive modelling when using the con-

ventional machine learning algorithm consequently have been a subject of interest in

both the academia and industries, different approaches have been proposed to han-

dle this problem with different level of successes. Each of these approaches could

be categorized as Machine Learning Algorithm methods, Cost-Sensitive methods,

Embedded Approaches, and Sampling-based Methods. In the preceding sections,

details of these approaches will be dealt with.

Before delving into these approaches, it is important to have an overview of the gen-

eral commonality to all of them in context. First and foremost, all the approaches

involves the machine learning algorithms at some points in the processes, but the

stress on names of the categories is to emphasis the deliberate efforts that have

been made to alter, combine or improve the machine learning algorithms for the

sole purpose of improving the accuracy of the results or general performance using

the standard measurement metrics.

The default predictive modelling techniques is to use machine learning algorithms,

data scientist uses algorithms and modifications of parameters to obtain some accu-

rate results, it was not intended to actually solve the problems of imbalance classes

because the numbers of classes that made the dataset imbalanced were not con-

sidered when using this approaches, but since it sometimes achieved good results

particularly when the data are imbalanced it became the norms. The parame-

ter changes like changing the kernel functions in (SVM) and other unstandardized

processes became the conventional way of modelling with imbalance data (afterall

almost all real-life data set are imbalanced). Other approaches, like the Embedded

Approaches and Cost-Sensitive methods, uses the same modification of the algorithm

methods. These parameter changes and different ”tweaking” of the algorithms are

one of the origins of the ”trial and error” that has become a well-known process in

data mining and machine learning methodology [31][32][33].

The first effort that was made to target imbalance classes in real-life data was car-

ried out by using sampling methods (Over Sampling and Under-Sampling). Though

different modifications of these Sampling methods have evolved over time. Section

2.2.6 and chapter 6 are fully dedicated to these techniques, and a detailed discussion

will be reserved until then.
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2.2.1 Overview of machine learning algorithm

In general, the algorithms used in data science are categorized into supervised and

unsupervised learning, as depicted in Figure 2.2. While supervised learning are used

when the target output Y is already known, the algorithm have to be trained to

learn the function F that is used to map the input X to the output, represented as

Y = F (X), hence it shows that any series of input X = {x1, x2, x3.......xn} could be

used to predict a series of output Y = {y1, y2, y3.......yn} using a mapping function F

[34]. Therefore, all supervised learning has a set of training input that is “learned”

by the algorithm to produce a generic mapping function that will be used to map all

the input to the various output target. The supervised learning is further classified

into two according to the nature of the output target being sort; if the output target

is discrete like yes or no, male or female, have the disease or don’t have the disease,

high or middle or low, there are called classification. The other type of supervised

learning is called regression in nature if the output could be a real number like the

following continuous values 56.34, 123.03, 0.34.

 

Figure 2.2: Machine learning algorithm

Unsupervised learning are those where there are no known explicit output targets
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[35]. It involves the input data being exposed to the machine learning algorithm

enabling it to find the previously unknown pattern in the input data. These hidden

patterns are usually invisible before being exposed to the algorithm, hence the term

mining. Most unsupervised learning algorithms are categorized as being clustering

or associations pattern-based. Therefore when the input data interacts with the

algorithm, clusters of data that share similar characteristics are noticed. In the

same way, if a data item is related to another data item by any associations, a rule-

based algorithm would expose the pattern. Semi-supervised learning is a hybrid of

supervised and unsupervised learning [34].

2.2.2 Variance Techniques For Handling imbalanced classed

data

This is one of the approaches for dealing with imbalanced classed datasets, the

variance is always used in combination with other intrinsic properties of the data

[36][37]. This research is based on this approach by using the variance to derived

the feature that are most significant to eliminate or reduce skewness of the (ML)

toward identifying more of the majority class as against the minority class.

The work of [38] provided a pointer as to how variance and feature selection could

lead to improved performance in classification. The work demonstrated a techniques

known as a Sensitivity Analysis (SA) which is based on Fourier amplitude test. The

Fourier test is depended on the variance test of the amplitude function of wave, but

the authors were able to applied this to Feedforward Neural Network (FNN) thereby

showing that the classes of datasets relatively depended on their variances and this

correlations was used to select the significant features. The results obtained showed

an improvements in the classifications, but the issues of skewness still remains, par-

ticularly in the highly overlapped datasets.

In order to assess the levels of imbalanced quantitatively [39] developend a method

called ”Bayes Imbalance Impact Index”, this techniques uses two metric called ”Indi-

vidual Bayes Imbalance Impact Index-(IBI3)” and ”Bayes Imbalance Impact Index-

(BI3)”. The IBI3 and BI3 are used to a measure the effects of imbalance on vari-

ables as the degree of imbalance increases. The authors also provided a prove to

show that if the datasets are normally distributed, the probability density functions

and the likelihood of finding a data item in the sample space could be deduced

from the mean and variance. Therefore a strong correlation between (IBI3) and

variances of the distribution was established.

Apparently, controlling of the variance to control other variables as evidence of de-
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pendencies were used by [40], where it was shown that reducing the variance would

optimise a Stochastic processes like the Stochastic Gradient Descent (SGD). Thus

as the variance is made smaller the estimated results of the SGD improves. Each

part of the Gradient Descent could be regarded as a point in the sample space like

each variables. The negative effect of class imbalance are augmented by overlapping

of contents classes in the datasets. Such correlation between variances in overlap-

ping classes and imbalance were one of the focus of [41], the work demonstrated the

probability density functions in relations to each classes deviation (variance), that

the more the classes are overlapped the more the effects of imbalanced.

The model feature selection using tweaking the variances of attributes called ”bias

variance” have been used by [42], they compared linear model and non linear to make

predictions and estimate the errors in the predictions which could be controlled by

controlling the variance in both linear and non linear regression models. The vari-

ance attributes selection were used to solve the case of high dimensional data by

applying Bayesian algorithm by [43] and applying the theory to linear regression

models ie Bayesian linear regression. In order to deduce the constant coefficient and

reduce the error in the predictions, they initialised the coefficient in median value of

0.5. The selection was done using posterior inclusion probabilities with a threshold

> than 0.5.

From these literature is obvious that variance of the datasets in a sample space is

synonymous to a density concept, even the units of variance are squared. Therefore,

we intend to explore this concept in relation to probability density function and

derive the quantitative relationship.

2.2.3 Algorithm Techniques for imbalanced classed data

Over the years, lots of effort have been put into solving the problems associated with

imbalanced classes in data sets at mostly at the algorithm level or any modifications

of it, owing to the realisations that one of the main reasons for any predictive

modelling is to capture the minority class groups, but there continue to be a fixed

patterns of inhibiting conditions to the performance, the patterns are that if the

minority classes groups are very small the model performs poorly. All the main (ML)

algorithms exhibited this pattern, and the analysis of these algorithms designs and

implementations did not show where the numbers of the classes in the dataset would

be entered. This design by implications assumed balanced classed because there is

no quantity that accommodates variations in the number of classes in the algorithm,

secondly most algorithms have been optimized for increase in the accuracy of the
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identified majority by the design boundary that favours the identifications of the

dominant classes [44][45][46] for example in Support Vector Machine, the hyperplane

could discover the demarcations line for the majority classes easily, even when a

kernel trick is used when the line is not linear. By implications, this led to poor

predictive results

All the same, the default and conventional techniques for dealing with the class

imbalanced is to interact with the classification algorithm with a view of making

it become less sensitive to the class imbalance [19]. Even though these were not

standardized, many variations of these algorithm processes could some times achieve

good results, but, the issues here is that such results cannot be replicated when using

different datasets or when another algorithm is used. Besides, it is not definitive

why the improve results were obtained. So why do we get a good results and very

poor results some times with the same domain data; like heart data, cancer data,

credit score data etc ? If what led to it is not known then our algorithm method

solutions is ”groping in the dark” and the standardization of this techniques is still a

long way due to the pervasiveness of real-life data set and as long as the (IR) which

is the main cause of imbalanced is not factored into the design of the algorithms.

In the next session, the reviews of the classification algorithms and various techniques

that have featured prominently in dealing with imbalanced problems with reference

to some of the recent modification of such algorithms would be carried out. We have

to realise that machine learning (ML) is very fluid and different modifications are

being invented by the day as such emphasis will be more on the parent algorithms;

after all the modifications and variations have not been fully tested and accepted

by the mainstream users as a standard.

Support Vector Machine algorithm and imbalance classed data

Support Vector Machine (SVM) is one of the algorithms that are very prominent

among supervised learning because of its applications to both classifications and re-

gressions output. The basic SVM considers all data items as a point in a dimensional

space where there is a dividing line that tends to separate the data into different

classes, therefore if the input training data is assumed in a two dimensional space

[47]. The SVM algorithm is a function that seeks to find the best hyperplane that

separates the data points in the dimensional space as in Figure 2.3a. A straight

dividing line representing the hyperplane separates the data points into two classes;

this enables any new input data to be placed in either of the two classes which

the data most likely belong to by the SVM algorithms as in Figure 2.3b. During

classifications, the margin of class separation is weakened to allow the hyperplane
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to accommodate extraneous data inputs through adjusting the class boundary in

what is known as the kernel functions of SVM algorithm [48]. The SVM algorithm

is optimised to find the separation hyperplane with the largest margin as depicted

in the enhanced diagram of the separation in Figure 2.3c where the separation line

is optimal hyperplane represented by the equation ω.x+ b = 0. For the data in the

each of the classes are (positive and negative) are represented by the two equations

ω.x+ b = +1 and ω.x+ b = −1 respectively.

But most real-life data sets could not be demarcating by straight line and their

separations are not distinctively defined due to overlapping of the data points as

in Figure 2.3d, therefore the data points may not be linearly separable by straight

lines in such situation techniques called Kernel trick”[49][50][51] are used to deduced

the separations. There are different Kernel trick such as Polynomial, radial basis

function (RBF), Sigmoid and quadratic kernel, and so on. The Kernel trick is just

a technique used to map the non-linear separation into a higher dimensional space

that it would become possible to be separated.

(a) multiple hyperplane in data points
(b) optimum hyperplane separating data
points

(c) large margin of separation (d) non linear separation

Figure 2.3: Basic SVM imbalanced data points

One of the main SVM modification that is used in the imbalance class situations

is called One Class-SVM [52] in this, input data are trained to only recognized one
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class aptly called the ”normal class” and any other classes that are different from

the normal class are detected by the algorithm, a new implementation of such SVM

for multi-classed data that combine SVM with a process called ”one- versus- one”

or one-versus-all were invented by [53]. But as have said earlier, any algorithm

dependent processes of solving imbalanced is unreliable because of inconsistencies

in results. Besides these modifications are not standardized, and many are continued

to be invented by different researchers.

Decision Tree and imbalanced classed data

In the classification algorithms, the decision tree is one of the most popular because

of the ease of use and understanding. Descriptively, decision tree has a parent node

at the beginning with two splits emanating from the node, each of the two divisions

would end in a leave node that will further split again, this goes on until a final leaf

node is reached. The final appearance looks like an inverted tree as in Figure 2.4.

The basic decision tree algorithm splits a population or sample of the data set

into two subgroups based on some of the attributes that have been identified as

significant, the continuous splitting developed into a series of rules.

At each splitting node, the algorithm would question the population and deduces

the most relevant attributes for the next split, this would add to the rule until the

final node. Though, there are various Decision Tree (DT) algorithms modifications

like Iterative Dichotomiser 3 (C4.5 and ID3), CHi-squared Automatic Interaction

Detector (CHAID), Classification and Regression Tree (CART) and many more [54].

The C4.5, ID3, and J48 are based on the concept of Entropy and Information Gain

and are the most recent implementations, and you may see them in the current

machine learning software like SPSS, Weka, Rapid Miner, etc. or even in same

programming (API) like Python, R, etc. [55][56][57]. Entropy is a test of the

homogeneity of data items when they are all the same, i.e. completely homogeneous-

the Entropy is zero, but when equally divided - the Entropy is one. The Entropy is

given by;

Entropy H(X) = −
∑

p(X) log p(X) (2.1)

and

Information Gain I(X, Y ) = H(X)−H(X|Y ), (2.2)
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Figure 2.4: Decision Tree

p(X) represent the probability of data item x. The CART algorithm has been

used extensively and also popular it uses Gini Index give by

Gini(E) = 1−
n∑
j=1

(p)2 (2.3)

while p is the probabilities of each class, this is the criteria for node splitting

[58]. Compared with most classifiers DT could show good result in dealing with

imbalanced classed data for both binary and multi-classed [59] because of its di-

chotomous nature (could be split into two) and if the node were split at one of the

significant attributes, the results could be very accurate beside some new algorithm

of decision tree which is not sensitive to the size of classes called Class Confidence

Proportion Decision Tree (CCPDT) were developed by [60]. DT has also been used

in combination with other classifiers and processes, for example, [61] relied on DT

to generate a rule-based for under-sampling the class imbalance.

Neural networks and imbalanced classed data

A neural network or Artificial Neural Network (ANN) is one of the first attempts of

designing an algorithm to simulate the working of the human brain; it is designed

to replicate the way the biological brains function, its basic structure resembles
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the interconnection of neurons working together to solve problems [62][63][64]. The

algorithm is made up of three main levels called tiers nodes or layers nodes (input,

hidden and output layers), the hidden layer may contain more than one layers see

Figure 2.5, it works by receiving data input from the first tier which is like human

sensory organ eg, eyes, skin, etc. that is sensitive to sight and touch.

 
Figure 2.5: Neural Network

Each successive tier will received input from the output of previous tier. The

input layer consist of a set of inputs xi(i = 1, 2, 3, 4....n) each of these input

has a weighting wi(i = 1, 2, 3, 4....n) associated to it and sets of outputs yi(i =

1, 2, 3, 4....n) .

 

 

 

 W1 
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 W3 

X1 

X2 

X3 

Figure 2.6: Neural Network output

To find the result ȳ of a Perceptron is given by. A Perceptron is a representation
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of a single output of the neuron showing the inputs and the weightings as in Figure

2.6.

ȳ =

n∑
i=1

(xiwi) (2.4)

ANN has had uncertain past due to its tendency to overfit the training dataset

[65], besides its easily affected by outliers and the work of Minsky and Papert in 1969

[66] in the book titled Perceptrons brought about a wane in researcher’s interest on

neural network. Recently the emergence of Deep learning and the accuracy achieved

by computer using deep learning algorithm in image recognition, self-driving cars

and winning the world best player in the game of GO have rekindled researcher’s

interest in (ANN), and these demonstrate its adaptability to learning. In the quest

for handling the problems associated to imbalanced classed in data set, Neural net-

work and various modifications of it has had its fair share of outings, [67] presented

an approach of using a combination of Synthetic Minority Over-sampling Technique

(SMOTE) and Neural Network called Complementary Neural Network (CMTNN)

where each weighting wi of the node-link is optimized by SMOTE algorithm, though

an increased in the prediction and general accuracy were observed, but the compu-

tational cost became a hindrance. Genetic algorithm (GA) has also been used as

the activation function in (ANN) by [68], as GA is based on natural selection when

used as the weighting (wi) to train (ANN) produced an improved recognition of

the minority classes in imbalanced data set, inline with using GA and (ANN) [69]

proposed a method called multi-objective evolutionary algorithm to optimised the

weighting bias toward target classes in a multi-classed scenario. Using a dynamic

sampling method (DyS) for each hidden multi layer’s perceptrons [70] were able to

train (ANN) to target multiple classed in imbalanced data set.

New methods and modifications of (ANN) will continue to emerge, even the Deep

Learning that is taking the Data Science community by storm is not yet a matured

algorithm concept undermining that some remarkable results have been achieved by

it, but the new emergence of different Deep Learning (API) in every version releases

of programming language like Python, R, Matlab is an attestation of the fact that

Deep Learning is still evolving.

2.2.4 Cost-Sensitive method

The Cost-Sensitive Learning (CSL) approach consider the cost of misclassifications

and adjust the result into empirical consequences by allotting a different cost value

to the misclassified classes [71]. In a binary classification scenario, the cost of la-
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beling positive as negative may be different from the cost of labeling negative as

positive. This is true in real-life, considering the two example provided by [72],

the cost of misclassifying a cancer patient as not having cancer is more damaging

to misclassifying a healthy patient as having cancer, just as the cost of not being

able to pick up a terrorist would be more damaging to labelling a none terrorist as

terrorist.

This technique could be applied to the result of any classification algorithm (binary

or multi-classed). The cost-sensitive approach posits that accuracy is not as impor-

tant as the implication of the wrongly classified target of interest. The final results

are computed with values that leads to minimum cost for wrongly predicted values

of least consequence [73] and maximum for values of high consequences. During

implementation, the value of the cost is provided and set beforehand [72]. Most

time, CSL is used in combination with other classifiers that produce their results

in a confusion matrix [74]. It could be applied to both binary and multi-classed

classifications, Table 2.1 is a representation of a Cost Matrix using the Confusion

Matrix in Table 2.4, given that cicj is the cost of predicting i class while the actual

class is j, therefore cicj is false j (Fj).

Predicted
Positive Negative

Actual positive c+, c+ c−, c+

Actual Negative c+, c− c−, c−

Table 2.1: Cost Matrix Representation

The similarities of the two tables are obvious, but the applications is were they

differs. If the errors in the classification is c−, c+ and c+, c−, and no error in correctly

classified data given by; c+, c+ and c−, c− therefore the Cost Matrix in Table 2.1

would reduce to a ratio; c−, c+ / c+, c−, while the total cost is then dedused as

Totalcost = c−, c+ ∗ FP + c+, c− ∗ FN (2.5)

Provided that the classifier’s result could be explained using a confusion matrix,

CSL could be derived from such classifier. In combining resampling, SVM with

CSL [75] showed that a baseline of measuring the acceptable cost could be modified

based on context situations. Combined algorithms like ensemble are very popular in

using CLS IN handing imbalance classes, [76] provided exploratory study on bagging

relationships and classes, [77] proposed a method of using ensemble (AdaBoost),

CSL, SVM and query-by-committee (QBC), first the classifier was performed on

the subset of the data sample having divided it by the imbalanced proportion, then

the QBC is used to produce the training set before the CSL-SVM is used to train
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the data. Training with cost-sensitive neural networks and increasing the threshold

of the cost such that the output is improved because data item with higher costs

become harder to be misclassified as proposed by [78].

K nearest neighbour and imbalanced classed data

This is a classification algorithm used in classifying a new data point within a sample

spaced by considering other neighbouring data points [79][80][81], hence the term

k-nearest neighbour. In its simplest form, let’s consider Figure 2.7a , if a new data

point (blue dot) have to be classified as either belonging to the black or the white

dot, its nearest neighbours has to be checked. If k is set to 3 (k=3) as in Figure 2.7b,

it means the closest 3 data points to the blue dot, in Figure 2.7b, the three nearest

neighbour to the blue dots are two white and one black. The majority vote is used

to classify the blue dot as belonging to the class of the white dot by measuring the

distance between the blue dots and its nearest neighbours, and it is assumed that

data points are similar to its neighbors if the distance between them is small.

(a) K nearest Neighbour in sample space (b) Relevant data

Figure 2.7: Value of K is 3 in the sample space

There are various metrics of measuring the distance of data points in KNN

algorithm, the most popular once are listed in Equation 2.6, 2.7 and 2.8 are for

continuous variables while the Hamming distance in Equation 2.9 which is almost

the same with Manhattan distance but applied when the data is categorical or

discrete.

Euclidean distance =

√√√√ n∑
i=1

(xi − yi)2 (2.6)

Manhattan distance =

n∑
i−1

‖ xi − yi ‖ (2.7)

Minkowski distance =

[
n∑
i−1

‖ xi − yi ‖q
] 1

q

(2.8)
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Hamming distance =

n∑
i−1

‖ xi − yi ‖ (2.9)

Various modification of k-nearest neighbour has been used to solve the problems

associated with imbalanced classed, for example large weighted- k nearest neighbour

(W-KNN) were used by [82], the process is to utilized wider region around the data

items distribution to deduced the nearest neighbour, but this has resulted in accom-

modating some extraneous data like outliers which may add some noise resulting in

the whole prediction becoming less accurate with data set that has large variances.

