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APPLICABILITY OF ARTIFICIAL NEURAL NETWORKS TO SQUAT PREDICTION 

OF VERY LARGE AND ULTRA LARGE CONTAINER VESSELS BASED ON 

MEASUREMENTS ON THE ELBE ESTUARY 

B Reiter and T Albers, von Lieberman GmbH, Germany 

F Treuel, Hamburg University of Technology, Germany 

H Jansch, Federal Waterways Engineering and Research Institute, Germany 

SUMMARY 

An artificial neural network approach to squat prediction was implemented and the results were analyzed. Several 

artificial neural networks were created and trained on data for 15 voyages of very large and ultra large container vessels 

that were obtained during a measurement campaign concerned with the dynamic response of vessels on approach to and 

departure from the port of Hamburg. The artificial neural network was able to reproduce the training data with an 

accuracy better than +/- 0.30 m. Training the network on a partial dataset and testing it on a different voyage resulted in 

lower accuracy, with values diverging up to 0.50 m.  

NOMENCLATURE 

AP Aft perpendicular 

BOA Beam over all (m) 

cb Block coefficient (-) 

FP Fore perpendicular 

GNSS Global Navigation Satellite System 

GPS Global Positioning System 

LOA Length over all (m) 

RPM Revolutions per minute (1/min) 

Stw Speed through water (m/s) 

VDR Voyage data recorder 

1 INTRODUCTION 

Artificial neural networks are a family of mathematical 

models within the framework of machine-learning 

models. They are based on a number of interconnected 

units, so-called neurons, which can be trained and 

subsequently used to classify or approximate arbitrarily 

large datasets. With recent advances in computer hard- 

and software their use has become near ubiquitous. 

Examples include, among many others, image 

recognition, biometrics, disease forecasting [1], pre-

diction of estuarine salinity, stock market prediction [2], 

load forecasting for power grids [3], autonomous vehicle 

control and genome sequencing [4].  

Ship squat is an effect that is nonlinearly dependent on a 

number of environmental circumstances. Since artificial 

neural networks have been used successfully to 

approximate similarly nonlinear relationships, their 

application to squat-prediction should be possible.  

To achieve high levels of accuracy and reliability with 

these models a large and comprehensive amount of 

training data is required. During a measuring campaign 

for the German Federal Waterways and Shipping 

Administration (WSV) in cooperation with the Federal 

Waterways Engineering and Research Institute (BAW) 

concerning the behavior of large container vessels during 

their passage of the Elbe estuary Consulting Engineers 

von Lieberman collected a large amount of data 

pertaining to these voyages. These data are used as a 

basis for training several artificial neural networks and 

for evaluation of their performance as predictors for ship-

squat. 

2 DATA 

2.1 DESCRIPTION OF COLLECTED DATA 

During the measurement campaign data for 21 voyages 

of different types of vessels were collected. The vessels 

were selected from 7 classes relevant for the current 

traffic on the Elbe River. For most of these classes, two 

outbound voyages and one inbound voyage were 

surveyed. Among these classes were five classes with a 

vessel length larger than 300 m. This study concentrates 

on these vessels. Table 1 shows an overview of the 

classes with major dimensions.  

Table 1. Classes of vessels 

Class name LOA [m] BOA [m] 

C335 335 42.8 

C347 347 45.2 

C366 366 51.2 

C396 396 53.6 

C400 400 58.6 

Due to operational constraints, one outbound and two 

inbound voyages were observed for the C347-class. 

The data collected on each voyage included  

• GNSS and GPS position measurements of 6

antennae that were attached to the vessels

(4 GNSS antennae, 2 GPS antennae) and

recorded positions with a frequency of 2 Hz and

1 Hz respectively

• Salinity and water flow measurements,

measured from a convoying vessel with a

frequency of about 1 Hz

• VDR recordings of operational parameters (rpm,

wind measurements, rate-of-turn etc.)
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• Vessel dimensions and hydrodynamic 

parameters as described in the stability book 

(draught-dependent measures, derivatives and 

coefficients) 

• Precise determination of actual freshwater 

draught 

 

After thorough validation tests, all time-dependent 

variables were interpolated to 2 Hz and an equal 

timestamp to achieve data consistency and useable time 

series was applied.  