All the algorithm techniques for predictive modelling can never be exhausted, the

fluidity of the concept is such that on a daily basis, new modifications and modi-

fication of first modification are being invented. For example a modification of K

nearest neighbour called weighted- K nearest neighbour (W-KNN) that was dis-

cussed earlier created by [82], have been modified to used Decision tree boundaries

to select its K nearest neighbour, the wider region around the data items now have

a different metrics to qualify to vote for a new data as belonging to a particular

class, this improve the limited accuracy that was recorded by the (W-KNN), hence

some outliers will be voted out.

Recently, a new approach of handling imbalanced data set known as ”conditional

generative adversarial networks (cGAN)” was introduced by [83], this is based on

a concept of continuous competitions by two vectors known as generator and dis-

criminator. While the discriminator tries to learn the actual data set pattern by

comparing it to data being generated by the generator as against the feedback be-

tween the two vector result, this could lead to adaptation and improvement to the

data quality and finally the overall performance algorithm.

2.2.5 Ensemble Methods

Ensemble algorithm is basically a collection of the algorithm that works together

to enhance their final predictive capabilities. During classification, each of these

algorithms produces output results that acts as an input to the next layer algorithm

leading to more refinement until a final layer of the algorithm would produce the

final outputs.

The categories of ensemble algorithms are Boosting and Bagging. Boosting algo-

rithm is a family of ensemble invented by [84]. AdaBoost (Adaptive Boosting)

classifier is one of the most widely used applications of boosting, and it aimed to
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convert weak classifiers into robust classifiers. Given a boosting classifier as;

F (x) =

M∑
m−1

Θmf(x), (2.10)

where f(x) is the function of the weak classifier and Θm is the correspond-

ing weighted summation of all of the weak classifiers M. Boosting iterates from

m1.......Mn at each iteration the classifier select one with the lowest weighted error

and used that as an input to improve the classification.

The bagging or bootstrap aggregating algorithm as it is popularly called is another

family of ensemble invented almost the same time as boosting and were popularised

by [85]. It optimises the predictive capabilities of decision tree through using multi-

ples of them in layers and applying the final output result as an input to a bootstrap

aggregating to produce the final optimized predictions [86][87]. Though many of the

ensemble contains one type of algorithm, while others may be made up of more than

one. For instance, Random Forest uses mostly simple collections of the decision tree

in layer with each of them adding their result output as the input to the bagging

algorithm [88] [89]. The theoretical bases for using bagging and boosting is that

each of the weak algorithms could produce strong classifications if combine [90].

Most algorithm that had performed poorly on imbalanced classed data have been

shown to be promising when integrated with boosting and bagging. For this, en-

semble are mostly applied to optimize the accuracy of other algorithms, notable in

this integration is Adaboost with SVM using Gaussian Mixture Modeling Super-

vector (GSV-ADSVM) by [91]. This work identified the recognition of phoneme

in speech using a super-vector generated by Gaussian Mixture Modeling in speech

recognition. A comparative work was provided by [92] for common algorithm and

imbalanced data the ensemble algorithm produces more stable results. The ensem-

ble has also been used in making selection in streaming life data or processes where

selection based on the majority and minority data feed is akin to imbalanced classed

situation [93].

2.2.6 Sampling based Methods

This is one of the techniques dedicated to handling imbalanced classed data set, and

it is regarded thus because for the first time, the (IR) featured in the derivatives

and influenced the overall results of the modelling. The main idea behind sampling-

based techniques is to balance the classes, this method of handling imbalance data

has become one of the most popular due to the ease of use, the process involves
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changing the total number of class data item by either increasing the minority class

[94][95] known as oversampling or reducing the majority class known as under-

sampling.

Oversampling

The oversampling techniques was made popular by the pioneering work of [94]

through a process called Synthetic Minority Over-Sampling Technique (SMOTE).

It involves artificially generating data item to increase the minority class in the data

set to the level where the imbalance ratio (IR); which is the ratio of the majority

to the minority class are approximately equal. The (SMOTE) data is generated by

the algorithm in 2.11.

xf = xi + <(0,1)(xj − xi) (2.11)

If data set of x(i.....j), taking the k-nearest neighbours of sample X as xj , where

xf is the new generated data item, xi is an original data item and <(0,1) is a ran-

dom number within (0,1). Though, this (SMOTE) techniques apparently has many

advantages, particularly solving the issues of class imbalance. But, it invariably

introduced issues like misclassification cost [96], and some researchers have also en-

countered the problems of overfitting which stem from creating a replica of the same

dataset and inheriting intrinsic errors therein, hence the necessity of new approaches

to solving the issues of class imbalance like having various modifications of oversam-

pling have been proposed. The Borderline-SMOTE by [97] where data item at the

borderline of K-nearest neighbour are over-sampled is one of such example; also

there is random oversampling used by [98] that tend to choose the training data

by random selection, this method though improved accuracy, but has led to delay

in the execution and overfitting when dealing with large data set. A generative

oversampling technique was used by [99], the process involves new data being cre-

ated by learning from the training data. This method made it possible that the

created data have the basic characteristics of the existing data thereby maintaining

the data integrity, but accuracy improvement is limited since the characteristics of

the training data is still maintained.

Adaptive Synthetic Sampling

This is another popular oversampling techniques is known by the acronym (ADASYN),

is different from the (SMOTE) due to the way it over sample (generate) the minority

data items. While (SMOTE) uses the K-Nearest neighbour of the minority class to
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decide which data to produce, the (ADASYN) on the other hand uses the distribu-

tions level of difficulties of minority classes ability to learn. This means that the

minority data items that have the least ability to learn in the training data will be

the one to over-sampled (generated).

Undersampling

An alternative technique called undersampling an opposite of oversampling, which is

basically reducing the number of majority classed data items to balance the number

of the classes in the dataset. This methods have also gained keen research interest

in the academia, [100] presented two methods of under-sampling as random and

informative; the random process is by choosing and eliminating data from existing

class until the classes are balanced, while the informative under-sampling is by

eliminating data observation class from the data set based on pre-selected criterion

to achieve balance. A process known as active under-sampling by getting rid of the

sample of the data items that are far away from the decision boundary was used

by [101]. These sampling methods have a problem with performance with large

dataset and could lead to removing important data items. Multiple resampling

techniques were employed by [44] as it provides better tuning results with every

circle of resampling.

A way of integrating over-sampling technique with cross-validation to improve the

general performance was proposed by [102]. Cluster sampling method has also be

used by [103] which introduces the process of cluster density and boundary density

threshold to determine the cluster and sampling boundary, [104] used a method

called A Bi-directional Sampling based on K-Means clustering which performed

very well with data that has too much noise and few samples. Each of the sampling

techniques has its pros and cons, which are very subjective and depending on the

context of application and usage [105].

A techniques that could result in an improved performance might not show the

same performance when used in different context. Therefore more modifications and

improvements in the existing sampling techniques have continued to be presented

and developed by researchers based on some local properties of the dataset. For

instance, some under sampling have incorporated the mean of the values of the

attributes as the metric for deriving the sampled data [106]. One of the main

disadvantages of the over-sampling method is the risk of overfitting due to generating

a replica of existing data [107]. For under-sampling; the main disadvantage is the

possibility of discarding some data that might present potential useful information

particularly during the process of variable selection that is cross dependent on other
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variables or when the potential data item is far away from the central means of the

attributes data items.

2.2.7 The Attribute/Feature Selection Approaches to im-

balanced dataset

Attributes or feature selection are not primarily intended to treat the issues of imbal-

anced classes. The reasons for supporting feature selection in data-centric research

include avoiding overfitting, lengthy training time and resource issues. Imagine ob-

taining approximately the same level of accuracy by using only 5 selected features

instead of a total of 10 features in a data mining process, considering the time and

other resources it may take to acquire all 10 that may not be necessary to the predic-

tion. Of course, feature selection improves the accuracy of classifiers and invariably

enhances the capture of the minority in a dataset, along with several advantages

[108]. Feature selection is categorized into two basic groups, namely, the filter and

wrapper techniques; some hybrid techniques that are combinations of these two

categories are also available. The filter techniques is algorithm independent, while

the wrapper approach is algorithm dependent [109][110]. There are various filter

techniques; as shown in Table 2.2, each of them uses different or combinations of

statistical functions like distance, correlation, information metric and similarities as

a means of ranking the feature relevance in the dataset [111]. Although filter tech-

niques are algorithm independent not all filters can be used for all types of predictive

modeling: Some are more suited for different type of modeling like classification, re-

gression and clustering.

Wrapper techniques are algorithm dependent; here a predetermined algorithm used

in the modeling is known or the technique recommends which algorithm is most suit-

able for the selected feature. Hence, a subset of the overall features in the dataset

is created, which should comprise the features deemed most important for a specific

classifier performance.
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Table 2.2: Common filter feature selection technique

More often than not, not all the features are included in the subset, as some

are eliminated. The subsets are combinations of various features based on some

black-box search algorithms called ”attribute evaluator”. Some of the most common

wrapper techniques are ”CfsSubsetEval,” ”ClassifierSubsetEval” and ”WrapperSub-

setEval.”

Feature or attributes selection is an active area of research related to solving the

issues associated with imbalanced data classes; apart from those listed in Table

2.2 many researchers have recently delved into solving this problem; notably [112]

proposed four metrics information gain (IG), chi-square (CHI), correlation coeffi-

cient (CC), and odds ratios (OR) the most effective way of selecting the features

in a datasets. Although the results of this recommendations were encouraging, but

failed when the four metrics did not triangulate or come together. This made the

validity of the work conditional based on only three methods triangulating. Another

notable work is that of [113] that uses the receiver operating characteristic-(ROC)

to imply that the significant features could be obtained using a techniques called

”Feature Assessment by Sliding Thresholds” (FAST)”, but the ROC is a ”what-if”

conditional probability simulations scenario, and in reality, such a condition may

not arise. The work of [114] uses an adaptations of ensemble (combinations) of

multiple classifier based on feature selection, re-sampling, and algorithm learning.

In line with using ensemble approaches to feature selections, a method called MIEE
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(mutual information-based feature selection for EasyEnsemble) was proposed by

[115]. Moreover, a comparison was shown with other ensemble methods, such as

asymmetric bagging, which the EasyEnsemble performs better. A technique called

K-OFSD, which combines K nearest neighbors and its dependency to rough set

theory for selecting features in high-dimensionality datasets was invented by [116].

Feature selection and imbalanced data is an active area of research, and new effort

will continue to be made to find solutions to both.

2.2.8 A Case for Hybrid Approach to Imbalanced classed

Problems

From the previous sections, it is evident that the imbalance classes in data sets are

one of the reasons of poor performance in predictive modelling and extensive research

is being conducted in both academia and industries in other to find solutions or to

reduce the effects of this bias. Many researchers have used different modifications of

(ML) algorithm as shown in sections 2.2, while others have approached the solution

by considering different attributes selection techniques as in sections 2.2.7, but the

fact remains that the solution has not been found and there is not going to be a

single solution due to the ”intrinsic properties” of data set. This is the reason why

a modelling algorithm that may perform very well on a data set may produce poor

results when used on different data set of the same domain and variables, besides

the nature of Data mining (DM)and Machine Learning (ML) processes incorporates

lots of trial and errors [117].

Therefore, we make a case for using a hybrid approach that could encompass both

(ML) algorithm and Feature selections. Another reason for opting for this approach

is that in all predictive modelling there is no single algorithm that is a ”silver bullet”

for all the problems rather a combination of processes and in most cases, trial and

error have higher probabilities of success [118][119][120].

Apart from the work of [94] who invented the (SMOTE) processes and some mod-

ification of it for example, borderline (SMOTE) by [95][97], no other work that is

in public domain have primarily targeted imbalanced classes in their design and

implementations. Though, there are huge lot of work that claimed to improve the

capturing of the minority groups, but the analysis of most of these works show that

the improved results obtained are due to the authors changing algorithm parameters

and other variables of the dataset, hence cannot be replicated if the processes were

tried on other datasets. Besides the (ML) did not factor the causes of the imbalance

which is the imbalance ratio (IR), so how could the problems became solved when
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the cause of the problem (the (IR)) is not dealt with?

2.2.9 Researcher’s Further Development

This research has been guided by recent papers in this area of interest. These are

mostly journal papers, websites and books that are too numerous to mention here,

please see the list of references. But the most important literature materials are

listed here.

1. A new robust feature selection method using variance-based sensitivity analysis

[38].

2. Bayes imbalance impact index: A measure of class imbalanced data set for

classification problem [39].

3. Online variance reduction for stochastic optimization [40].

4. Handling imbalanced datasets in machine learning [41].

5. From fixed-x to random-x regression: Bias-variance decomposition, covariance

penalties, and prediction error estimation [42].

6. Variance prior forms for high-dimensional Bayesian variable selection [43].

this is not to say that other literature review materials were not useful. But this six

listed literature were the guiding this research throughout.

Literature review summary in Chapter 2
Sections Title Summary

2.2.2 Variance Techniques For Handling
imbalanced classeddata

The variance approach of handling classed imbalance problems
, this papers used here demontrated that probabaility density
distribution has strong correlation with variance of the class
which the data point belong to. This is the main techniques
that gave rise to Varinace Ranking used in this thesis

2.2.3 Algorithm Techniques for imbalanced
classed data

This part of the literature review provided most traditional al-
gorithm that are used for machine learning . It is noteworthy to
realised that good result have been produced with imbalanced
classed datasets owing to variaus parameter changes in the al-
gorithm being use. But this techniques were not originally in-
tended for imbalanced data. Many of the basic algorithms like
Decision Tree, Support Vector Machine and Neural networks
and thier modifications were explored.

2.2.4 Cost-Sensitive method This technique set a cost for the wrongly predicted class, by
adjusting each class cost it became possible to control and reset
the position of the class boundary

2.2.5 Ensemble Methods This techniques inolves combination of more than one tree
based algorithm to produce better result. Though is among
the tradiotional methods, but is its abit different because of
the cobinations

2.2.6 Sampling based Methods This is one of the techniques that is dedicated for imbalanced
data. This specifically SMOTE and ADASYN techniques.

2.2.7 The Attribute/Feature Selection Ap-
proaches to imbalanced dataset

In this part of litersture review , the techniques of feature se-
lections were addressed.

2.2.8 A Case for Hybrid Approach to Im-
balanced classed Problems

In this part emphasis were drawn to intergrations of all multiple
approaches that may involved others approaches as the panacea
for solving classed imbalanced.

Table 2.3: Literature review summary in Chapter 2
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2.3 The Measurement Evaluation for Imbalanced

dataset

The general performance for imbalanced classed data set does not follow the usual

accuracy measurement, rather the unequal amount of various classes in the data

set have to be reflected. Consequently, the metrics of measurement [121][122], have

to be specifically direct to empirical values of the numbers of classes captured in

the output test data, hence classification performances uses the confusion matrix

[123][124] as in Table 2.4; which is a cross-section table that evaluate how accurate

the model tends to classify the groups. One major reason for using this metric in

measuring classification is the insight into how the algorithm accurately identified

the classes and how many classes have been confused and mislabelled, as stated by

[125][126]. This would enable the assessment of the accuracy of the model given

captured and confused classes. Sections 2.3.1, 2.3.2 and 2.3.3 are the processes

measurement evaluation for imbalanced data set for both binary and multi-classed.

2.3.1 Measurement Evaluation for Binary classed data

The binary classification evaluation experiment is represented by a 2 x 2 confu-

sion matrix, as shown in Table 2.4. This is particularly useful for visualising a

binary classification against a multi-class classification, where multiple overlappings

of classification could confuse the algorithms and make the results; less discriminant;

a detailed analysis of the confusion matrix can be found in [127]. The definitions of

terms in confusion matrix tables are

• True positives (TP): The algorithm predicted yes, and the correct answer

is yes; (correctly predicted);

• True negatives (TN): The algorithm predicted no, and correct answer is no

(correctly predicted);

• False positives (FP): The algorithm predicted yes, but the correct answer

is no(incorrectly predicted); and

• False negatives (FN): The algorithm predicted no, but the correct answer

is yes(incorrectly predicted).
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Table 2.4: Confusion Matrix

The true positive rate (TPR) is the same as the sensitivity and recall. It is the

proportion of positive values that are correctly predicted:

Sensitivity = Recall =
TP

(TP + FN)
. (2.12)

The Precision is the proportion of predicted positives which are actually positive

Precision =
TP

(TP + FP )
. (2.13)

Specificity is the proportion of actual negative which are predicted negative

FP (rate) = Specificity =
TN

(TN + FP )
. (2.14)

F-measure is the harmonic mean between precision and recall or The harmonic mean

between specificity and sensitivity.

Fmeasure = 2 ∗ Precision.Recall

(Precision+Recall)
. (2.15)

Accuracy =
tp+ tn

(tp+ tn+ fp+ fn)
=
tp+ tn

n
. (2.16)

The formulas show that the F-Measure is another mean of testing the accuracy of

binary classification accuracy [128].

2.3.2 Measurement Evaluation for Multi-classed data (One-

Versus-all and One -Versus-One)

The measure of classifier performance in imbalanced binary datasets is straightfor-

ward and easily understandable, but for multi-class cases, misclassified and overlap-

ping data make it impossible to effectively measure performance. one of the most

useful techniques is decomposing the classes into series of ntotal binary classes where

n is the number of classes [129][130].
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Figure 2.8: Multi-classed to Binary decomposition-One vs All

For clarity, Figure 2.8 shows three-class data represented by red stars, black cir-

cle, and green squares for implementing the One-versus-All technique. Let us take

the red stars as the positive class (Figure 2.8 a), demarcated by the red line; the

other components (black circles and green squares) are the negative class. Sequen-

tially, the black circles (Figure 2.8 b) and green squares (Figure 2.8 c) are taken in

turn to be positive while the rest are negative; this is the process of decomposing

multiple classes into (n)binary. With this decomposition, the binary performance

evaluations in section 2.3.1 could be applied to evaluate the multi-class data. The

”One-versus-all” could also be called one-versus-rest” and is one of the most popular

and accurate methods for handling multi-class datasets [130][131][132].

Another ways for handling multiple classes is ”one-versus-one” techniques; this pro-

cess takes each pair of classes in the multi-class dataset in turn, until all the classes

have been paired with each other

 

Figure 2.9: Multi-classed to Binary decomposition-One vs One

Figure 2.9 shows the one-versus-One for multi-classed data set were each class
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is paired with another until all the classes have been paired, for example in Figure

2.9 a, class 2 and class 3 is paired, class 1 and class 2 are paired in Figure 2.9 b and

finally class 1 and class 3 are paired in Figure 2.9 c.

There is extensive literature that has proposed and supported one-versus-all tech-

niques as the most accurate approach in handling multi-class classifications. The

work of [133][134][130][132] made strong cases as the only technique that could jus-

tifiably claim to have actually handle multiclassed classification in a real sense of it.

This is because one versus one makes a pair of binary data without according for

the influence of other data items, meaning that other data items that could interact

with the modeling have been eliminated or filtered out. In contrast, in one versus

all, those classes have not been removed. Furthermore, One-versus-One is computa-

tionally expensive. Hence, the one-versus-all approach is implemented in this work.

Therefore the metrics of measuring the performance in Equations 2.12, 2.13, 2.14,

2.15 and 2.16 in sections 2.3.1 will then be applicable to multi-classed imbalanced

data set because each iteration of classification is binary until all ntotal binary clas-

sification has been completed.

An average performance of the multi-classed n binary classifier may be deduced by

the summations of each metric as in

Equations 2.17,2.18,2.19,2.20.

Average Recall =

∑1
i=j Recall

n
(2.17)

Average Precision =

∑1
i=j Precision

n
(2.18)

Average Specificity =

∑1
i=j Specificity

n
(2.19)

Average Fmeasure =

∑1
i=j Fmeasure

n
(2.20)

There is no any major difference between the metrics for binary classed and that of

multi-classed that has been decomposed into ”one-versus-all”.

2.3.3 The Receiver Operating Characteristics and Area Un-

der the Curve

The graph of Receiver Operating Characteristics (ROC) is used to provides a trade-

off value between Sensitivity and Specificity. The y-axis is TP(rate) plotted against
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FP(rate) in the x-axis. The graph provides a corresponding score for any change

in either value [135][136], using the ROC graph is possible to predict all values

of TP(rate) and FP(rate) for any type of classifier both binary and multi-classed.

Figure 2.10 is a modified version (included yellow curve) of ROC graph used to

quantify the accuracy of a diagnostic test [137]. The scale of the graph is from 0.00

to 1.00 in both axes. The graph has four curves; yellow, green, red and blue. For

TP(rate) plotted in the y-axis the highest value is 1.00; therefore, the yellow curve

with the highest TP(rate) in y-axis at the position (0.00,1.00) is a perfect classifier

(more accurate) followed by green and red accordingly. In Figure 2.11 The blue

curve (straight line) is the result of random guess classification. The more the curves

get closer to the position (0.00,1.00) the better the classification. The area Under

the Curve (AUC) is another important metric, it is used to measure the accuracy

of the classification, ie accuracy is proportionally equal to the area under the ROC

curve, meaning that the larger this area the more accurate is the classification.

 
Figure 2.10: ROC Curve

The Figure 2.11 is a representation of an ROC graph with three curves; A, B

and C. Curve A is more accurate because it has a larger area, the area of C is

used to represent a random guess classification and usually 0.5. The ROC graph

for multi-classed (One-Versus-all) as described in section 2.3.2 are the same with

binary,
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Figure 2.11: The Area Under the ROC Curve

 

Figure 2.12: Deducing AUC

In Figure 2.11, each of the curve will represent the modelling result of interest

and comparison of each algorithm performance would be deduced from the Area

Under the Curve, this could be a bit tricky considering that the shape of such area

is usually not properly define, Figure 2.12 from [138] is an excellent attempt of

calculating the Area Under the Curve (AUC), from the Figure 2.12 the AUC have

been divided into A and B. The AUC is then:

AUC = A+B = Area of Shaded portions. (2.21)

2.3.4 Data acquisition and descriptions:

The datasets used in this research are listed in appendix A.2 and could be down-

loaded from the machine learning archive [139] and [140], the full descriptions and

other details of the datasets have been provided; please see appendix A.2. The data

is in the public domain; hence, no extra permission was needed nor sort before using

it. All references to the data have been acknowledged. Detailed descriptions like

the number of instances, total attributes, missing values, class distributions are all

provided.
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The datasets have some few similarities, four of the data set are binary classed (two

class), these are the Pima India diabetes data, Wisconsin cancer data, Buper liver

disease data, and Cod-RNA data. While three of the dataset are multi-classed,

these are Iris, Yeast, and Glass data. The Yeast and Glass data set are highly im-

balanced, while the Iris data set is three classes and is balanced (50 in each class)

thus uniformly classed.

The Glass data has six classes label from 1 to 7 and nine attributes, notice that class

4 is not available in the dataset. The attributes are mostly different chemical ele-

ments in various proportions and the refractive index of glass, and these properties

made the glass useful for various applications like window glass, cars heard lamp,

tableware, window glasses, and so on. The Yeast data set has ten classes and eight

attributes, which are the different numerical measurement of nucleus and protein

enzymes in various proportions.

2.3.5 General Data preparation and Techniques to Avoid

Overfitting.

The purpose of this section is to present some common data preprocessing tech-

niques and the de facto standard procedures that cut across all the experimentation

and research design used.

The data sets used in this research has some common issues that were treated in

this section. Though during the experimentation in different sections, some specific

treatment were also carried out that are aligned to the research design in that sec-

tion.

The Weka Data Mining and Machine learning software have been used for most

analysis, but we have also used Microsoft Excel for initial analysis and data prepa-

ration like counting of missing values, descriptive statistics and many more. Also,

we had used the Python programming language to present some analysis output

screenshot because of the aesthetic look.

As the work involved many data sets (seven); Pima Indians Diabetes data, Wiscon-

sin breast cancer data, BUPA liver disorders data, Cod-RNA Dataset, Glass data,

Yeast and Iris data (please see Section 2.3.4). Four of the data sets are binary

classed while the other three are multi-classed, as explained in sections 2.3.2, the

three multi-classed data set have been converted to nBinary using the one-vs-all

techniques as explained in section 2.3.2, hence the same data preparation could be

applied to all the data sets. Even though the sources information provided for the

data sets in A.2 stated that some data has no missing values, but few anomalies
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were discovered during exploration (Data understanding) accordance with (CRISP)

of Data Mining [141] [142].

Missing data

Some of the data set has problem with missing values which must be dealt with,

the Pima India diabetes data, this was treated using the average of the data column

items because the Skewness for the missing columns are zero, hence their mean value

was used as replacement for the missing data in the body mass index (BMI) and

age attributes in the Pima Indians Diabetes data,

The Wisconsin Breast Cancer data are well organized and were treated from source,

so there were no problems with the data, while the cod-RNA dataset had very few

cases (6) of missing values; thus, it was deleted. Also for the BUPA Liver Disor-

ders data, the aspartate aminotransferase (sgot) and alanine aminotransferase (sgpt)

columns were also treated for missing data values. Additionally, none of the data

had any problem with outliers. Finally, the inconsistency of representing missing

values with zero in the Pima Indians Diabetes data was also addressed in the BMI

column.

During machine learning modelling processes one of the most common process error

that may occur is Overfitting and Underfitting, these two errors will be reviewed,

and the techniques used in avoiding them explained in these sections. Overfitting

is a modelling error that had occurred when the model created performed totally

below the result obtained during training when tested on a real independent data

[143][144][145]. By independent it means data that the model has not seen before,

this is due to the machine learning algorithm memorising the patterns of a dataset.

When the algorithm is exposed to the same data it will fit into the data patterns

so well that it produces very high accurate result. All this happened during train-

ing of the model. But the model is unable to generalise and replicate such high

accuracy in a new independent data. This shows that the model learning process is

false, although, overfitting has been traceable to be the consequence of noise in the

dataset. But other causes such as the over usage of the same data set such that it

increases the possibility of the modelling algorithms memorising the pattern of the

data items could also contribute to it. The underfitting is opposite of overfitting,

the model is unable to fit in the training data such that the accuracy result obtained

during training is very low. Perhaps, that is the reason underfitting error is not as

popular as overfitting because it cannot be used, after all, why should a model that

performed poorly be used?
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Cross Validation and Split into Train and Test data are two techniques

used to overcome overfitting. Opinions are rife in machine learning and data science

communities particularly in the vibrant discussions public forums dedicated to data

science like Kaggle [146], Reddit [147], Researchgate [148] e.t.c. as to which tech-

nique is the best for solving overfitting. Before going further to explain the details

of cross-validation, let me state here that both techniques are confirmed standard-

ised solutions to overfitting. The choices made by any scientist depends on many

factors for example; the computational power or does the researcher have enough

data to split into training and test data? Even when enough data is available, most

researchers still use cross-validation when training the model. This would provide

a double assurance that the model will not under-perform during generalisation (a

term used to describe models performance with an unseen data), besides most data

mining tool/software like weka [22] has incorporated all these techniques, is a matter

of just clicking the button.

At present, no evidence has contradicted the fact that the results of a model trained

using cross-validations techniques will not be the same during generalisation. There-

fore using cross-validation has become the convention as could be seen in many

academic journals, thesis, and reports in data sciences. That is not to say that

using split into ”Train and Test data” is not equally popular, by and large, both

techniques are used together.

Cross-Validation is one of the standard technique used to avoid overfitting, and that

will be applied in this thesis (10-fold Cross-validation). Figure 2.13 is a diagram-

matic representation of the process of K-fold Cross-validation with K = 5, the K

represents the number of division (fold) of the dataset [149], in each division 80% is

for training the model while the remaining 20% is for the testing, this is repeated to

Figure 2.13: K-Fold Cross validation
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the number of the fold, the accuracy or performance of the model is obtained by

the average performance of each fold. Because the sets of data items being used for

the training and test data are repeatedly changed as depicted in Figure 2.13, the

machine learning algorithm would not be able memorised the fitting functions hence

overfitting problems will not arise. The cross-validation techniques have another ad-

vantage of allowing the model to use all the data without dividing the whole data

into training and test data particularly when the size of the data set is an issue.

In the next chapter of this research, the theoretical basis of the process that un-

derscores the derivatives of the techniques ” Variance Ranking Attribute Selection

(VR)” for handling the imbalanced will be deduced, one of the advantages of (VR)

is that its algorithm independent, hence machine learning algorithms, that could be

applied to both regression and classification problems will be used for validation of

our techniques.

48



Chapter 3

Variance Ranking Attribute

Selection Technique

3.1 Proposed Method and Approach

In chapter two, we provided the efforts that have been made so far to handle im-

balanced problems and also exposing the inadequacies in many of the existing ap-

proaches. Being that many of these approaches did not take the (IR) into con-

sideration nor utilised it in the algorithm. But are mostly based on tweaking and

using different modifications of algorithms. Although some good results could be

obtained sometimes, but the processes are difficult to replicate. Apart from the

sampling techniques were the process involves the (IR) because its either artificially

generating or reducing existing data items to equalized the classes as in (SMOTE).

Most academic pundits have criticise many of these approaches as not really solving

the problems of class imbalance.

Our approach is based on the variance of attributes, the reasons for choosing the vari-

ance as against other properties is because its best suited to describe and summarise

the positions of multiple data points within a vector space. Secondly, considering

the values of the attributes and how there are distributed, attributes that belong to

a particular class are usually concentrated together (have density). Therefore, the

variance values within a central terms of reference can provide an insight into the

relevance of such attribute class cluster and can be used to find the density of the

distributions of each cluster which are represented by the classes, hence the variance

can be used as a metrics to predict the classes of data item.

In most classification modelling, what we are searching for is just the minority

class items in both binary and multi-classed context, recall in chapter 2 that the

multi-classed could be decomposed to (n)Binary either using one-versus-one or one-

versus-all, but one-versus-all have been selected for this research the reasons for
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that, have been explained in chapter 2.

Figure 3.1: An Overview of the Proposed Method

To improve the capturing of minority classes in predictive modelling, new tech-

niques have to be developed because the existing approaches are skewing sensitivities

and capturing more of the majority classes which are not needed. To correct this,

we propose the processes as illustrated in Figure 3.1.

Though detailed of this process will be dealt with in subsequent sessions, but a

general black-box description of the Figure 3.1 will suffice for now. The process is

called ”Variance Ranking Attribute Selection” (VR) Technique. In the diagram, the

process starts with obtaining an imbalanced data (Binary or Multi-classed) then,

cleaning the data or any other preprocessing that the data may need. The data is

split into two classes (Positive class and negative class) or (class 1 and class 0), the

split classes is used to deduce important feature using a Variance Ranking process.

Finally, the results are evaluated by binary classifications.

3.1.1 Variance and Variables Properties

A typical datasets has lots of attributes (variables) each measured to different scale,

different data types (discrete or continuous). Each variable cluster centroid relative

to each may change or remain constant depending on the terms of reference. Some

of these variables may be dependent while some may be independent and also the

density function will remain constant. The question is, how could all these properties

be made to undergo the same statistical treatment? Is there a property of numeric

data that equalises them so that they could be subjecting to the same statistical

treatment and will not produce any bias. The work of [150][151][152][153] provided

a solution of derivative for this equalisation.

The two quantities that are mostly used to measure the distance of data items from

their mean position are variance (σ2) and standard deviation
√

(σ2).
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Figure 3.2: Standard Deviation for Single Variable Normal Distribution

Even if, both could be deduced from each other and consequently share many

physical characteristic, but there exist some differences in the application of these

two quantities. For example, the standard deviation is mostly used for investigating

a single variable distribution as shown in Figure 3.2, but if the data set is multivariate

then variance are mostly used to describe the general spread of these variables from

the conceptual ”mean” position [154]. The term conceptual ”mean” is used to

indicate the fact of the changing values and position of the mean and variances of

one class relative to another class. And if the one class is taken in turn relative to the

rest as in One-vs-All, the ”mean” and ”variance” will be different to the next class.

But considering the density of all the classes in the sample space, which is called

the probability density function will remain constant because the total numbers of

the data item and the sample space is not changing, please see [155], though this

function is a probability concept and is described as the likelihood that the value of

a variable lies within a sample space. The review of Figure 3.3 is a representation

of Glass data in the 3D scattered plot, but the values of variances of class relative

to the other classes changes depending on the positioning of the class group that is

being considered, hence the terms conceptual mean, and variance. But the whole

density will remain the same. Note, in this case the density is considered to be

probabilistic because the data item in the sample space is not evenly spread and

the likely-hood of getting a data item in the sample space depends on the spread

or variance. In fact, this density probability concept is an active area of research

popularly called ”Probability density estimation” [156][157][158].
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Figure 3.3: 3D Glass data Scatter plot

By definition, variance is how spread the data items of number N from the mean

and is given by σ2 =
∑

(x−µ)2

N . If the whole population is considered, however, this

equation is slightly different if a sample of the whole population is used and is given

by σ2 =
∑

(x−µ)2

N−1 [159][154]. When taking a sample it must be large enough and

taken several times and average out to make sure that the sample mean is equal to

population mean and the variance of the sample mean is given by σm
2 = σ2

n while

σm
2 is the variance of the sample and n is equal to the number of times the sample

were taken. Therefore the variance of population is equal to σ2 = σ2
m * n [160].

These data items were collected independently from each other, hence are inde-

pendent variables. In many numeric data, the variables could either be discrete or

continuous. To what extent does the type of variable data item affect the overall dis-

tribution from their means ie the variances? The effect of these intrinsic properties

of the data item can be deduced accordingly.

For an input dataset with N = {n1......nx}, where n is a combination of discrete

and continuous variables [161][162][163], if the variance of the independent random

variable x is given by V arx which is the expected value of the square of the the

deviation, for all the variable x with a mean of µ the variance is;

V arx = E
{

(x− µ)2} (3.1)

The constant E represents the density function and E α 1
N .

The Equation 3.1 [162] is modified to accommodate both discrete and continuous

variables. Hence, when variable x is continuous the variance is

V arx = E
{

(x− µ)2} =

max∑
i=min

∫ max

min

(x− µ)2 f (x) dx (3.2)
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Also for discrete variable Equation 3.1 would resolve to;

V arx = E
{

(x− µ)2} =

n∑
i=1

(xi − µ)2 f(x) (3.3)

and the whole population or the sample is considered, the population variance

becomes subjective to the probability density function f(x) such that the expecta-

tion values and variance of x within the same density is the sum of Equation 3.2

and Equation 3.3 V(total) = V(discrete) +V(continuous). Therefore, for any type of vari-

able (discrete and continuous) their total variances is the sum of individual variance

provided there are in the same sample space:

Vtotal =

n∑
i=1

(xi − µ)2 f(x) +

max∑
i=min

∫ max

min

(x− µ)2 f (x) dx (3.4)

each parts of equation 3.4 contains the same quantity apart from the change

function dx, therefore it could be simplify to equation 3.5 particularly when the

change is minima

∑
f(x)dx (x− µ)2 (3.5)

if µ is considered as being the mean and the probability density functions is f(x)

and f(x)dx

which is constant in the sample space, hence

f(x) = f(x)dx = pi (3.6)

then for any population or sample variable, V(ar) is also deduced by [164]:

V(ar) =

n∑
i=1

pi. (xi − µ)2 (3.7)

For all values of pi being the probability density functions, for equation 3.5

and 3.7, the equality is deduced by equating the integral to f (x) dx and
∑n

i=1 pi

as in equation 3.6. Due to the premise of the same range of probability density

function, the variables transformable vis-a-vis discrete and continuous as provided

by [165][163][161].

This link between the discrete and continuous distribution under the condition of

the same range and their transformation from one to another were demonstrated

by [166][167] therefore equalized the variables; hence, the variances of the discrete

and continuous variables are equal if f (x) dx and
∑n

i=1 pi are equal. Our technique
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implemented the concept of sample variance by taking n values in the range of

y1....yn of the population where n < N . Estimating the variance of the sample data

variables gives the average of the square deviations as in σy2 = 1
n

∑n
i=1 (y − ȳ)2 =(

1
n

∑n
i=1

)
− ȳ2 = 1

n2

∑1
i<j (yi − yj)2.

This computation confirms that the range of the variable values of x is still within

that of the mean, as explained earlier. This derivative will hold true in both cases

of variance if and only if the distribution of the variable x is completely determined

by the probability density function f(x) [168][169], which is shown in Equation 3.5

and 3.7. Having deduced the variance and variables properties, have provided an

insight to show that no matter the types of variable whether discrete and or continu-

ous or any other intrinsic properties of the variables, the same statistical operations

could be applied to the variables and will not invalidate the experiments.

 

Figure 3.4: Algorithm flow chart for The Variance Ranking Attribute Selection
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In carrying out the experiments, this research have explained how the prop-

erties of the attributes like the continuous and discrete data, the numerous data

types cannot invalidate the technique. Compare equations 3.1 with the derivative in

equations 3.7 using a statistical variance comparison that could accommodate the

sub-population (binary groups). The work of [170],[171] and [172], that uses com-

parison of variances to assess the probability density functions of multi-classed data

notwithstanding the distributions of the dataset [173][174]. Thus variance compari-

son could be applied to the same subgroups and this subgroups are represented by

the classes, there is a different analysis of variance [175][176][177][178]. No matter the

type of subgroup we ended up with, the variances could be compared, for instance,

if the subgroups distribution is not a ”normal” distribution which are often called

nonparametric, they could apply the Kruskal-Wallis one-way analysis of variance by

rank test [179] [180][181]. These addresses the nonparametric differences between

two groups of variables . This test is used as an alternative to one-way analysis of

variance (ANOVA) when a normal distribution in the dataset is not assumed in the

probability density functions of f (x) dx or
∑n

i=1 pi. The Kruskal-Wallis (ANOVA)

by rank is given by

H = N − 1

∑g
i=1 ni (r̄i − r̄)2∑g

i=1

∑nj

j=1 nj (x̄j − x̄)2
(3.8)

where N is the total number of all the groups, ni and nj is number in groups i

and j, and r and x are the each values, while r̄ and x̄ are their mean. Based on the

the comparison we could now represent multivariate ANOVA as in the Equation 3.9

Compare Ratio =
V ariance(class1)

V ariance(class2)
(3.9)

The ratio of two variable events can now be a metrics to compare their degree of

concentrations in a sample space is equals to the probability density function [182]

agreeing with Equation 3.9.

Thus the ratio of the variance of each of the variable in the majority and minority

data subsets is inversely proportional to the density functions while the square of

the density function is equal to the F-distribution [183][184][185] F-distribution

could deal with multiple sets of events or variables [186] as represented by different

variables in the majority and minority data groups or classes. By definition the
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F-distribution (F-test) [184][187] is given by

F =
(Larger variance)2

(smaller variance)2
(3.10)

Therefore, for subset (class 1 and 0) with additive variance of independent vari-

able will resolve into please see [188][189];

Ffinal =

{
V ariance(final1)

V ariance(final2)

}2

(3.11)

therefore the of Ffinal is a ratio concept hence, has no unit, since both units

have cancel each other, hence Ffinal is a measure of the density of the variances

V ariance(final1) to V ariance(final2).

For a binary classed data or multi-classed decompose into n binary using One-vs-All,

if the sub classes variance is Vi and Vj , then the Equation 3.11 would resolved to

Equation 3.12, the squaring eliminates any negative value and also agreed with the

F-distribution (F-test), finally the value of (F-test) is Ffinal

Ffinal =

[
V0j

V1j

]2

(3.12)

3.2 The Abstraction and High level Research De-

sign:

The high level research design is explained with the aid of the block algorithm di-

agram in figure 3.4. From the diagramme, the input data sources are assumed to

have been treated for any common error like missing values, incompatible data types

etc. The figure in 3.4 showed that each dataset have to be split into two according

to their classes. Even the multi-classed will be converted to nBinary, where n are

equal to the numbers of classes in the dataset. The dataset is split or separated into

class 1 and class 0 or class negative and class positive.

If the variances V0 = v01, v02, v03.....v0j of each of the variables in class 0 and the

variances of V1 = v1, v2, v3.....vj of each of the variables in class 1 are taken, for each

pair of the feature we find the ratio of the V0

V1
.