Based on this data collection, additional parameters, such 

as vessel speed and heading, heel, trim and change of 

draft and trim were calculated and included in the 

database.  

 

2.2 SELECTION OF DATA USED FOR NEURAL 

NETWORK DESIGN 

 

Due to different reception conditions, GNSS post 

processing did not always result in positions of an 

adequate quality for a reliable analysis. Possible causes 

for this include atmospheric effects, local sources of 

electromagnetic interference or segments of the voyage 

with limited availability or unfavorable constellations of 

visible satellites resulting in lower quality observations. 

Because the measurements were made on a moving 

vessel, individual measurements could not be repeated to 

improve the quality. This made it necessary to limit the 

datasets that were used for training and analysis of the 

artificial neural networks to a subset of the collected 

data. Therefore, only database records with 4 or more 

available antennae of sufficient quality for position and 

attitude determination were used.  

 

Of similar importance was limiting the data used for 

training to parameters that were not correlated to the 

variables that were to be predicted, i.e. squat at the 

forward and aft perpendiculars. This necessitated 

exclusion of e.g. the under-keel-clearance that was 

obtained from the dataset.  

 

To avoid training the network to recognize only certain 

classes of ships, variables that varied discretely with 

those classes, e.g. ship length and beam, were also 

excluded from the training sets. With the perspective of 

possible future use for immediate squat forecasting 

aboard the vessel an effort was made to consider only 

variables that were both readily available to the ships 

command crew and characteristic for influencing squat 

behavior. 

 

The variables selected for training were 

• Position along river 

• Course over Ground 

• RPM 

• Rudder angle 

• Width of swept track 

• Speed through water 

• Trim angle 

• Heel angle 

• Water depth 

• Water body cross section 

• Draft or cB, alternatively 

 

From these variables a number of combinations were 

tried as input parameters for the network.  

 

Only data sections where all selected variables were 

recorded were used for inclusion in the input data. 

Timespans where vessel interaction and mooring took 

place were excluded from the data as well.  

 

All of the above led to a significant decrease in available 

data points, resulting in a total of slightly over 500,000 

from originally 835,000 data points, amounting to 

roughly 60% of the recorded data, which formed the 

basis for network training and analysis. While these are 

considerably less data than originally collected, it is still 

a large enough amount to expect artificial neural 

networks with a good performance as a predictor. Figure 

1 shows a sample of the data consisting of the parameters 

speed through water, trim and squat at FP for a segment 

of the voyage, plotted against river kilometers. The 

visible gaps in the data are a result of either vessel 

encounters or reception problems.  

 
Figure 1. Squat results (sample) obtained during 

campaign  
 

3 NETWORK ARCHITECTURE, TRAINING 

AND MODEL SELECTION 

 

3.1 INTRODUCTION TO ARTFICIAL NEURAL 

NETWORKS  

 

Since a lot of material is available on the basic concepts 

of artificial neural networks, only a brief introduction is 

provided. A more in-depth introduction can be found e.g. 

in [5].  

An artificial neural network consists of nodes, so-called 

neurons, which are usually organized in different layers. 

Numerical values are passed between these nodes 
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according to specific rules that define the network 

architecture. Each node has an activation function that 

determines its output based on the value of the input. The 

inputs to a node are assigned weights and bias functions 

that are changed during the training phase to optimize the 

network’s output to achieve an accurate representation of 

the training data. The layers are called hidden layers if all 

inputs and outputs to and from these layers are only to 

other layers of the network, as opposed to external inputs 

or outputs of values.  

 

Observed errors between the predicted outcome and the 

provided training outcome are used to adjust the weights 

and biases during the next iteration. Several algorithms 

have been developed for this purpose. After a stopping 

criterion is reached, training is considered to be finished. 

If a division of the available data into a training set and a 

test set was made before training began, the network’s 

performance as a predictor can be estimated by analyzing 

the error that it produces using the test set.  

 

A commonly used type of artificial neural network is a 

feed-forward network. In this network architecture, the 

values resulting from each layer are passed along to the 

next layer, and each sample of the dataset is treated as 

independent of previous or following samples.  