The value (V0/V1) is the division ratio based on the variance significant F-distribution

giving by
{
V0

V1

}2
to produce the values that could be squared, the squaring of these

values are particularly useful in case any of the quantity resolved to negative at any

point. The significant feature are selected by ranking the
{
V0

V1

}2
from highest to

lowest. The highest being the most significant , while the lowest the least signifi-
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cant. All these are shown sequentially in the figure 3.4. For each of the datasets in

the experiments this high level design would act as a guide for clarity and reference

point.

3.3 Experiment Design:

3.3.1 Sampling and Splitting the data set

The dataset used is in Table A.2. The experimentation was conducted on the two

classes of data (the majority and minority classes) represented by 0 and 1 for the

binary classed and also the multi-classed have been decomposed to nBinary classed

using One-versus-all technique as explained in section 2.3.2 hence is also represented

by 0 and 1.

Where the number of the whole population is below 2000 like in (Pima India, Wis-

consin, Bupa, Iris, Glass, and Yeast), all the data set instances were divided into two

classes (0 and 1) to represent the majority and minority classes. But for Cod-RNA

with a population of 488565, the data sets were first split into nBinary of 0 and 1.

To obtain the sample size and ensure that the sample collected have the same

characteristics as the class population (0 and 1). The process utilised in the work of

[190] was used and also the concept of central limit theorem as explained at [191].

This is done by repeatedly randomising the collection of the sample from the pop-

ulation. The sample size selected for each class is based on the ratio of each classes

in the population thereby maintaining the imbalance ratio (IR). Furthermore, the

integrity of the sample is checked against the subset population by comparing the

distribution of the sample to that of the subset population using the Central Limit

Theorem concept [191], this is done by checking the n sample skewness given by
1
n

∑n
i=1(x1−x̄)3

[ 1
n−1

∑n
i=1(x1−x̄)2]

3
2

(Fisher-Pearson). The skewness is a statistical function used to measure the

distribution of a data set, if two data set have the same skewness, therefore, their

distributions are the same.

The classes of the two subsets are used to represent the majority and minority

classes, the following term definition should be established without any confusion of

their meanings.

• Majority class, may also be known as negative class or class 0.

• Minority class, may also be known as positive class or class 1.
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The variance of subset V0 (Variance of negative class) is
∑g

i=1 nmaj (xi − x̄)2 and

V1 (Variance of positive class) is
∑g

i=1 nmin (xj − x̄)2 of the data set were obtained.

The Variance Significant Test (F-distribution), is given by the square of the ratio of

V0 to V1. The squaring eliminate any negative values, the results were then ranked

to achieve the final attribute selection.

The criteria used to validate the results are as follows:

• Firstly, we compared the results obtained with two benchmarks of attribute

selection (Pearson correlations and information gain) being from the same filter

techniques of attributes selection; please see section 2.2.7 for the explanation

of the filter technique attributes selection,

• Secondly, to select the attributes a series of classification experiments; logistic

regression (LR), support vector machine (SVM) and decision trees (DT) were

carried out using the ranked attributes for Variance Ranking (VR), Pearson

Correlation (PC) and Information Gain (IG),

• Finally, a peak threshold graph was developed to demonstrate the selections

of the most significant attributes.

In all the experiment, Cross-validation as expalined in section 2.3.5 have been

used to validate the results to ascertain how the model will perform in an indepen-

dent data sets. K-fold cross-validation is the standard method used for validation of

the performance of a model. It is done by dividing the dataset into k subset equal

size a more detailed description of the experiment is provided in the next session 3.3.

3.3.2 Experiments for Variance Ranking Attribute Selec-

tion

The highlight of this session is to articulate all the experiments to demonstrate

Variance Ranking Attributes Selection by following this sequence;

• the raw formula that would initiate the variances of each class and ultimately

the Variance Ranking Processes.

• A clear process flow Algorithm in form of a flow chart

• The tabulations of the experiments, Binary and multi classed data set.

• the re-coding of One-vs-All
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All the itemised will be presented in this section. When some process has been

carried out in other sections or chapters it would be referred and properly signed

post. The proposed method of attributes selections is for discrete and continuous

numeric data for a binary class and multi-classed (decomposed into n binary see

section 2.3.2) represented by 1 and 0.

The data preparation have been explained in sections 2.3.5 and 3.3.1 . Each of the

data set in Table A.2 was first split into two subsets of class 0 and class 1 and the

Variance of each attribute deduced using equation 3.13 and 3.14 respectively. The

Variance Significant is deduced using the equation of 3.15. In all the total number

of the majority and minority class is maintained through the number of the data

items as nmaj and nminj . In general the variance of each of the subsections; class

target 1 and class target 0, of dataset was computed using the following formula

Variance v =
∑

(x−x̄2)
(n−1)

. If The Variance subsection of class 0 is given by:

V0 =
(x0 − x̄0

2)

(nmaj − 1)
(3.13)

If then Variance subsection of class 1 is given by:

V1 =
(x1 − x̄1

2)

(nmin − 1)
(3.14)

The Variance Significant Attribute Selection is then deduced by:

V R =

(
(x0 − x̄0

2)

(nmaj − 1)
/

(x1 − x̄1
2)

(nmin − 1)

)2

=

{
V0

V1

}2

(3.15)

The total number of data items is inversely proportional to the variance or spread

from the mean position, that is V ariance ∝ 1
nm

, this relationship shows that the

formula is generic, therefore if the ranking is done in either order it would remain

consistent. In Tables 3.1, 3.2, 3.3 and 3.4 , the column V1 and V0 is the results of the

variance of each subsection class (positive=1 and negatives=0) for each attribute.

Binary classed Experiments

The results of the experiment for the binary classed data is in Tables 3.1, 3.2, 3.3 and

3.4. The serial numbers in the tables are not mistakes but show how the attributes

were numbered before from the original data sets descriptions in Table A.2 and how

the (VR) techniques have ranked them.
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Table 3.1: Variance Ranking attribute selection using Pima India data

The result of the experiment using the Pima India data in Table 3.1 have a serial

number that has identified age followed by Body Mass Index (bmass) and plama

glucose as the three most significant. The ranking continued until the last attribute

which is insutest.

 

Table 3.2: Variance Ranking attribute selection using Bupa data

The Bupa data have also been ranked in the order from 4,3, 6, 5, 1 and 2 in

Table 3.2. While the Wisconsin and Cod-rna data have been ranked in Table 3.3

and 3.4
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Table 3.3: Variance Ranking attribute selection using Wisconsin Breast Cancer data

 

Table 3.4: Variance Ranking attribute selection using Cod-rna data

Multi-classed Experiments (n)Binary

The above three experiments demonstrated the (VR) technique for binary classed

data and is straight forward, but for multi-classed distributed dataset each of the

minority classes will be taken in turn as the positive or 1 while the rest will be

negative or class 0. This will result in more multiple experimentation equal to the

number of target classes. For example, if there are three classes in the dataset, this

would result into (n)Binary, while n = 3. The subsequent sessions would show the

experiment with Iris data set that has n = 3.

The result for Iris data in Table 3.5 is very obvious, the classes are label originally

as Iris Versicolor, Satosa and Virginica. For Iris Versicolor, the Petal width has been

identified as the most significant attribute that distinguishes it from the rest, fol-

lowed by the Petal length, Sepal length and Sepal width. The result for Satosa and

Virginica are the most interesting, even if the experiment were performed differently

both results are similar thereby showing that both flowers share more similarity to
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Table 3.5: Variance Ranking attribute selection using Iris data

each other than Versicolor.

The Glass data set that has n = 6 classes for details on this dataset please see

Table A.2. The imbalanced classes are from 1 to 7; notice that class 4 is not in this

dataset, so the total number of available classes is six, and they are labeled 1, 2, 3,

4, 5, and 7. Using the ”one-versus-all” process, as explained in sections 2.8 each of

these classes will be taken in turn as class 1 (minority class) and others as class 0

(majority class)

Table 3.6: Glass data set details showing highly imbalance classes

The Glass data imbalanced contents proportion is shown in Figure 3.5, which

represents the chemical elements compositions and the refractive index (RI) which is

a physical property of glass that measureS the bending of light as it passes through.
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Figure 3.5: Glass data contents proportion

The amount of the chemical compositions of a glass determines its application,

type, and classes; for example, class 1 is ”Building window float processed”, class

2 is the ”Building window non-float processed”, class 3 is ”vehicle window float

processed”, class 4 (not available in this dataset) is ”vehicle window non-float pro-

cessed”, class 5 is ”container”, class 6 is ”tableware,” and finally, class 7 is ”head-

lamps.” Therefore, the experiment will be conducted with class 1 as the minority

while the rest will be class 0 as the majority class. Each of the classes in the mi-

nority, as shown in Figure 3.5 will consequently be relabeled as class 1 and class 0.

Table 3.7 is the implementation of the one-versus-all approach; it shows the rela-

beled table with the actual numbers of minority classes as 70, 76, 17, 13, 9 and 29

and the corresponding majority classes are 144, 138, 197, 201, 205 and 185
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Table 3.7: Glass data class relabel to One-vs-All

The final result of using the (VR) techniques for the glass dataset is shown in

Table 3.10. Again, notice that the serial number as ranked by the experiment is

different from that presented in Table 3.6, excluding the ID number. Each of the

sub-tables in Table 3.10 is a representation of each class relabelled as class 1 and

the rest as class 0; for example, class 2 is relabelled as class 1 and the rest as class

0, (one versus all). This process is continued for all the classes in the dataset; see

Table 3.7.

 

Table 3.8: Yeast data set details showing highly imbalance classes

64



CHAPTER 3. VARIANCE RANKING ATTRIBUTE SELECTION
TECHNIQUE

 

463

429

244

163

51
44

37 30

20 5

Target class of Yeast data set

CYT (cytosolic or cytoskeletal)   NUC (nuclear)

  MIT (mitochondrial)   ME3 (membrane protein, no N-terminal signal)

  ME2 (membrane protein, uncleaved signal)   ME1 (membrane protein, cleaved signal)

  EXC (extracellular)   VAC (vacuolar)

  POX (peroxisomal)   ERL (endoplasmic reticulum lumen)

Figure 3.6: Yeast data contents proportion

 

Table 3.9: Yeast data class relabel to One-vs-All

For the Yeast data, the imbalanced classes could be seen in Table 3.8 and the

contents proportions in Figure 3.6. This dataset is one of the most popular ones,

and it has been used in various work for imbalanced multi-class data. The data

are numeric measurements of different protein in the nucleus and cell materials in

Yeast unicellular organisms. The objective of the dataset is using this physical

protein descriptor for ascertaining the localization, which in turn, may provide help

explaining the growth, health, and other physical and chemical properties of Yeast.

The data are made up of 1,484 instances. The re-coding of the dataset to one versus

all is shown in Table 3.9. For example, the recoding proceeds as ”CYT (463) as class

1, 1023 as class 0”; this continues until the last minority class, which is ”ERL(5) as

class 1, 1481 as class 0.
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Table 3.10: Experiment on Glass data
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The first sub-table in table 3.10 is class 1, and the rest classes (class 2,3,5,6 and

7; notice no class 4) are class 0. The (VR) technique ranks the most significant

attributes as follows Ba, Mg, K and so forth. The second experiment has class 2

relabeled as class 1 and the other classes (1, 3, 5, 6 and 7) as class 0. They are

ranked K, Al, Ba and so on, as the most significant. The next experiment is class

3 relabeled as class 1 while the rest as class 0; they ranked Ba, Mg, Ca, and so on.

All six classes are taken in turn.

The general postulate here from the experimental result is that the type of glass

depends on the amount of chemical element that the glass contains; this has been

captured by the (VR) technique.
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Table 3.11: Experiment on Yeast data
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Table 3.12: Experiment on Yeast data continue
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Summary

This chapter presented one of the main assertions of the research, it started with a

clear theoretical basis of the nature of numeric data and the techniques for transform-

ing from one data types to another within the conditions of the same range density

formalism. Then a demonstration of the framework which lays the background for

the heuristic axiomatic inferences that established the relationship between class

distribution and the variances of the data items in the domain of discourse vis a

vis the sample space were presented. The variance of the data items in the domain

space and how this is related to their class distribution was deduced and explained.

An introduction of variance comparison testing which culminated into (VR) tech-

nique was derived therein. The main research design like the processes of data

sampling for experimental validity and reliability were explained in details. A clear

process demonstrations for decomposing Multi-classed into Binary classed data were

explained in detailed with clear diagrams. The process of avoiding overfitting using

the state of the art cross-validation and the justifications as a process of producing

more dependable results were also explained.

The results of the experiments carried out in this chapter present a significant contri-

bution to the overall and major insight into some of the discovery and many claims

made by this research and also would become an input into later chapters. It is also

a whole knowledge in his own right that could lead to future work by any researcher.

This work may be seen as pioneering new field because, in most academics and in-

dustries, the correlations of the effects of the variances of data points and their

classes have not been investigated before. But, this work showed the correlation

with a concise inferences and presenting an axiomatic open field for new avenue of

knowledge insight and opportunities for further researches. The implication of the

knowledge discovered therein is in no doubt and limitless.
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Chapter 4

Comparison of Variance Ranking

Attribute Selection With Other

Attribute Selections

4.1 Introduction

In this chapter, comparison of (VR) technique and two main state of the art features

selection techniques (algorithm) will be made, these two are (PC) and (IG) belong

to the categories of features selections known as ”filter” methods the other(s) are

”wrapper” and ”hybrid” which are just a combination of filter and wrapper meth-

ods. Please refer to section 2.2.7 for the details of these methods and reasons for

comparing the (VR) with (PC) and (IG). But just for a hint the (PC) and (IG) are

two most popular and state of the art feature selections.

Most feature selection results are heuristics [192][193][194][195], meaning that no

two feature selection on the same dataset will produce the same result perfectly,

especially in the filter algorithm; instead, each attribute identified are most likely

to be ranked slightly differently by different filter feature selection algorithms. To

estimate or measure the similarities in these results, the order of ranking of the

attributes becomes the metric used to quantify the similarities. Some of the iden-

tified attributes may be in the same position in the order of ranking, while others

may share similarities by proximity to the attribute’s positions. The result of (VR)

obtained in sections 3.1 will be paired with the result of (PC) and (IG) on the same

data to investigate the extents of their similarities and differences. A novel method

of quantifying similarity called ”Ranked Order Similarity Index”(ROS) will be dealt

with extensively in subsequent sections. The (ROS) is a similarity index quantifier

to assess two or more sets that may contain the same object but ranked differently.

The necessity of (ROS) came about from the fact that the existing similarity index
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measure appeared to be inadequate when quantifying the similarity of sets of the

same items that are ranked differently, please see sections 4.3.

4.2 Comparison of Variance Ranking Attribute

Selection (VR) Technique with the Bench-

marks

Attribute selections, in general, could be categorized as filter or wrapper methods

[109][110]. The filter method uses the general characteristics of the data item to

determine the features that are more significant without involving any intended

learning algorithm, while wrapper method on the order hand tend to determined

the features in dataset that would produce the best performance on a predetermined

learning algorithm. Putting it succinctly, wrapper method suggest the attributes to

use for a given classifier algorithm. This suggestive and predetermining the clas-

sifier algorithm made the wrapper method less generic and limited as a means of

comparison with our method (VR) technique, which is independent of any learning

algorithm. Besides, wrapper methods create a subset of features which are deemed

to be most important for a specific classifier’s performance. These subsets more

often than not does not include all the original features meaning that some features

are eliminated in the subsets and each feature relevance to the subsets are not made

known. But, filter methods uses ranking processes to produce the order of rele-

vance of each, ie no feature is eliminated from the ranking [109]. The comparison of

(VR) attribute selection will be done with similar filter method that is not classifier

suggestive. Consequently, we compare our method to the state-of-art filter feature

selection methods; the Pearson correlation (PC) and [196][197][198] and information

gain (IG)[199][200]. The results are provided in Tables 4.1, 4.2, 4.3 and 4.4 for the

data sets used in the experiment.

V ariance Ranking (V R) =

(
(x0 − x̄0

2)

(nmaj − 1)
/

(x1 − x̄1
2)

(nmin − 1)

)2

=

{
V0

V1

}2

(4.1)

Pearson Correlation(PC) =

∑
(x− x̄)(y − ȳ)∑

(x− x̄)2
∑

(y − ȳ)2
. (4.2)

Information Gain(x,y)(IG) = Entropy(x) − Entropy(x,y). (4.3)
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Table 4.1: Comparison of Variance Ranking with PC and IG variable selection for
Pima India diabetes data

 

Table 4.2: Comparison of Variance Ranking with PC and IG variable selection for
Liver Disorder Bupa data

 

Table 4.3: Comparison of Variance Ranking with PC and IG variable selection for
Wisconsin Breast cancer data
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Table 4.4: Comparison of Variance Ranking with PC and IG variable selection for
Cod-rna data

Discussion

In the Table 4.1, 4.2, 4.3 and 4.4 showed the result obtained using the three attribute

selections on the four binary classed data set; Pima India diabetes, Bupa Liver Dis-

order, Wisconsin Breast cancer data, and the Cod-RNA data it ranks the attribute

according to their relevance to the target class (1, 0). Though the four results are

comparatively similar but have some minor differences, for instance, in Table 4.1,

the most significant attribute using the (VR) and (IG) is (age) for Pima India data,

while the first in the Pearson correlation is plasma glucose, in row number 2 and 7

of Table 4.1, the three attribute selection techniques picked ”bmass” and ”pedi”

respectively, other similarities row number 8 were the ”insutest” is selected for (VR)

and (PC) and so on.

For Bupa Liver data in Table 4.2; the most significant using (VR) and (PC) is “agot”

while ”sgpt” is ranked as the third by the (IG) selection, but in Table 4.2, row num-

ber 5 and 6 each of the attribute selection techniques selected ”mcv” and ”alkphose”

respectively as the least significant attribute. For Table 4.3, the Wisconsin Breast

cancer data; two of the techniques (VR) and (IG) are in agreement by selecting ”Mi-

toses” and ”MarginalAdhesion” as the least significant attribute , while the Pearson

Correlation also identified ”Mitoses” as the least significant attribute, but picked

”SingleEpithelialCellSize” as the second least significant attribute. For Table 4.4

for Cod-RNA data, the (VR) and the (IG) techniques are similar in rows 1, 2, 3

and differs slightly in rows 4 and 5. But clear similarities are very much noticeable

all three techniques. By and large, the three selection methods have identified the

same sets of attributes but have ranked them slightly in a different order.

In the next sections, the results of the comparison experiments of the three multi-

classed (Iris, Glass and Yeast datasets), it is necessary to explain the sequence of

the next section. First, the (VR) technique using both Iris and glass data set would
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be compared with (IG) and (PC) this will be repeated for each n number of binary

classes from the decomposed multi-class data.
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Table 4.5: Comparison of Variance Ranking with PC and IG variable selection for Iris data
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Table 4.6: Comparison of Ranking significant with PC and IG variable selection for Glass data
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Discusion

The table 4.5 is a presentation of the result of the Iris comparison using the (VR),

(IG) and (PC) techniques. All three feature selection have identified that petal

length or petal width as the two most significant and ranked them accordingly. In

condition of ”Satosa = 1, Others = 0” the (VR) differs to sightly to (IG) and (PC)

which are the same. In the condition ”Versicolor=1 Others=0” the (VR) and (PC)

are similar in identifying the two first attributes in column 1 and 2 while the (VR)

and (IG) are similar in columns 3 and 4. In the final condition of ”Virginica=1,

Others=0”, the (VR) and (IG) are similar in the first two rows while (IG) and (PC)

in the last two rows.

Table 4.6 is the presentation of the results of the comparison of (VR), (PC) and

(IG) feature selection techniques on the highly imbalanced Glass data. Originally,

the Glass dataset is made up of six classes labeled class 1,2,3,5,6,7 (notice there is no

class 4). Each of the smaller tables in Table 4.6 is a representation of these classes’

results. To carry out the ”One versus all” experiment explained in the previous

sections 2.3.2, and Table 3.7, each class was relabelled in turn as class 1 and others

combined as class 0. In the first smaller table, in Table 4.6 (class 1 labeled as

1 and the others as 0), the (VR) and (PC) identifies Ba, Mg, and K in the first

rows. The sixth and ninth rows have the same results. The (IG) and (VR) are

not far off from each other; the fourth and fifth rows identify Al, while the eighth

and ninth rows identify Fe. Although, there are no rows that identifies the same

elements the closeness is greater between (VR) and (IG) than it is between (PC) and

(IG) for this first experiment, in Table 4.6, (VR) and (IG) are more similar. The

quantitative weighting of the similarities in these three feature selection algorithm

would be calculated in sections 4.3 using the novel (ROS) technique.

In the second experiment (class 2 relabeled as class 1 and the others as 0), none

of the three feature selections ranked any of the elements in the same row, but

proximity between rows elements is was highly noticeable for (VR) and (PC) in row

one and row three identifying Ba and K, in rows fourth and fifth, Mg is identified,

as well as in many other rows. Similar proximities in the elements identified are

also noticeable throughout between (VR) and (IG), but the reversal of ranking of

identified elements between (PC) and (IG) is also noted.

In the third smaller table in Table 4.6 (class 3 relabeled as class 1 and the others as

class 0), rows one, two, seven, and nine are the same in (VR) and (PC) and many

other rows have proximity similarities; for example, rows three and four identify K,

rows fourth and fifth identifies Na.
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In the fourth small table in Table 4.6 (class 5 relabeled as class 1 and the others as

class 0), the (VR) does not have any row in common with (PC) and (IG). However,

close proximity is noticed in rows one and two for element Mg, rows five and four

for element Al, and rows sixth and seventh for elements Ca for (VR) (PC) and (IG)

share rows sixth and ninth in common and other rows as proximity.

In the fifth smaller table in Table 4.6 (class 6 relabeled as class 1 and the others as

class 0), (VR) and (IG) are more similar; in the second and sixth rows while the

other rows are similar by proximity. In the final experiment is (class 7 relabeled

as class 1 and the others as class 0), the (VR) and (PC)are more similar because

row five and eight, which have Na and Si, respectively. For the Yeast dataset the

comparisons are given in Tables 4.7 and 4.8, which are both divided into 10 smaller

tables. The tables are labeled according to how the classes have been re-coded using

the ”one-versus-all” techniques; for example, the following labels are used: ”ERL

as class 1, others as class 0,” ”POX as class 1, others as class 0,” ”EXC as class1,

others as class 0,” ”ME1 as class 1 others as class 0,” ”ME2 as class 1 others as class

0,”

The table ”ERL as class 1, others as class 0” in Table 4.7 has lots of similarities

between VR, PC, and IG, all the attributes selection identified ”pox” in the last row

(9) and ”mit” in row 4 in addition, VR and PC are similar in row 6 with ”gvh” and

VR and IG are similar in rows 3 and 5 with ”mcg” and ”alm”. Furthermore, PC

and IG are similar in row 1 with ”erl” and row 8 with ”nuc”. Many tables in Table

4.7 and 4.8 have many such similarities between the rankings done by VR, PC and

IG. Where the elements were not ranked to be in the same row, there are similar

by being rank in proximity rows. In the next sections, the percentage similarities

between the results of the ranking done by VR, PC, and IG using the ranked order

similarity (ROS) will be carried out.

.
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Table 4.7: Comparison of Variance significant with PC and IG variable selection for Yeast data
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Table 4.8: Comparison of Variance significant with PC and IG variable selection for Yeast data continue
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Summary

In this section, the comparison of (VR) and two main filter method attribute selec-

tions techniques have been carried out. Lets state here that no two feature selection

algorithm ever produces the same results from the same dataset’ this have been

explained in details in sections 4.1.

An extensive experiment has been conducted in this section using six data sets (see

table A.2), four of the data set are Binary (two classes distributed). The other

three (Iris, Yeast and Glass) are multi-classed, the Iris data is uniformly distributed

(Balanced), the Glass and Yeast data is highly imbalanced. The multi-classed data

have been decomposed into n Binary using ”One versus All” (see section 2.3.2).

The results are all in tables 4.1, 4.2, 4.3 and 4.4 for the binary classed data, for the

multi-classed data the results are in tables 4.5 and 4.6. The results in these tables

confirm the heuristic nature of the feature selection results meaning that no two

feature selection algorithm produces results that are perfectly the same. The filter

feature selection algorithm that uses ranking optimisation to present the selected

attributes tend to be more prone to this, which could be more or less an advantage

depending on context. Imagine if an attribute is ranked as fourth by an algorithm

but another algorithm ranked it as third or even fifth both algorithm shares a simi-

larity by the proximity of the results of the ranking, what it means is that in place

of this attribute the other may suffice.

Though in some of the results in the tables some reversal of ranking of identified

elements between the algorithms; (VR), (PC) and (IG) is also noted, these sequence

of consistency sort of add more veracity to the claimed superiority of (VR) tech-

nique. The next section 4.3 would investigate by presenting a novelty technique to

quantify the similarities between the results of (VR), (PC) and (IG).

4.3 Calculating Similarities of (VR) (PC) and (IG)

using Ranked Order Similarity-(ROS)

In both industry and academics, many types of similarity measure have been used to

compare the different concept to ascertain the accuracy, resources management and

general veracity of new techniques. The Similarity and dissimilarity measure has

been used to compare item and results of two or more structures, but quite recently

many data-centric types of research like data mining and machine learning have

used this process to compare and validate the results [201][202][203] of experiments

and predictive modeling. This is done by measuring the similarity index of a new
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concept with existing benchmarks knowledge, concept or results. With this in mind

we propose a novel similarity measure technique called Rank Order Similarity (ROS).

We want to determine how similar the results of each of the three ((VR), (PC) and

(IG)) features selection algorithm are similar in Tables 4.1, 4.2, 4.3 and 4.4 and

also in 4.5 and 4.6. Should we say that the result((VR), (PC) and (IG)) are 80% or

90% similar? How could their similarities be graded?

Though, there are different approaches to measure similarities, the most common

is Euclidean distance, Manhattan Distance, Minkowski distance, Cosine Similarity,

and Jaccard similarity index. These are deduced as follows: the Euclidean is just

similar to Pythagoras theorem. In general, it is the square root of the sum of all the

data points and is given by:

Euclidean Distance (x, y) =

√√√√ n∑
i=1

−(xi − yi)2 (4.4)

The Manhattan is often called the office block as it resembles the grid direction

within an office block. It shares a geometric diagram with Euclidean distance as

depicted in the diagram below:

 

Figure 4.1: Presentation of Euclidean and Manhattan distance

The Cosine similarity is a calculation of angular differences between two point in

the domain of interest. It uses the angular differences and the dot product between

the two data points as the metric, is given by Equation 4.5 and in Figure 4.2
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Figure 4.2: Cosine Similarity

scosine(x,y) = cos θ =
xy

||x|| · ||y||
=

∑n
i=1 xiyi√∑n

i=1 x
2
i

√∑n
i=1 y

2
i

(4.5)

In the context of the comparison of (VR), (PC) and (IG) algorithms, the Eu-

clidean, Manhattan, and Cosine similarity index is totally none applicable because

the Euclidean and Manhattan is using vector space as the metric parameter while

the Cosine is also using the angular metrics, hence none applicable also. The closest

similarity grading that is similar to the (ROS) is the Jaccard similarity index that

deduces similarity in a Sets of items. The Jaccard similarity is calculated by taking

the size of the intersection in a Set divided by the size of the union of the sets, as

provided in Equation 4.6. But the Jaccard fell short of its applications in the present

context due to not measuring similarities by ranking items, section 4.4

J(A,B) =
|A
⋂
B|

|A
⋃
B|

=
|A
⋂
B|

|A|+ |B| − |A
⋂
B|

(4.6)

4.3.1 Levenshtein Similarity

In sections 4.3 it was establish that the Cosine, Jaccard and the corresponding

distance metrics like Euclidean and Manhattan could not measure or be applicable

to find the similarity of item in Sets that has been ranked. Therefor the (ROS)

will be compared with Levenshtein Similarity [204][205][206]. If absolute length of

string a and b is given by | a | and | b |. The similarity between a and b is given by

84



CHAPTER 4. COMPARISON OF VARIANCE RANKING WITH OTHER
ATTRIBUTES SELECTION

piecewise function in equation 4.7

leva,b(i, j) =



max(i, j) if min(i, j) = 0,

min


la,b (i− 1, j) + 1

la,b (i, j − 1) + 1

la,b (i− 1, j − 1) + 1(ai 6=bj)

otherwise.
(4.7)

Where 1(ai 6=bj) is a conditional function that resolved to 0 when ai = bj and 1

if ai 6= bj [206][207]. The leva,b(i, j) is the length between first i characters of a and

the first j character of b, also i and j is equal to 1-base index value. To convert one

string to the other only three operations are allowed these are ”insert”, ”replace”,

”delete”. The Levenshtein follows the same techniques as (ROS), by using a distance

metric and ranking the similarity between two string between, hence have the same

terms of reference.

 

Table 4.9: Levenshtein Process

Mostly it has been used to measure the similarity between two strings in by imple-

menting the distance in form of dynamic programming[208][209]. Usually presented

in form of a matrix. For example lets compare the word ”Saturday” and ”Sunday”

using Levenshtein techniques.The step are demonstrated in table 4.9. The two string

are laid out and the position of each letter number starting from zero as shown in

the, the simple rules to complete the rest is that if the two letters are similar, the

diagonal value is written. For example, the two letter “s” are similar therefore value

0 will be written between the two value. 1 at the intersections of the “s”. The next

steps is to always take values in the semi-circle like the green, orange, blue and yel-

low semi-circle. The green has values of 0,1 and 2. The least of them is 0.Therefore

0 + 1 = 1, the value of 1 is written for the green. For the orange the values are 1,2

and 3. The least is 1. Therefore 1 + 1 = 2. The value of 2 is written for the orange.
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This will continues until all the matrix are filled. The edit distance is 3 which is the

value furthest to zero. The completed table is 4.10.

s a t u r d a y
0 1 2 3 4 5 6 7 8

s 1 0 1 2 3 4 5 6 7
u 2 1 1 2 2 3 4 5 6
n 3 2 2 2 3 3 4 5 6
d 4 3 3 3 3 4 3 4 5
a 5 4 3 4 4 4 4 3 4
y 6 5 4 4 5 5 5 4 3

Table 4.10: Comparing two string using Levenshtein Similarity techniques

To get the Levenshtein distance could be a lengthy process but the grid table as

explained in table 4.9 and finally in 4.10 is to ensure accuracy. In most applications

like search engines Levenshtein distance is converted to ratio or percentages[210][211]

by normalising as in equation 4.8

Edit Ratio (a, b) = 1− Edit Distance(a, b)

| a | + | b |
(4.8)

Therefore, if Edit Distance(a, b) between the two string ”saturday” and ”sunday”

is 4 gotten from converting ”sunday” to ”saturday” by inserting a, t and r and

deleting n and if | a | and | b | are 6 and 8 respectively. The

Edit Ratio (a, b) = 1− 4
|6|+|8| = 0.71 or 71%

4.4 Motivation and Deriving Rank Order Similarity-

(ROS)

In the preceding sections 4.3, some expositions of the inadequacies of existing simi-

larity measures in context of a ranking based algorithm [212][213]. Therefore, it is

imperative that a new similarity measure that accommodates the ranking of items

in a set [88][214]. For instance, how could the similarity of two or more sets that

contains the same objects but arranged or ranked differently be measured? If three

Sets α = {a, b, c, d, e, f}, β = {a, b, c, f, e, d} and γ = {f, b, c, d, e, a} contain the

same elements but arranged or ranked in different order as in Table 4.11. Based on

the order of ranking, what are the percentage similarities between them?.
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Table 4.11: Three Sets arranged and ranked in different order

Let us determine the similarities between α and β. The total elements in α and

β is 12 ie N=12. Since we wish to find the percentage similarities, this thesis use

Equation 4.9 to define a quantity which is called Element Percentage Weighting =

EPW given by:

EPW =
∑ 100

N
(4.9)

Therefore, 100/N = 8.33; thus, each element of the set has a percentage weight-

ing of 8.33%; two elements in a row would have a total percentage weighting of the

sum of their weightings. For example, in row 1 in Figure 4.3, the total percentage

weighting of an element a in Set α and element a in Set β is 8.33 + 8.33 = 16.66.

Additionally, each set has a total number of n. When an element moves down-

ward or upward in a column to be in the same row with its similar element, it

loses a percentage weighting equal to EPW − (2 ∗ EPWj

n ) ∗ St, while St is called

the similarity proximity distance, and is equal to the number of steps moved to

the new row starting from the elements initial row. The value 2 used above is

because there are two elements f and f. The quantity (EPWj

n ) is called the unit

Element Percentage Weighting. The sum of all the (EPWj

n ) is equal to the EPW

for the two set. This means that it takes a pair to earn an EPW hence if no pair,

no similarity or values to be summed:

ROS =

n∑
1−j

2 ∗ EPW −
(

2 ∗ EPW
n
∗ St
)

(4.10)
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Figure 4.3: Ranked Order Similarity-ROS Percentage Weighting Calculation for α
and β

In rows 4 and 6 for sets α and β, the element d and f are not in the same

row with their similar item. To calculate their weighting using Equation 4.9 is

given by 8.33-
∑

Loss percentage weighting, If Loss percentage weighting =

EPW/n = 8.33/6 = 1.388. Elements d and f have moved up and down three steps

(including their row). Therefore St = 3, the total Loss percentage weighting for

each is 3 ∗ 1.388 = 4.164, and the final weighting for each is 8.33 − 4.164 = 4.166.

Therefore in row 4, f+ f= 4.166 + 4.166 = 8.33. Additionally, in row 6, d+ d=

4.166 + 4.166 = 8.33. The similarity between sets α and β is 83.3%, please see

equation 4.10 and Figure 4.3 represents the process of calculating the ranked order

similarity-(ROS) in a tabular descriptions of the processes.

The steps below is the calculation between VR and PC using ROS for the sub-table

of ”ERL as class 1, others as class 0.”

If the EPW between VR and PC is given by EPW =
∑

100
N = 100

16 = 6.25,

the unit Element % Weighting is given by
EPWj

n = 6.25
8 = 0.781.

The calculation of the similarity between VR and PC for the the sub-table of

”ERL as class 1, others as class 0” shows that both are 67.198% similar, please

see Table 4.12 for the steps to calculate ROS. In the next sections, the similarities

between the (VR), (PC) and (IG) for Glass and Yeast dataset are calculated using

the ROS technique.
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Table 4.12: ROS Calculation between VR and PC for Sub-table ”ERL as class 1,
others as class 0” in table 4.7

 

Table 4.13: ROS Calculation between VR and PC for Sub-table ”ERL as class 1,
others as class 0” in table 4.7
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4.4.1 Comparison of Rank Order Similarity with Leven-

shtein Similarity

Datasets Rank Oder Similarity (ROS)
and Levenshtein Similarity
(LEV)

Similarity Value (%)

pima VR-ROS 78

VR-LEV 77
Wisconsin VR-ROS 68

VR-LEV 56
Bupa VR-ROS 75

VR-LEV 75
Califonia and Basket ROS 7.4

LEV 40

Table 4.14: Comparison of Rank Order Similarity with Levenshtein Similarity

 

Figure 4.4: Comparative Similarity between ROS and LEV

The table 4.14 and the associated graph in figure 4.4 is to present the superi-

ority of ROS over Levenshtein similarity. There are lots of similarity between both

algorithm (Levenshtein and (ROS)). The (ROS) were actually derived from the Lev-

enshtein, but instead of using the Edit distance as in the Levenshtein , the (ROS)

uses the proximity distance between item or letter in the objects being compared.

Just like many algorithm Levenshtein could be accurate in many instances but could

also fail woefully in some. For example in both the table table 4.14 and figure 4.4,

the Levenshtein calculated the similarity between Califonia and Basket string is
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40% , that is rather very odd and totally wrong. But the (ROS) calculated it as

being 7.4%. This is because both have a common character ”a” and the answer of

7.4% is more reasonable and accurate. The problem of Levenshtein is that is inca-

pable of calculating dissimilarity because is base on numbers of steps to convert one

string to another, even if the two string are not similar in anyway (dissimilarity),

the Levenshtein will still go ahead and convert, therefore is incapable of providing

zero similarity. Most search engines that uses Levenshtein can easily be identified

by putting item that are not similar, it will still return some results even if those

results are totally wrong. This may be regarded as good or bad depending on the

user perspective.

This is one of the reasons (ROS) is better as shown in the figure 4.4. Apart from

the comparison of Califonia and Basket done above with the prove of the failure of

Levenshtein and superiority of (ROS). The rest charts also showed the comparison

of (ROS) and Levenshtein using the following datasets Pima, Wisconsin and Bupa.

In all the (ROS) showed a better results. The (ROS) is just a modification of Lev-

enshtein by using proximity distance instead of edit distance. In the next session;

session 4.5. The (ROS) will be used to compare the (VR) and two known attributes

selections the (PC) and (IG).

4.5 The Results of Comparing (VR),(PC) and (IG)

using (ROS) technique

From sections 4.14 the (ROS) is a better similarity comparative metrics than Lev-

enshtein and the rest like Jaccard, cosine etc are not applicable in ths context.

Therefore the (ROS) will be used to compare the results of (VR),(PC) and (IG).

This is to ascertain how class the (VR) is to the two well established bench marks.
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Table 4.15: Comparison of (VR), (PC) and (IG) using the (ROS) technique for
Pima, Bupa, Wisconsin and Cor-rna data

Discussion

As no two feature selection algorithm could produce precisely the same result, par-

ticularly the ranking algorithms. Therefore, (ROS) has been used to measure the

similarities between the results of this feature selection, for example in Table 4.1 the

result of (PC) and (VR) on Pima diabetes data, what is the percentage similarity

of the two results?

All the results obtained using (VR), (PC) and (IG)) for the four binary data set in

Tables 4.1, 4.2, 4.3 and 4.4 have been compared using (ROS) and the comparison

is in table Table 4.15.

The Pima india diabetes data results for (VR), (PC) and (IG) is in table 4.1 and

the (ROS) comparison resuls is in Table 4.15. The result indicated that (VR) tech-

nique has 78.13% similarity to both (PC) and (IG) , while (PC) and (IG) are 73.44%

similar to each other. For the Bupa Liver Disorder data in Table 4.2, the (VR) is

75% similar to (PC), while it is 56% similar to (IG), also (PC) is 58.35% similar to

(IG). In Wisconsin Breast cancer data in table 4.3, the (VR) is 68% similar to (PC)

and 82% to (IG), while (PC) and (IG) are 78% similar. Finally in Cod-rna data in

table 4.4, the (VR) is 60.9% similar to (IG) and 59.4% similar to (PC), the (IG)

and (PC) are 70.3% similar.
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Table 4.16: Comparison of (VR), (PC) and (IG) using the (ROS) technique for Iris
data

 

Table 4.17: Comparison of (VR), (PC) and (IG) using the (ROS) technique for
Glass data
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Table 4.18: Comparison of (VR), (PC) and (IG) using the (ROS) technique for
Glass data

The comparison of the (VR), (PC) and (IG) feature selection results using the

multiclassed data is in Tables 4.16 for the uniformly distributed Iris data. The

attributes are only four in number (Petal length, Petal width, Sepal length and

Sepal width). TableS 4.17 and 4.18 are for the highly imbalanced Glass datasets.

In Table 4.16 for the Iris dataset, the table divided into three parts each for different

type of Iris flower; which are Satosa, Versicolour Virginica. When Iris Satosa is taken

as class 1 and the rest is taken as class 0, the (VR) technique is 50% similar to both

(PC) and (IG), while the both (PC) and (IG) are 100% similar to each other. But

when Versicolour is taken as class 1 and the other is taken as class 0 (VR) is similar

to (PC) by 75% and 50% with (IG) and (PC) and (IG) are similar to each other

by 50%. Finally, when Virginica is taken as class 1 and the rest as class 0 , the

similarity is reversal the (VR) is 75% to (IG) but 50% to (PC), also (IG) and (PC)

are 75% similar.