 

Another type of network are recurrent neural networks. 

In this type of network, node values or outputs that were 

obtained from the network can be fed back into the 

network or into network layers as additional inputs that 

augment the samples by conveying information about the 

state of the network during application to the current or 

previous samples of the dataset. This makes it possible to 

use the network for the analysis of time-series, including 

the analysis of time-lagged effects of input parameters. 

To further illustrate this distinction, the treatment of 

RPM in the two network types is given as an example. In 

the regular feed-forward network, the RPM value for one 

sample, i.e. the collection of data for one timestep, is 

passed from the input layer to the hidden layer. In the 

hidden layer, an output is calculated based on these 

values and the weights and activation functions of the 

neurons and passed on to the neurons of the output layer. 

The neurons of the output layer calculate the final output 

for this timestep from these values. Intermediate values 

or the final result of this timestep do not influence the 

treatment of the next sample. Consequently, in this type 

of network, squat is only being influenced by the current 

RPM-value. In a recurrent network, these steps are 

identical, but in addition to the input based on the 

measured data, the outputs of the hidden layer or the final 

results for one timestep can be stored and used as 

additional input variables for subsequent samples. This 

way, previous RPM values can influence the result for a 

later sample. Other network types include e.g. networks 

where the number of nodes per layer is not fixed but 

adjusted during training.  

 

 

3.2 NETWORK ARCHITECTURE 

 

The artificial neural network used in this study was a 

simple two-layer feed-forward artificial neural network 

created using Neural Network Toolbox of MATLAB [6]. 

It consisted of one hidden layer and one output layer. The 

hidden layer consisted of neurons with a hyperbolic 

tangent sigmoid transfer function. The number of 

neurons on the hidden layer was kept constant during 

training, but several networks with a different number of 

neurons on the hidden layer were trained as a basis for a 

comparison between them. The output layer consisted of 

two output neurons with a linear transfer function. The 

outputs of these two neurons were selected to be squat at 

FP and AP, respectively.  

The training algorithm used was the MATLAB default 

Levenberg-Marquardt backpropagation algorithm with 

validation based early stopping.  

 

3.3 NETWORK TRAINING 

 

For training the neural network, different approaches 

were used. The first approach involved training of the 

neural network on a dataset including all voyages. The 

datasets for each training session were split into three 

subsets, the training, validation and test set. Splitting was 

done randomly to create sets with a previously specified 

sample percentage.  

For the second approach, subsets of vessels were created 

that contained only voyages of vessels belonging to one 

class. This was done to arrive at conclusions as to 

whether networks trained on subsets can be used to make 

predictions about different subsets and if networks that 

were trained on two voyages for one vessel type could be 

used to arrive at better predictions for the third voyage 

than networks trained on datasets including different 

vessel classes. The datasets were split in a way similar to 

the divisions for the first approach. Additional testing 

was performed using data not included in the initial 

selection. 

For all approaches the training data were normalized in a 

preprocessing stage to span the interval [-1, +1] to 

improve training performance and avoid numerical 

errors.  

 

3.4 MODEL SELECTION 

 

In terms of artificial neural networks, model selection 

describes the process of evaluating which one of several 

trained artificial neural networks produces the best 

results with regard to the test data. This includes 

comparisons between networks of different sizes, the use 

of different input parameters and different training runs. 

In this study, several networks with different numbers of 

neurons in the hidden layer were tested. In addition, 

different combinations of input variables were used for 

training. Evaluation of the artificial neural networks was 

performed by comparing the results of the network with 

measured squat data. To avoid overfitting the network to 

the training data, an upper limit for the hidden layer was 
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set at 15 neurons. Using less than 10 neurons resulted in 

a decrease in accuracy with no apparent improvement in 

generalization of the network to out-of-sample data. The 

input parameters were chosen to give as adequate a 

representation of possible influences as possible. The 

inclusion of the vessels’ position along the river, for 

instance, was selected to address possible localized 

phenomena that were not covered by the other variables, 

such as river bottom structure or influences of river 

tributaries.The best results on the training set were 

obtained from a network with 10 hidden nodes and all 

input parameters mentioned in 2.2.  