For the highly imbalanced Glass dataset, the similarity measure using the (ROS)

technique shown in Tables 4.17 and 4.18; the two tables are divided into six parts

(three and three), for different classes of glass, recall that the Glass dataset has six

classes, originally labelled as classes 1, 2, 3, 5, 6 and 7 (no class 4); see Table 3.6 and

Figure 3.5. Each class is relabeled in turn as class 1, while others are 0, using the

”one versus all” technique to convert multi classed into n binary classes as explained

in earlier sections
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In Table 4.17, when class 1 labeled as class 1 and all others as class 0, the (VR) is

85.2% similar to (PC) and 49.4% similar to (IG), with a 55.6% similarity between

(IG) and (PC). When class 2 is relabelled as class 1, while all others are class 0,

the (VR) is 58% similar to (PC) and 47% similar to (IG). There is 34.6% similarity

between (IG) and (PC). When class 3 is relabelled as class 1 and all others as class

0, (VR) and (PC) are 81.5% similar and 49.4% similar to (IG) with 50.6% between

(IG) and (PC).

In Table 4.18, when class 5 is relabeled as class 1 and others as class 0, the (VR)

is 49.3% similar to both (IG) and (PC), while the latter two are 56.8% similar to

each other. When class 6 is relabeled as class 1 and the others as class 0, the

similarity between (VR) and (PC) is 45.7% while VR is 75.3% similar to (IG).

Furthermore,(IG) and (PC) are 39.5% similar. Finally, when class 7 is relabelled as

class 1 and all the others as class 0, (IG) and (PC) are 44.44% similar, while (VR)

exhibits 56.8% and 49.38% similarity to (PC) and (IG), respectively.

 

Table 4.19: Comparison of (VR), (PC) and (IG) using the (ROS) technique for
Yeast data
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Table 4.20: Comparison of (VR), (PC) and (IG) using the (ROS) technique for
Yeast data continue

The Yeast comparison in Table 4.19 and tables 4.20 using the (ROS) also pro-

vided the similarities of (VR), (PC) and (IG); lets us take the work example in Table

4.12 and 4.13 as a case study on how the similarity is arrived at. The similarity

between the (VR), (PC) is approximately 67.2% . while the similarity between (PC)

and (IG) is 75% and that between (IG) and (VR) is 62.5%. If the sub-table ”pox

as class 1 and others as class 0 ” is considered, the similarity between (VR) and

(PC) is 76.5%, and 53.13% with (IG), but it is 67.2% between (PC) and (IG). For

further similarity in all Yeast data ”one versus all” sub-tables between (VR), (PC),

and (IG), please see Tables 4.19 and 4.20

Summary and Conclusion

This chapter has presented very important aspect to evaluate the (VR) technique

in handling imbalanced distributed data by comparing the result of using the (VR)

technique with that of two State-of-the-art ((IG) and (PC)) feature selections on

the same data set. Owing to the fact that no two feature selection methods ever

produce the same results.

The feature selection method is categorised into Filter, Wrapper and Hybrid ap-

proach, the (VR) belong to the Filter approach which tends to rank the bases of the

feature on the degree of their significance in predicting the target class. Therefore
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the issue here is to find the degree of similarity of the result of the two State-of-the-

art ((IG) and (PC)) on the same data set and also the same degree of similarity will

be used to compare with the (VR) technique. All the known similarity index are

not applicable to ranking items, hence a new similarity algorithm the (ROS) was

invented to accommodate similarity when items are ranked. From the analysis of

the results of similarities in the four tables ( 4.15, 4.16, 4.17 and 4.17) at any point

in time the similarity between (VR) and either of the technique is higher than the

similarity between the two (IG) and (PC).
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Chapter 5

Validation

In this chapter, all the validation of (VR) technique will be carried out. To put

in specific terms, an assessment of the superiority of (VR) over (PC) and (IG) for

selecting the most significant attributes in a datasets that could make the machine

learning algorithm capture more of the minority classes during predictive modeling

processes will be verified.

The sequence of the section, is as follows; First using the result of the ranked at-

tributes obtained in earlier sections by (VR) and those ranked (IG) and (PC) will

be used on the following predictive algorithms: Decision Tree (DT), Support Vector

Machine (SVM), and Logistic Regression (LR) for the experiments.

One of the banes of predictive modelling is knowing the algorithm to choose from

the list of over fourteen major algorithms, besides how will parameters be changed;

by parameters here, it means the optimisation functions of the chosen algorithm for

example if you are using Support Vector Machine (SVM) on a particular data set

what kernel function would produce better results? If Decision tree algorithm is be-

ing used, how will the confidence factors be set, that will in turn affects the pruning

and performance of the algorithm on the training and test data? The altering and

tweaking of parameters and other variables during data mining and machine learn-

ing processes are just too much to itemize and did not make modelling processes

and exact science, hence trial and error are often associated with the processes.

Choosing the right algorithm is a huge topic that depends on lots of factors, you

only have to take a look at the research gate forum at [148] to realise how popular

this topic is.

Therefore different results could be obtained on the same dataset because of differ-

ent algorithm parameters tweaking and other variables that could be modified. But

the results should be within a certain heuristic range that is acceptable.

The reason for selecting these three algorithms for validating the (VR) is the
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intention to use more broader family of algorithms that are representatives of other

major aalgorithms. For instance, the family of tree-based algorithms is represented

by (DT), while the family of regression classifiers is represented by (LR), and finally,

the hyperplane and vector-based algorithms are represented by (SVM). Apart from

this, many researchers, academics, and data scientists who have ventured into the

area of selecting the right algorithm, such as in [215]and [216], have produce some

guidelines for selecting the right algorithms. Therefore, if the (VR) techniques works

on these three algorithm, it will work on other algorithms.

Hence making the (VR) as not algorithm dependent. The performance of (VR) on

any dataset would depend on the intrinsic properties of the data, comparing these

results will establish the efficacy of (VR) techniques. During this validation each

of the confusion matrix and all associated metrics of measurement like the True

positive for majority (TPmaj), True positive for Minority (TPmin), False positive

for Majority and Minority (FPmaj) and (FPmin) and others will be made available,

please refer to sections 2.3.1 and 2.3.2 for various metric of measuring the binary and

multiclass data. Also, the technique of Peak Threshold Performance for selecting

the most significant features will be demonstrated and shown in this chapter. The

investigation into Imbalanced and Overlapped, extreme imbalanced and their effects

in predictive modeling will be carried out in this chapter and next.

Tabular Descriptions and Results Presentations

For this validation, experiments were conducted using Weka data mining software

and Python programming language, two major tables and graphs will be created;

the tables will have majority and minority classes as headings. The contents of the

tables are as follows:

• Algorithm: This comprises the attribute selection algorithm techniques, which

are (VR), (PC), and (IG);

• (%)Accuracy: This is the accuracy of the model; it is the measure of the

(PTP )Accuracy and is the same for both tables. It is obtained from the confu-

sion matrix (see section 2.3.1), and it is recorded in the tables as accuracy value
100

• Precision: This is the precision of the majority or minority class, which will

be different for the two tables. It is obtained from the confusion matrix (see

section 2.3.1), and it is recorded in the tables as Precision value
100

• Recall: This is the recall value of the majority or minority class; the values

are different for both tables. The Recall for the minority table will be used to

99



CHAPTER 5. VALIDATION

indicate the position of (PTP )minority. Recall is obtained from the confusion

matrix (see section 2.3.1), and its is recorded in the tables as Recall value
100

• F-measure: This is the F-measure value of the majority or minority class; the

values are different for both tables, and they are obtained from the confusion

matrix (see section 2.3.1); it is recorded in tables as F−measure value
100

• ROC: This represents the area under the ROC curve for both the majority

and minority table is recorded in the tables as ROC Area value
100 and they are the

same for the majority and minority table.

• Graphs: There are two main graphs in this sections; their titles are ”Accuracy

versus Number of Attributes for VR” and ”Recall versus Number of Attributes

for VR”. Both graphs are plotted from the minority table. The graph ”Ac-

curacy versus Number of Attributes for VR” will indicate the (PTP )Accuracy

and is labelled in the graph as ”PTP for Accuracy”. The graph ”Recall versus

Number of Attributes for VR” will indicate the (PTP )minority and is labelled

in the graph as ”PTP for Accuracy.”

5.0.1 Validation of (VR) Technique for Binary Imbalance

Dataset

The (VR) technique have stood out as one of the few techniques that have specifically

targeted the imbalanced classed distributions in data sets and could be applied to

other imbalanced scenarios as provided in sections 1.1, The main reasons for this

claim is that the (VR) technique have factored the numbers of the majority class

and minority class group, ie the process is subject to the (IR) unlike many other

techniques.

The binary classed data set that will be used for this validations will be selected

from the list of the four data set that we had used in chapters 2 and three; these are

Wisconsin Breast cancer, Pima India diabetes, Bupa Liver disease, and Cod-RNA

data sets, for details of these data sets please see Table A.2.

The (VR) technique have been demonstrated in Tables 3.1, 3.2, 3.3 and 3.4, the

algorithm process flow chart is Figure 3.4, the results obtained have been compared

with that of the two most popular filter attributes selection techniques; the (IG)

and (PC), the results of the comparison is in chapter 4 Tables 4.1, 4.2, 4.3 and 4.4.

from these tables the following postulations are apparent;

• No two filter feature selection algorithms could produce results that are 100%

the same.
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• The results of filter feature selection on the same data set using the same

algorithm may differs slightly by proximity distance.(please see section 4.4

for the meaning of term proximity distance used in developing the concept of

(ROS) ).

Experiments Process.

The three classification algorithms; (DT), (SVM) and (LR) is used on the four binary

data sets starting with all the features and eliminating the features in accordance to

the ranking obtained by (VR),(IG) and (PC). The eliminations were done statistical

quartiles (dividing into four groups); that is if the total number of features were 8,

the elimination will be first 2, followed by another two (A total of four), then another

2 (total of six), this would continue until the Peak Threshold Performance (PTP)

is reached, at that point any other elimination will lead to the reversal of accuracy.

Note that the (PTP) is the highest accuracy at which the most significant feature

will be selected, the (PTP) are of two forms; these are;

• (PTP )Accuracy This is the point with the highest accuracy of the predictions,

but that may or may not show the best results for the minority class groups,

recall that one of the problems of imbalanced class is that a prediction may

show high accuracy while not capturing properly the minority in the data sets

• (PTP )minority This is the point at which the highest number of the minority

class group were captured, recall that this may not be at the points of the

highest accuracy, after all, prediction could appear to have high accuracy while

not capturing any or very low numbers of minority groups.

Notice that in this experiments we did try to start with the least numbers of

attributes and start adding others in 2(s) until all the attributes have bee added, a

reversal of the 5.0.1, it produces the same result.

5.0.2 Decision Tree Experiments for Pima diabetes Data

The comparison table of Pima diabetes data attributes in Table 5.1 as ranked by

variance significant the (VR), (PC) and (PC) will be used with the Decision Tree

for the experiments.
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59

 

Table 5.1: Comparison of (VR), (PC) and (PC) Attributes selection for Pima India
diabetes data

 

Table 5.2: Results of majority class for Pima data set for DT by (VR) feature
selection

The interface of two of the Experiments for Decision Tree algorithm for two

feature is in figure A.1 and eight features are in figure A.2 using Weka data mining

software. Tables 5.2 and 5.3 are the results of the same experiments using (DT) on

the Pima diabetes data, the tables were separated for majority and minority class

for clarity. The main interest is table 5.3 because it shows the minority captured by

the predictions, the highest is 182 when the attributes are two, while the accuracy

at that point is the lowest at 68.5%. The (VR) technique and (IG) performed better

than the (PC).
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Table 5.3: Results of minority class for Pima data set for DT by (VR) feature
selection

The highest minority that the (PC) was able to capture is 165 at a percentage

of 75.7% by using six attributes, (VR) also got that same percentage of 75.7% also

using the same six attributes. The (DT) experiment is a classical example that shows

that high accuracy does not lead to high capture of minority in the predictions.

 

Figure 5.1: Accuracy vs Number of Attributes for Pima data using Decision Tree
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Figure 5.2: Recall vs Number of Attributes for Pima data using Decision Tree

The Figure 5.1 is the (PTP )Accuracy and 5.2 is the (PTP )minority, both demon-

strations how the the most significant attributes is selected. At the position of

(PTP )minority shown in the graph in Figure 5.2 at that point has the highest recall

of 0.678 with two attributes and the total number of the minority captured is 182

which is also the highest in all the (DT) experiments.

5.0.3 Logistic Regression Experiments for Pima diabetes

data

The experiments of using the Logistic Regression algorithm on the Pima diabetes

data is provided in the next sessions.

 

Table 5.4: Results of majority class for Pima data set for LR by (VR) feature
selection
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The Logistic Regression experiments results is in Tables 5.4 for majority class

and 5.5 for the minority class, emphasis is on the general accuracy representaed by

(PTP )Accuracy and number of minority capture represented by (PTP )minority

 

Table 5.5: Results of minority class for Pima data set for LR by (VR) feature
selection

The Table 5.5 showed the (PTP )minority of (VR) techniques has the value of

Recall of 0.578 and highest number of capture minority of 155. At that point the

number of attributes used to achieve this are four. The next best attributes selection

that achieve the same results is the (PC), but uses six attributes to achieve the result.

Figures 5.3 and 5.4 showed that the highest accuracy (PTP )Accuracy point occurred

with all the eight attributes, while the highest Recall (PTP )minority point is with

four attributes.

 

Figure 5.3: Accuracy vs Number of Attributes for Pima data using Logistic Regres-
sion
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Figure 5.4: Recall vs Number of Attributes for Pima data using Logistic Regression

5.0.4 Support Vector Machine Experiments for Pima dia-

betes data

The Support Vector Machine experiments is in Tables 5.6 and 5.7, the same numbers

of features were used just like in the Decision Tree and Logistic Regression.

 

Table 5.6: Results of majority class for Pima data set for SVM by (VR) feature
selection

The results of the experiments has lots of interesting insight. For one, (SVM)

algorithm rely very much on demarcating data class groups in a hyperplane such

that the algorithm needs minimum number of features in a particular data set to
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function properly, this fact of (SVM) was captured in the work of [217], hence the

algorithm could be extremely accurate of inaccurate. This extreme tendency is

noticeable Tables 5.6 and 5.7

 

Table 5.7: Results of minority class for Pima data set for SVM by (VR) feature
selection

The best accuracy of 77.3% which is the (PTP )Accuracy point shown in Figure

5.5 were achieved using all the eight features and best recall of 0.545 for the minority

(PTP )minority shown in 5.6 point captured 146 minority class data.

 

Figure 5.5: Accuracy vs Number of Attributes for Pima data using Support Vector
Machine
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Figure 5.6: Recall vs Number of Attributes for Pima data using Support Vector
Machine

Summary and Conclusion

In the section, the first of the series of validation of the Prove of Concept (POC)

as regard to the (VR) technique have been carried out. A popular binary dataset;

Pima diabetes data were used and three (ML) algorithms specially chosen because

of their being the foundation or being related to many other algorithms. In general,

the experimental results are in line with the expectations, for instance, the best

experiments that captured more of the minority ie (PTP )minority is the (DT) with

a recall of 67.9% of the minority, and two of the most significant attributes as

identified by the (VR) were used. (DT) is known to perform very well in binary

context by splitting its node into two, but the power of the (VR) is knowing the two

most significant feature to split through.

The (LR) is the next best performing experiment and the (PTP )minority point is at

four feature, the Recall is 57.8% while the same Recall was achieved by (PC) but

with six attributes.

The (SVM) has the least performance but the same pattern is also noticed. The

(VR) has the best (PTP )minority at the point of four features but reduced drastically

to a Recall of 2.2%.
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5.0.5 Decision Tree Experiments for Wisconsin Breast can-

cer data

The Wisconsin Breast cancer data set has 699 instances, binary classed representing

Benign (458) and malignant (241), nine features (attributes) and target class, please

refer to Appendix A.2 for more details. The attributes selections by the ranking are

in Table 5.8, all the attributes selection have been ranked differently by each of

the algorithms, but some very close similarities still exist among the rankings. The

order of ranking and deducing the level of the similarities based on the rankings

have been dealt with extensively in section 4.3

 

Table 5.8: Comparison of Variance significant with PC and IG variable selection for
Wisconsin Breast cancer data

 

Table 5.9: Results of majority class for Wisconsin data set for DT by (VR), (PC)
and (IG) feature selection

The Tables 5.9 and 5.10 is the result of Decision Tree for the Wisconsin data, the

superiority of the (VR) to target the minority class group is shown in both tables

and the associated graphs for the accuracy and recall of the minority class groups

are in the Figure 5.7 and 5.8. This particular experiments is note worthy in that it

is one of such cases where the accuracy of the predictions and the recall occurred
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at the same number of attributes that mean the (PTP )Accuracy and (PTP )minority

are at the same point when the first four attributes where used,

 

Table 5.10: Results of minority class for Wisconsin data set for DT by (VR), (PC)
and (IG) feature selection

 

Figure 5.7: Graph of DT Accuracy vs Numbers of Attributes for Wisconsin data
showing (PTP )Accuracy
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Figure 5.8: Graph of DT Recall vs Numbers of Attributes for Wisconsin data show-
ing (PTP )Recall

In general the (VR) technique performed better as always when compared with

the (PC) and (IG), the best in (PC) occurred when the whole nine attributes were

used, while the best by (IG) with a value of 219 as the total minority captured

occurred at the point where the first two attributes were used. Though the capturing

of the minority group meaning the the highest value of (PTP )minority is by the (VR)

technique, but its note worthy to appreciate that (IG) technique also achieved a good

level of high score (PTP )minority by using only two attributes.

5.0.6 Logistic Regression Experiments for Wisconsin Breast

cancer data

The (LR) also demonstrated the same case were there is differences between the ac-

curacy and minority captured, meaning that the (PTP )Accuracy and (PTP )minority

points are different. The results in Tables 5.11 and 5.12 also confirms the superiority

of the (VR) as against the other two the (PC) and (IG).
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Table 5.11: Results of majority class for Wisconsin data set for LR by (VR), (PC)
and (IG) feature selection

 

Table 5.12: Results of minority class for Wisconsin data set for LR by (VR), (PC)
and (IG) feature selection

 

Figure 5.9: Graph of LR Accuracy vs Numbers of Attributes for Wisconsin data
showing (PTP )Accuracy at the position 6 attributes
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Figure 5.10: Graph of LR Recall vs Numbers of Attributes for Wisconsin data
showing (PTP )minority at the position of 4 attributes

The recall is highest for all aspects of the (VR) technique. In this experiment

the highest recall did not occur at the point of highest accuracy, meaning the

(PTP )Accuracy point is different from (PTP )minority but the increase in the recall

rate is more than 10% for the best performing of the (PC) and (IG) techniques.

5.0.7 Support Vector Machine Experiments for Wisconsin

Breast cancer data

The Wisconsin breast cancer also demonstrated the (VR) abilities to target the

minority class group effectively, Tables 5.13 and 5.14 is the majority and minority

tables for the confusion matrix, the graphs of the relationships between the accuracy

and the recall is in Figure 5.11 and 5.12.

 

Table 5.13: Results of majority class for Wisconsin data set for SVM by (VR), (PC)
and (IG) feature selection
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Table 5.14 is the main focus and interest here, from the analysis the (VR) have

out performed the (PC) and (IG), with a highest minority Recall of 95.4% closely

followed by (IG) with also 95.4% but when the total number of the minority group

Recall is check is 230 and 229 respectively.

 

Table 5.14: Results of minority class for Wisconsin data set for SVM by (VR), (PC)
and (IG) feature selection

The graph of the Accuracy against total number of attributes and Recall against

total number of Attributes also showed that the (PTP )Accuracy and (PTP )minority

occurred on the same number of attributes (4). The (VR) and (IG) has lots of

similarities in their results, for instance, both of their results are the same in for 9

and 6 attributes and both also show the highers Recall in the 4 attributes which

is the (PTP )minority but the actual value Recall is 230 and 229 respectively. The

Weka interface for the results is in Appendix A.12 and A.13

 

Figure 5.11: Graph of SVM Accuracy vs Numbers of Attributes for Wisconsin data
showing (PTP )Accuracy at the position of 4 attributes
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Figure 5.12: Graph of SVM Recall vs Numbers of Attributes for Wisconsin data
showing (PTP )minority at the position of 4 attributes

Summary and Conclusion

The Wisconsin data validation experiments also supported the superiority of (VR)

over (PC) and (IG) feature selection. In all the experiments (VR) has shown more

capture of the minority class group as against the attributes suggested by (PC) and

(IG), these experiments have been carried out using the selected (ML) algorithms.

In the Wisconsin Experiments using the DT in table Tables 5.10, the (VR) uses four

attributes for a Recall of 94.1% the highest that was attained (PC) and (IG) is a

Recall of 90% using nine attributes, thus the (VR) is superior in term of higher Recall

and using less attributes, though the (PTP )Accuracy and (PTP )minority occured at

the same value of four attributes.

The (LR) and (SVM) in Tables 5.14 and 5.12 and the graphs in Figures 5.9 and

5.10 for LR and 5.11 and 5.12 for SVM. Also shows similar higher performance of

(VR) over (PC) and (IG) by the Recall of 96.8% and 95.4% respectively.

5.0.8 Validation of (VR) technique for Multiclassed Imbal-

ance Data set

This sections would validate the (VR) technique for the Multi-Class data set using

the One-versus-All that has been explained and supported with proof of concept in

earlier chapter 2 section 2.3.2.

The multiclass data set used for this validation are Glass and Yeast data set (highly
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imbalanced) please see Tables A.2 for details of the data sets, all data preparations,

re-coding from multi-class to One-versus-All were done and explained in sections

3.3.2. In this section, the results in Table 4.6 for the Glass data and Tables 4.7 and

4.8 for the Yeast data will be used. Notice that the Glass data Table able (4.6) and

Yeast data TableS (4.7 and 4.8) are six and ten Tables in total, for clarity and to

avoid repetitions some sections of the tables have been selected for the validation,

these section is provided in Tables 5.15 and 5.16 below. The criteria for the selection

is to make sure class item groups are highly (extreme) imbalanced and Overlapped

and the two tables could be identified and located by the reader

 

Table 5.15: A section of 4.6 table for Glass data

 

Table 5.16: A section of 4.7 table for Yeast data

The Glass data is made up of six target classes and the Yeast data is ten target

classes each of these target classes have been recorded as class 1 while the rest as

class all in accordance with One-vs-All(Please see sections 3.3.2 tables 3.7 and 3.9)

for the re-cording. The characteristics of the tables 5.15 and 5.16 shows some levels

of similarities that has been deduced, calculated and adequately discussed in section

4.3 using the (ROS) techniques.

The sequence of the validation experiments for (VR) will go as follows;

• Run the selected (ML), experiments which may be (DT),(SVM),(LR) on all
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the attributes in the tables 5.15 and 5.16. Then eliminate the least significant

attributes as suggested by (VR), (PC) and (IG) by the rate of statistical

quantile for example if attributes total is 8 you eliminate the first 2, follow by

another 2 finally another 2 But if attributes is a total of 9 you eliminate the

first 3 , then follow by another 2 finally another 2

• On each of the elimination experiment carried out Obtained the Confusion

matrix and record the following; (TPmaj), True positive for Minority (TPmin),

(FPmaj) and (FPmin),Accuracy and Recall for both the majority and minority

• Provide a graphical and visualisation of the Recall metrics from the experi-

ments and conclusion based on the analysis and Recall therein.

During the course of the attributes elimination, the Accuracy and Recall for

the minority will peak at the point we defined as the Peak Threshold Performance

(PTP) when this is reached the significant attributes will be selected after which

there would be reversal for both the (PTP )Accuracy and (PTP )minority.

Multi-classed imbalanced has some peculiar behaviour that could also affect the

abilities to capture the minority class, its called ”classed Overlapped”, though this

will be dealt with in detail in chapter 6, we may encounter such phenomena in this

chapter, therefore is proper to mention it now. Class overlapped is a situation where

the intrinsic properties of the data item of two or more classes are the same, because

of this the data items will occupy the same data point in a sample space such that

is difficult for any algorithm to differentiate which the classes the data item belong

to.

5.0.9 Validation Experiments using the Glass data set re-

sults

For this validations experiments, two Tables in 5.15 will be used, representing a

section of much larger Table 4.6. The Glass dataset is highly imbalanced and multi-

classed, each class represent a type of glass, such as tableware, car headlight, or

window glass. are originally labelled as class 1, class 2, and so on up to class 7.

However class 4 is not available, so a total of six classes is present in the original

datasets. The re-coding of multiple classes into ”one versus all” was done and

explained in earlier sections. However, to review, the re-coding involves labeling

class 1 as class 1 and the other classes as class 0, then using it for the experiments

after that round of experimentation. Then, class 2 is re-coded as class 1 and the

others as class 0, and this setup is used for the experiments. Next, class 3 is re-coded
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as class 1 and others as class 0. This is continued until the experiment is complete.

The tabulation of the results and graphs is presented below. Our interest here is in

the minority table results that were used for the graphs.

5.0.10 Logistic Regression Experiments for Glass data using

One vs All (class 1 as 1 and the others as class 0 )

see table

 

Table 5.17: Results of majority class for Glass data set for LR by (VR), (PC) and
(IG) feature selection for class 1 as 1 and the others other as class 0

 

Table 5.18: Results of minority class for Glass data set for LR by (VR), (PC) and
(IG) feature selection for class 1 as 1 and the others as class 0

118



CHAPTER 5. VALIDATION

 

Figure 5.13: Graph of LR Accuracy vs Numbers of Attributes for Glass data Mi-
nority class: Class 1 as 1 and the others as class 0, the (PTP )Accuracy position.

 

Figure 5.14: Graph of LR Recall vs Numbers of Attributes for Glass data Minority
class: Class 1 as 1 and the others as class 0, the (PTP )minority in different position.

In this section, which is the 5.0.10 Logistic Regression experiments, where class 1

(70) is labelled as class 1 and other classes as class 0 (144). the interface for the

Weka reading for all the 9 attributes is in Appendix A.4 and ROC in Appendix

A.5. The (VR) outperformed the (PC) and (IG) with a value of 90% of recall of

the minority, representing a total of 63 from 70 of the number of the minority data

items. The graph of accuracy and recall for the minority is in Figure 5.13 and 5.14,

and it shows the positions of accuracy and recall and the number of the attributes

that were used to achieve them.
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5.0.11 Decision Tree Experiments for Glass data using One

vs All (class 1 as 1 and the others as class 0 ) see

table 5.15

 

Table 5.19: Results of majority class for Glass data set for DT by (VR), (PC) and
(IG) feature selection for class 1 as 1 and the others as class 0

 

Table 5.20: Results of minority class for Glass data set for DT by (VR), (PC) and
(IG) feature selection for class 1 as 1 and the others as class 0
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Figure 5.15: Graph of DT Accuracy vs Numbers of Attributes for Glass data Mi-
nority class: Class 1 as 1 and the others as class 0 (PTP )Accuracy in the 6 attribute
position

 

Figure 5.16: Graph of DT Recall vs Numbers of Attributes for Glass data Minority
class: Class 1 as 1 and the others as class 0 (PTP )minority in the 4 attribute position

The above Tables 5.19 and 5.20 show the (DT) results for the Glass data in the one

versus all approach for class 1 re-coded as class I and the others as class 0. some of

the Weka out put interface for the 21, 13 and 0 number of minority capture which is

common in is tables 5.20, please see appendix A.6, A.7 and A.8 The minority table

5.20 is our interest here; notice that the (VR) techniques captured more minority

class groups than (PC) and (IG) did, with a recall of 56% at an accuracy of 69.6%,

this result is a classic case of low accuracy but high recall. The graphs for the
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accuracy and recall versus numbers of attributes is in Figure 5.15 and 5.16 which

shows the (PTP )Accuracy and (PTP )minority at the position of the most significant

attributes to be selected for the highest accuracy or highest recall of the minority

class.

5.0.12 Support Vector Machine for Glass data using One vs

All (class 1 as 1 others as class 0) see table 5.15

 

Table 5.21: Results of majority class for Glass data set for SVM by (VR), (PC) and
(IG) feature selection for class 1 as 1 other as class 0

 

Table 5.22: Results of minority class for Glass data set for SVM by (VR), (PC) and
(IG) feature selection for class 1 as 1 other as class 0

122



CHAPTER 5. VALIDATION

 

Figure 5.17: Graph of SVM Accuracy vs Numbers of Attributes for Glass data
Minority class: Class 1 as 1 and the others as class 0, (PTP )Accuracy in the position
of 4 attributes

 

Figure 5.18: Graph of SVM Recall vs Numbers of Attributes for Glass data Minority
class: Class 1 as 1 and the others as class 0, (PTP )minority in the position of 4
attributes

The SVM uses six attributes to attain the highest recall of 44.30% for the (VR),

while the highest levels for the (PC) and (IG) are recall rate of 37.1% and 38.6%,

respectively. The SVM result was the only situation where the highest accuracy was

attained with the lowest number of attributes (four), while the highest recall had

six attributes. These are shown in Table5.22 and Figures 5.17 and 5.18.
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5.0.13 Conclusion

During the Glass dataset validation experiments, the sub-table ”class 1 as 1 and

the others as class 0” was employed, the three algorithms that were used were the

(DT), (LR) and (SVM). In all the experiments (VR) captured more of the minority

class data than PC and IG attribute selection did. These attributes were identified

using the (PTP )Accuracy and (PTP )minority positions in the various graphs. The

PC and IG are benchmark attribute selection techniques known in the data science

community, but VR has been shown in many instances to produce equivalent or

better results.

5.0.14 Logistic Regression Experiments for Glass Data Us-

ing One Versus All (Class 3 as Class 1 and the Others

as Class 0)see table 5.15

 

Table 5.23: Results of majority class for Glass data set for LR by (VR), (PC) and
(IG) feature selection for class 3 as class 1 other as class 0

 

Table 5.24: Results of minority class for Glass data set for LR by (VR), (PC) and
(IG) feature selection for class 3 as class 1 other as class 0
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Figure 5.19: Graph of LR Accuracy vs Numbers of Attributes for Glass data Minor-
ity class: Class 3 as Class 1 and the others as class 0 (PTP )Accuracy at the position
of 9 attributes

 

Figure 5.20: Graph of LR Recall vs Numbers of Attributes for Glass data Minority
class: Class 3 as Class 1 and the others as class 0, (PTP )minority at the position of
4 attributes

The Weka interface for the capture of 2 minority is in Appendix A.9 and 0 minority

is in Appendix A.10. The (LR) algorithm worked best for this dataset and produced

the only meaningful result. The other selected algorithms; (DT) and (SVM) were

unable to capture any minority class even if the accuracy is above 80%, Although

this may appear to be a failure, a closer analysis shows that what affects the state-

of-the-art attribute selection like PC and IG also affects the invented VR. This
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supports the claim that VR belongs to the same league with the state of the art PC

and IG and in many instances have shown that it is performed better. All results

are in Tables 5.23 and 5.24, the graphs are in Figures 5.19 and 5.20.

5.0.15 Validation Experiments using the Yeast data set re-

sults

The components of the Yeast data make it one of the imbalanced datasets with the

most classes in the data science community; see appendix A.11 for Yeast data class

distribution and Table 3.9 for the representation of the class re-coding as ”one versus

all.” There are 10 classes with varying degree of imbalanced Ratio (IR) between each

class as class 1 and the rest classes (all) as class 0. The next sections present the

experiments for (LR), (DT) and (SVM) for the attributes selected by (VR), (PC)

and (IG).

5.0.16 Decision Tree Experiments for Yeast Data Using One

Versus All (Class ERL(5) as 1 and the others as class

0 (1479)) see Table 5.15

The Tables 5.25 and 5.26 relate to the (DT) experiment for class ERL(5) as class 1

and the others as class 0 (1479), the (IR) is 5:1479 or approximately 1: 296. This

means that for every 1 data item of class 1 (ERL), there are 296 data items of class

0 (others). This is an extreme case of imbalance, and Figure 5.21 shows how scanty

class ERL(5) is as class 1 is in the midst of the others as class 0 (1479). Thus, even if

any predictive modeling accuracy is as high as above 99%, it may not even capture

any minority data. The next session showed the table of majority and minority

capture recalls in different algorithms. This a case of extremely imbalanced and

extremely overlapped, see the 3D scattered plot in figure 5.21
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Figure 5.21: Extreme case of Ibalance of class ERL(5) as 1 others as class 0 (1479)

This extreme case of imbalanced is such that no single data points that the

minority class occupies will not have one or more of the majority class occupy

the same point, hence it becomes almost impossible for any algorithm to pick the

minority. This is one of the reasons why imbalanced class problems exist.

The Weka interface of (DT) of 0 (zero) capture of minority and the ROC of 0.25

is in Appendix A.14 and A.15. for the capture of 1 minority the Weka interface of

(DT) analysis and ROC of 0.697 is in Appendix A.16 and A.17.

 

Table 5.25: Results of majority class for Yeast data set for DT by (VR), (PC) and
(IG) feature selection for class ERL(5)as Class 1, Others(1479) as class0
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Table 5.26: Results of minority class for Yeast data set for DT by (VR), (PC) and
(IG) feature selection for class ERL(5)as Class 1, Others(1479) as class 0

 

Figure 5.22: Graph of Accuracy vs Numbers of Attributes for Yeast class ERL(5)
as class 1 and the others as class0(1479) for DT minority showing (PTP )Accuracy in
both 8 and 4 attributes position
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Figure 5.23: Graph of Recall vs Numbers of Attributes for Yeast class ERL(5) as 1
and the others as class0(1479) for DT minority showing (PTP )minority in the position
of 4 attributes

5.0.17 Logistic Regression Experiments for Yeast data using

One vs All (class ERL(5) as 1 others as class 0 (1479))

see Table 5.15

The results are in Tables 5.27 and 5.28, the graph is in Figure 5.24 and 5.25. The

logistic experiment performed better than the Decision tree in 5.0.19.

 

Table 5.27: Results of majority class for Yeast data set for LR by (VR), (PC) and
(IG) feature selection for class ERL(5)as Class 1, Others(1479) as class0
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Table 5.28: Results of minority class for Yeast data set for LR by (VR), (PC) and
(IG) feature selection for class ERL(5)as Class 1, and the others(1479) as class0

 

Figure 5.24: Graph of Accuracy vs Numbers of Attributes for Yeast class ERL(5)
as class 1 and the others as class 0 (1479) for LR minority showing (PTP )Accuracy

in the position of 2 attributes
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Figure 5.25: Graph of Recall vs Numbers of Attributes for Yeast class ERL(5) as
class 1 and the others as class0(1479) for LR minority showing (PTP )minority in the
position of 4 attributes

This results is one of the best that demonstrates the performance by (VR) over

most other techniques; for being able to pick all the minority classes in an extremely

imbalanced situation, the analysis interface of the experiments is in Appendix A.18

5.0.18 Decision Tree and Support Vector Machine Exper-

iments for Yeast data using One vs All (class VAC

(30) as class 1 others as class 0 (1454)) see table 5.15

This two algorithm experiments was combined because their results were similar

and they were unable to capture any minority in a case of extreme imbalance and

extremely overlapping. Figure 5.26 is the 3D representation of the classes; notice

the small numbers of the minority classes and how they are overlapped with the

majority. This is regarded as the extreme case of imbalance.
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Figure 5.26: Extreme case of Imbalance class VAC(30) as 1 others as class0
(1454).docx

The Decision Tree and Support Vector machine algorithm is unable to capture

any minority even using any attributes selections including our (VR). The Weka

software analysis interface for the results and ROC Area values is in the Appendix

A.19, A.21 and A.20 This shows that the effects of an extreme case of imbalance

could also the effects the VR, PC, and IG. The point of this is that what ever affects

the benchmark attributes selections also affects our VR; hence, we make the case

that the VR is equal to the established attribute selections in terms of performance,

and in many instances, it is better than the benchmark attribute selections.

5.0.19 Logistic Regression Experiments for Yeast data using

One vs All (class VAC (30) as class 1 others as class

0 (1454)) see table 5.15

 

Table 5.29: Results of majority class for Yeast data set for LR by (VR), (PC) and
(IG) feature selection for class VAC(30)as Class 1, Others(1454) as class 0
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Table 5.30: Results of minority class for Yeast data set for LR by (VR), (PC) and
(IG) feature selection for class VAC(30)as Class 1, Others(1454) as class 0

The results of the LR in Table 5.30 may initially appear odd because both (VR) and

(PC) have the same results (same number of minority values captured). However, on

close inspections of their comparison tables in 4.7 for the Yeast dataset with ”class

VAC as class 1 and the others as class 0,” it can be observed that both attribute

rankings of (VR) and (PC) are the same; as such; they should produce the same

result.

 

Figure 5.27: Graph of the Accuracy vs Numbers of Attributes for Yeast class
VAC(30) as 1 others as class0(1454) for LR minority showing (PTP )Accuracy at
the position of 8 attributes
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Figure 5.28: Graph of the Recall vs Numbers of Attributes for Yeast class VAC(30)
as 1 others as class0(1454) for LR minority showing (PTP )minority at the position
of 4 attributes

5.0.20 Conclusion

In this section, extensive experimentation was carried out to validate the VR tech-

nique by using multi-class datasets. We have explained and provided evidence of

(PTP )Accuracy and (PTP )minority by using various graphs of accuracy and recall

versus numbers of attributes in so doing we provided a method of recognizing the

most significant attributes.

The experimentation and evidence provided in this section have shown that (VR)

technique is usually superior and sometimes comparable to the benchmark attribute

selections. The experiments also showed that (VR) techniques have more capability

to capture the minority groups in an imbalanced data and the performance is equal

or better when compared to either (PC) and (IG). Another advantages of the (VR)

is that the same level of performance could be achieved with fewer attributes hence

using less resource.

5.1 Comparison of Variance Ranking with the Work

of Others On Imbalanced classed Data

5.1.1 Introduction

The research into imbalance classes and various ways to target minority class in

both binary and multi-classed context have been one of the major challenges in
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data science and its allied disciplines, and it will continue to remain so inasmuch

as whatever knowledge we sought to support decision making processes will remain

hidden in the midst of other distracting variables. For instance:

• If we sought to categorise different species of insects in a habitat.

• if we wish to identify a particular species of plant in the midst of other plants

(multi classed imbalanced).

• The search for a particular protein strand that has the same dimension to

more than ten other proteins (multi class imbalanced).

The list or situational occurrences of imbalanced classes are endless. Needless to

say, that data scientist is faced with imbalanced data class issues much more than

any other data analysis problems even if it may not be apparent. The questions

then are ” Why have they not been able to solve the problem up till now?” Though

some efforts have been made over the years to solve this problem, but the success

that has been achieved is abysmal in comparison to the enormity of the problems

and the research interest it has garnered over the years. So what is the problems?

During this research, we have come to conclusions that enough effort has been put

into the research of imbalance classes but the poor results are due to the approaches

that have been used, many researchers have approached the issues from the perspec-

tives of the algorithm. By the way, there is no shot of machine learning algorithm

and many of these have stood the test of time, from the last count, there are about

fourteen major (ML) algorithm and counting [218], not to talk of different modifi-

cations of each, for example, Neural Network have been extended or rather modify

to be Deep Learning and many others, also there are different modifications of deci-

sion tree, for example, ID3 (Iterative Dichotomiser 3), Classification and Regression

Trees (CART), and C4.5. Hence enough (ML) algorithm are available and more will

continue to come into the scene, please see [219].

From the analysis of all the major (ML) algorithm and their application in the

context of imbalanced data issue, most algorithms are not designed to capture the

minority group rather there are optimises to always capture the dominant majority

group classes. That is why, most modelling excises always fall shot in performance

as regard to the minority classes because by approaching the problems of imbalanced

data from the algorithm perspectives without taking into consideration the reasons

for the imbalanced.
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5.1.2 New approaches to Imbalanced Data And Introduc-

tion To Sampling

In all the research work available to improve predictive performance. The only one,

that correctly dealt with class imbalanced is the sampling techniques. There are

two categories of sampling (Oversampling and Undersampling). Oversampling is to

increase the data items while Undersampling is to reduce them. We are concentrat-

ing on the Oversampling (please see chapter 2 for the reasons). Prominent amongst

the oversampling, which of course is the first to be invented is (SMOTE) which

stands for Synthetic Minority Over-sampling Technique. This was invented by [94],

followed a few years later by (ADASYN) which stands for Adaptive Synthetic Sam-

pling and invented by [220]. Over the years different modifications of oversampling

techniques like the BorderlineSMOTE, SMOTETomek, etc have continued to be

invented, Please see [221] [222].