 

4 RESULTS 

 

The study yielded mixed results. While on the one hand a 

good approximation of the observed data was possible 

using the artificial neural network approach, the use for 

predictions on different inputs than those used for 

training resulted in moderate to large errors.  

 

Figure 2 shows a section of the comparison between 

measured and predicted ship squat at FP for the network 

that was trained using all but 15% randomly selected data 

for training. The differences in this section of the data are 

between 0.05 m and 0.10 m. Figure 3 shows a histogram 

of the differences between predicted and measured squat 

at FP for the whole dataset. As can be seen, most 

differences have a magnitude between +0.30 m and -0.30 

m, with the majority lying between +0.10 m and -0.10 m.  

 

 
Figure 2. Comparison measured vs. predicted squat FP 
 

 
Figure 3. Differences between predicted and measured 

squat FP 
 

Figure 4 shows the squat prediction of a network trained 

on data for two voyages of the C400 class for the third 

voyage of this class in comparison to measured squat 

data. The differences in this section of the comparison 

show a wider spread than the differences in figure 1, in a 

range between 0.00 m and 0.25 m. In Figure 5, the 

histogram for these differences shows a spread of the 

differences that is about equal to the spread visible in 

figure 2, but with a different distribution. While squat is 

underestimated for only a few data points and only up to 

-0.15 m, a marked overestimation of the actual squat is 

evident, with a considerable percentage of values more 

than 0.20 m up to 0.50 m larger than the observed values. 

Similar results were obtained for different classes and 

inter-class comparisons. 

 
Figure 4. Comparison measured vs. predicted squat 

FP, C400 

 

 
Figure 5. Differences between predicted and measured 

squat FP, C400 
 

5 DISCUSSION OF RESULTS 

 

One cause for the failure to accurately predict squat for 

voyages other than those on which the network was 

trained were parameters with values outside of the range 

on which the network was trained. For example, vessels 

with drafts larger or smaller than the drafts included in 

the training data showed squat behavior that differed 

markedly from the squat predicted by the network.  

 

Another possible cause for the failure to accurately 

predict squat may have been a non-optimal choice of 

input parameters, by neglecting other influences on squat 

behavior, such as e.g. immersed ship cross-section or 

different ship specific parameters.  
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6 OUTLOOK 

 

To further investigate the applicability of artificial neural 

networks in the context of squat prediction a number of 

additional approaches to network design should be tried. 

One approach the authors plan to pursue is the use of 

recurrent artificial neural networks in order to cover 

possible time-delayed influences. Additionally, different 

selections or other combinations of input parameters will 

be considered and their influence investigated, e.g. the 

use of Froude-numbers.  

 

Other possible avenues of research include different 

network architectures with additional layers or only 

partially connected layers, separate networks for squat 

prediction at the individual perpendiculars or using 

several networks for prediction and averaging their 

outputs.  

 

The inclusion of different types of vessels in the future is 

also desirable. However, this would be dependent on the 

procurement of an adequately large database containing 

possible training data for individual ship types. A first 

step in this direction could be testing the models on data 

acquired for bulk-freighters in the context of the squat-

study this paper is based upon. However, the cb-values of 

those ships lie far outside the values that were available 

for training the container vessel model, which makes a 

direct applicability of the model for those vessel types 

rather unlikely.  

 

After a sufficiently accurate artificial neural network 

model has been found, knowledge discovery techniques 

for neural networks could be utilized. A first approach 

could involve gradually reducing the input parameters 

until a good prediction is still possible, in order to 

determine the main factors influencing the prediction of 

squat behavior in the context of these artificial neural 

networks.  

 

7 CONCLUSIONS  

 

While this study highlighted some of the difficulties of 

using artificial neural networks for the prediction of ship 

squat, the authors remain optimistic about the potential of 

this family of machine learning models. With the 

artificial neural networks that were created and trained 

during this study, Squat prediction with an accuracy of 

0.5 m could be achieved in a large number of cases. This 

kind of accuracy must be considered insufficient for 

practical applications; it is however an encouraging result 

considering the simplicity of the model used in this 

study. Further refinement of the network type, 

architecture and input parameters is expected to improve 

prediction accuracy.  
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