First and foremost, what is the reason for the imbalance? This due to the unequal

numbers of the classes and is called the imbalanced ratio (IR), therefore any tech-

nique, formula or algorithm that did not factor the causes of the imbalance i.e.(IR)

will always produces unreliable and inconsistent results when trying to replicate the

experiments using different or even the same data.

Apart from the sampling techniques like the (SMOTE) and (ADASYN), Variance

Ranking (VR) is the only techniques that have factored the (IR) in dealing with the

imbalanced class problems. A detailed explanation of the (SMOTE) and (ADASYN)

technique have been provided in section 2.2.6. just to summarised it, is artificially

generating data items for the minority classes in other to make all the class groups

equal, making the (IR) become 1:1, meaning that equal numbers of both the ma-

jority and minority classes. In the preceding sections the (VR) would be compared

with (SMOTE) and (ADASYN) the reasons is that sampling techniques (Oversam-

pling) is the only techniques that have applied the (IR) in their implementations for

that, both techniques fell withing the same ”Terms of Reference” with (VR) this

provides the basis of the comparison between the three.

5.1.3 Similarities and Differences between (VR), (SMOTE)

and (ADASYN)

One of the first similarities within these techniques is that all three processes involved

the numbers of minority class groups, for example in (SMOTE) and (ADASYN), the

numbers are increased (Oversampled) to equalised with the number of the majority

class groups this, in turn, will interfere with the (IR).
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Another basic similarity is that the three techniques are grouped as preprocessing

activities, that is (VR), (SMOTE), and (ADASYN) are carried out on the datasets

before any active (ML) algorithm is used or before modelling is carried out. There

are also similarities in the area of sampling which is subjective to the amount of

original dataset in the population. If the data set is in hundreds or a few thousand,

the researcher may wish to use all the dataset instance but if the dataset instances

is in the tens of thousands an appropriate sampling mechanism should be employed

to make sure the active sample used in the experimentation is a true representation

of the populations.

Impact of Class Overlapped to Performance of Modelling

There are also some differences between (VR) and the two oversampling; (SMOTE)

and (ADASYN). First, during the process of (VR) the number of minority class

groups or instances does not change, rather each of the class groups are separated

into their various classes eg class 0 for negative and class 1 for positive class, before

the sampling is done (please see section 3.3.2 for detailed explanations of (VR) and

Figure 3.4 for its algorithm in form of flow chart). The choice of oversampling to

use depends very much on the intrinsic properties of the classes of the data items.

For example, how well separated or the values variances of each classes groups. The

Figures 5.29 and 5.30 is a 3D scatter plot of Glass (Multi classed imbalanced) and

Pima (Binary classed imbalanced).

 

Figure 5.29: 3D Glass data Scatter plot
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Figure 5.30: 3D Pima data Scatter plot

It could be observed that the values of the variances of each classes (both multi

and Binary classed data set) are not separated, but very much overlapped, compare

this two to Figure 5.31 of 3D scattered plot of Iris data set. notice the distinctive

concentrations of each classes, hence there are not as overlapped as the other two (

Figures 5.29 and 5.30).

 

Figure 5.31: 3D Iris data Scatter plot

Therefore due to this overlap of the classes, the sampling techniques may perform

very poorly but when the classes are separated as in Figure 5.31, sampling technique

will perform very well. This is one of the disadvantages of sampling techniques in

general and the advantage of (VR) over oversampling. Classes overlapped is one of

the hindrances to achieving good result in predictive modelling, overlapped classes

have most unit values of their attributes the same as such the (ML)algorithm will

not be able to differentiate class group members, therefore, more data point will be

confused and group into the wrong classes leading to high False Positive(s) and False

Negative(s). (VR) has an added advantages of not being affected by this overlap

and ”One versus All” used in this work have also augmented the separations of the
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classes adding to distinctiveness of the class separation and better performance

5.1.4 Performance comparisons Between (VR), (SMOTE)

and (ADASYN) on Common data sets

In this section, a comparatives performance between these three ((VR), (SMOTE),

and (ADASYN)) imbalanced data classification techniques would be investigated.

before that is done, lets review ”The terms of reference” under which this comparison

will be carried out and to establish the ”comparator” in this case the results obtained

from the (VR). Therefore the terms of reference are as follows:

• which of these three techniques would capture the highest number of minority

class or have the highest ”Recall” at a specific number of attributes (The point

of (PTP )minority)

• of this three tecniques which shows the highest ”Accuracy” and at which

specific number of attributes (the points of (PTP )Accuracy)

As the focus is specifically on the recall of the minority class group, the comparison

will be focusing on that, this is to underscore the emphasis on the minority class and

the primary aim of any techniques to handle imbalanced data is to reduce the bias

toward the majority and provide an even playing field for the modelling algorithm

to equally target all the classes

5.1.5 Experiment Set up

In this comparative experiment. We shall try to replicate the (SMOTE) and (ADASYN)

experiment as much as possible and compare their performance with that of (VR),

the idea is to ascertain the one that will produce the best performance in terms of

the ”Accuracy” and the ”Recall” of the minority class groups. Three of the data set

(Pima diabetes, Ionosphere, and Wisconsin cancer data) that was used in the initial

experiment by [94] to the invent (SMOTE) in 2002 and also used by [220] to invent

(ADASYN) in 2008, are still available in public domain and I have also used two of

them extensively in this research. All data preparations, sampling, and processes

have been discussed in details in chapter 2.

The Table 5.31 is the experiments conducted for the comparisons, The relevant met-

ric is the (PTP )Accuracy represented by the Accuracy, the (PTP )minority represented

by the Recall and the F-measure.
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Table 5.31: Evaluation Metric And Performance Comparison VR, SMOTE and
ADASYN

 

Figure 5.32: Graph Evaluation Metric And Performance Comparison LR

Detailed graphs of the tables are also presented in Figures 5.32, 5.33 and 5.34.

In the Table, the results of (SMOTE) and (ADASYN) have been compared to the

results of (VR). The in (LR) experiments for the Pima data the (ADASYN) per-

formed better in terms of the recall, but in term of the accuracy with 77.1% the

(VR) performed better, for the Wisconsin and Ionosphere data the (VR) performed

better in terms of both recall and accuracy. The Wisconsin has a value of 94.3% and

96.8% for the accuracy and recall. For the Ionosphere, the (VR) also outperformed

the (SMOTE) and (ADASYN) with of accuracy of 90.6% and 77.7% for recall. For

clarity, the graph in figure 5.32 is the (LR) experiments.
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Figure 5.33: Graph Evaluation Metric And Performance Comparison DT

The (DT) experiments in the second table of Tables 5.31, the (VR) performed

better than (SMOTE) and (ADASYN) in recalls. In the Pima data the (VR) has a

recall of 67.9% as against 60% and 60.1% for (SMOTE) and (ADASYN), in Wiscon-

sin (VR) has a recall of 94.1% while (SMOTE) and (ADASYN) has 90% and 89.9%

respectively. In the Ionosphere data (VR) has a recall of 84.9%, while (SMOTE)

and (ADASYN) has recalls of 74% and 76.2%.

 

Figure 5.34: Graph Evaluation Metric And Performance Comparison SVM

Finaly, in the (SVM) experiments the (VR) also has a better recall for Pima data

with 74.2% while (SMOTE) and (ADASYN) has recalls of 58.1% and 60%. In Wis-

consin data, (VR) has recall of 95.1% and (SMOTE) has 89% while (ADASYN) has

90.1%. The Ionosphere data has 83.8% for (VR) while (SMOTE) and (ADASYN)

has recall of 76.2% and 82.5% respectively.

5.1.6 Conclusion

The (VR) techniques for dealing with imbalanced class problems have shown better

performance in the nine experiments carried out to compare it with (SMOTE) and
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(ADASYN) techniques that are dedicated for dealing with imbalanced classed data.

Just like the (SMOTE) and (ADASYN), it’s also algorithm independent. In the

field of predictive modelling, the techniques to use depends on lots of factors like

computational power, scattered plot distributions of variable and even the intrinsic

properties of the data items, but (VR) have come to stay as a superior alternative

which has been demonstrated here.

142



Chapter 6

Summary Discussion and

Conclusions

This work has established the fact that imbalance data problems pervade all sec-

tions of real-life predictive modelling no matter the scenario or the nature of the

data (granular or non-granular), therefore devising the ways of dealing with this

problems will drastically improve the results of any predictive modelling.

This research is motivated by the apparent gap in knowledge as regards to the unre-

liable way that the existing techniques of dealing with imbalanced classed data since

the existing technique results are very subjective to lots of factors thereby bringing

the validity and reliability of the results obtained to question

The main aim of this research is to invent a new techniques (if not better one )

to handle imbalanced classed data that would be ”foolproof” and not subjective to

machine learning algorithm being used and or any other intrinsic properties of the

dataset and host of other factors that has been the bane of the existing techniques.

6.1 Summary Critique of Existing Algorithm and

Sampling Approaches

Though some good result have been achieved using different (ML) algorithm and

the sampling techniques, but the critiques of these techniques is around the context

of the validity and reliability of the modelling results, the reasons that led to this

criticism are summarised as follows:

143



CHAPTER 6. SUMMARY DISCUSSION AND CONCLUSIONS

6.1.1 Critique of Existing Algorithm Techniques.

• Most machine learning algorithm did not factor the imbalanced ratio in their

design as such were not made to be sensitive to small class groups (minority)

in the dataset.

• Most algorithm has optimisation functions that tend to recognise the majority

class groups, for example in Support Vector Machine algorithm has more than

four Kernel functions, while K- Nearest Neighbour could use Euclidean or

Manhattan distance, etc.

• Using algorithm involved changing the different parameter to achieve a desir-

able result, such parameter is not fixed but is different for different algorithms,

even when using the same algorithm the parameter could change depending

on the intrinsic properties of the data sets being used.

• It is difficult to replicate the results obtained using the algorithm methods,

hence the reliability and validity of the results are in question.

6.1.2 Critique of Existing Sampling Techniques.

Though in this work we have emphasis more on oversampling technique for the

simple fact that is more popular and undersampling is discouraged because of the

chances of removing important data items. In general sampling techniques critiques

could be summarised as follows:

• Very sensitive to overlapping classes, please see Figures 5.29, 5.30 and 5.31

• Oversampling produces a replica of the existing data items thereby increas-

ing the confused classes (False positives and false negatives) that will further

reduce the general accuracy of the model

• Sampling also has all the disadvantages of the algorithm techniques as men-

tioned above.

6.1.3 Summary of the Contributions of this Thesis

The contents of this research have provided completely new approaches to solving

the imbalanced classed problem that is algorithm independent, not affected by class

attributes overlapped and uses One-versus-All to augment the process. All major

contributions listed in the specifications have been achieved and evidenced with a

series of examples, for clarity, a summary review of the aims and objectives and the

144



CHAPTER 6. SUMMARY DISCUSSION AND CONCLUSIONS

Contributions are below.

The aim and objective of the research are to develop new techniques to solve the

problems of imbalanced classes in both binary and multi-classed data set. All aspects

of this research are channel towards achieving these aims and objectives that led to

a series of processes, procedure, and experimentation. And also many contributions

to knowledge.

• Review of Variance Ranking Technique. A novel attributes selection

called the (VR). The superiority of the techniques of over existing methods

were also vetted with adequate proof of Concept of how (VR) is algorithm

independent and not affected by overlapping classes. All these were developed

and explained chapter three session 3.1.1 .

• Review of Peak Threshold Performance. We demonstrated and intro-

duced the concept of Peak Threshold Performance to establish the points to

select the significant attributes at which the modelling performance could have

high Accuracy and high Recall for the minority class group. These two con-

ceptual points were defined as (PTP )Accuracy and (PTP )minority. And also

We introduced and provide ways to identify the point and the number of at-

tributes required to get dependable performance in any machine learning or

data mining activity. These are further explained in chapter five from session

5.0.1 to section 5.0.20.

• Review of Ranked Order Similarity . In comparing (VR) and other

established state of the art attributes selections that are categorised as filter

method, notably the (PC) and (IG) a new similarity measure was invented

called Ranked Order Similarity (ROS). Please see chapter four session 4.4. for

a complete explanations.

These are just the summary of the contributions of this thesis that has made this

work stand out. We believed beyond any doubt that this work has answered lots

of questions and in so doing has also raised some too, any person(s) that took the

pain to read it will have lots of insight for future work and scholarship.

6.2 Recommendations

The work has been exhaustive and many techniques invented were directly or in-

directly intended to minimise the negative effects of class imbalance, but along the

line many new and existing processes and procedures has been applied in a way that
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has not been done before, that provided a novelty in his own right. On this note the

following recommendations is being made to further help in the implementations of

the novelty processes that were carried out in this research.

• This processes of (VR) is highly recommended for numeric data type where

the measurement of central tendency is possible.

• It is recommended that an exploratory activities should be carried in each

dataset to investigate the extent of overlapping of the classes before a detailed

implementation of the (VR) is carried out, this would give the researcher an

idea of the sample size that is needed.

• Just like most data centric research, the more sample the better results. No

matter the distribution of the data in the sample space, central limit theorem

may be used to estimate the population mean, deviation both before and after

the datasets are separated into their respective classes. This would enable

the research to estimate the differences between the classes data descriptive

statistics.

• Comparative feature selections should be run to compare (VR) and other

feature selection. This would provide higher level of confidence to the ranking

of the (VR) results.

• The (ROS) is recommended to quantify the similarity between two or more

items when other similarity index is not applicable.

• The (ROS) has also been found to be very accurate in word recognition. In

a situation where word recognition for query recall or when an Anagram is

needed.

6.3 Limitations

In formulating these research specifications and carrying it out, efforts have been

made to ensure that the solutions proffered are as encompassing and far-reaching as

much as possible to enable most imbalanced classed problems to be solved.

But there are some limitations, these have been explained below.

• The (VR) technique can only be applied to numeric data. we should remember

that is based on the measurement of one of the central tendency (variance).

Provided the central tendency like mean, median, mode standard deviation of

the attributes in the data set have a meaning in terms of being used to explain
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and provide a ”summary statistics” of the data set, then this techniques could

be applied, but if the central tendency of the data could not be measure eg

categorical data this technique is not applicable.

• If some interval data could be re-corded into numeric data, for example first

position is 1, second position is 2 and third position is 3. In such situation

the mean, standard deviation and probability distribution could be obtained,

Then it is possible to apply the (VR). But not all interval scale could be re-

coded into numeric data and as such the measurement of the central tendency

is not possible, therefore (VR) will not be possible.

• Though many classed imbalanced problems have been solved here. That is

not to say that this thesis is the panacea to all imbalanced classed problems.

Far from it, the ubiquitous nature of real-life data is such that there will

never be a single solution to any modelling problems imbalanced or not, rather

collections of procedures and processes will continue to be invented to tackle

each peculiarity of imbalanced problems, hence they may be issues relating

to imbalanced that may emerge in future that we may not have seen before

because data science is relatively new and evolving by the day.

• The Ranked Order Similarity (ROS) is also limited to textual similarity just

like levenshtein similarity. It could identify and retreived a text if there is

similarity between a search input and a ”bag of words”. It does not use angles

between words like cosine similarity.

6.4 Future Work

The future work will be extending the technique to categorical data by implementing

a weighting strategy to enable a ”summary statistics” on such data type. Finding

a techniques to calculate the descriptive statistics of categorical data is an active

area of research for quite some time; one has to check the research data banks like

google scholar to realise the enormity of the research interest, the new direction is,

therefore, to utilise some of the research concepts to implements (VR) on categorical

data.

Classification algorithms are dichotomised, meaning the algorithm classifies a data

point to belong to this class or that class, therefore is very possible to integrate (VR)

techniques into many (ML) algorithm for more augmented dichotomy which may

improve the distinctions between the classes and improve the general performance
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of the algorithm, the future research implications are in the direction of integration

of (VR) and most (ML) algorithm

6.4.1 Final Summary

In this thesis, we have ended up with the solution that addresses problems of classed

imbalanced in classification modelling. Thus has addressed a significant problems

associated with predictive modelling when using real-life dataset. It has proven

that classed imbalanced problems is more prevalent than any other errors associ-

ated with data and shows that imbalance problems are always in addition to any

other problems that the dataset may have. A techniques called Variance Ranking

Attributes Selection (VR) has been produced and demonstrated. A methods of

choosing the most significant attributes that would enable higher recall of the mi-

nority class groups through a process of Peak performance Threshold has also been

demonstrated. A process of similarity index called the Ranked Order Similarity

(ROS) has also been developed to compare the result of (VR) and that of (PC) and

(IG).

The question now remaining is this ”At what stage during predictive modelling pro-

cesses” does (VR) fit into? To answer this let us find a parallel with the techniques

we have compared (VR) with and find where all those techniques fit into. We have

compare (VR) with (PC) and (IG) attributes selection in chapter 4 because it is

an attributes selection technique, we have also compared it with (SMOTE) and

(ADASYN). All these four comparisons are at the stage of Preprocessing, therefor

without any doubt, (VR) should be carried out at the data Preprocessing stage.

Intriguing, revolutionary, etc, these are some of the words that have been used to

describe this thesis by the few people that have read it. I believe that the basis

of a Ph.D. is to think ”out of the box” with new radical ideas, not ”Business as

usual”. Knowledge grows when we experiment with new things and ideas and it will

continue to evolve. There were times when the best brain mankind could boast of

were those that believe the Earth was flat, we may laugh at them now, but alas!

they were the people that first raise the questions by asking what is the shape of

the Earth?

When the (SMOTE) techniques were invented it may also have been described as

intriguing and revolutionary then, but here I am trying to find solutions to some of

its shortcomings. Therefore this work is not intended to diminish their contributions

at all rather give maximum accolade to these deep thinking scholars. Maybe in some

years to come a new work may emerge onto the scene and provide some correction
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to this work, but before then, I say have an exciting time as you read this thesis

and God Bless!!.

The End.
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Table A.1: Data used in the experiment continue
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Table A.2: Data used in the experiment continue
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Figure A.1: Weka Interface experiment for all features in Pima data using Decision
Tree

 

Figure A.2: Weka Interface experiment for only two features in Pima data using
Decision Tree
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Figure A.3: Weka ROC for DT Wisconsin

 

Figure A.4: weka Glass class1 as1 other0 LR, for minority captured
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Figure A.5: weka Glass class1 as1 other0 LR, for minority captured the ROC

 

Figure A.6: weka Glass class1 as1 other 0 DT-21 minority captured
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Figure A.7: weka Glass class1 as 1 other 0 DT, 0 minority captured

 

Figure A.8: weka Glass class1 as1 other 0, DT 13 minority captured
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Figure A.9: weka Glass class3 as1 other0 LR, 2 minority captured

 

Figure A.10: weka Glass class3 as1 other0 DT SVM, no minority captured
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Figure A.11: Class Distribution Of Yeast Data

 

Figure A.12: weka Interface SVM for Wisconsin
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Figure A.13: weka Interface SVM for Wisconsin-2

 

Figure A.14: wekaYeastclassERL(5)as1othersasclass0(1479) for DT
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Figure A.15: wekaYeastclassERL(5)as1othersasclass0(1479) the ROC for DT
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Figure A.16: wekaYeastclassERL(5)as1othersasclass0(1479) for DT capture 1 Mi-
nority
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Figure A.17: wekaYeastclassERL(5)as1othersasclass0(1479) the ROC Capture 1 for
DT
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Figure A.18: weka Interface for Yeast class ERL(5)as 1 others as class0(1479) for
LR Capture all 5 minority

 

Figure A.19: weka Interface for Yeast class VAC(30)as 1 others as class0(1454) for
DT Capture 0 minority
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Figure A.20: weka Interface for Yeast class VAC(30)as 1 others as class0(1454) for
ROC of DT Capture 0 minority

 

Figure A.21: weka Interface for Yeast class VAC(30)as 1 others as class0(1454) for
SVM Capture 0 minority
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[125] Victoria López, Alberto Fernández, and Francisco Herrera. On the impor-

tance of the validation technique for classification with imbalanced datasets:

Addressing covariate shift when data is skewed. Information Sciences, 257:1–

13, 2014.
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