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ABSTRACT 

Ships have been getting larger and deeper, and simultaneously the installed 

power of main propellers and bow thrusters has increased. These changes improve 

the manoeuvrability, but also result in considerably higher flow velocities in the 

induced jets. Because the bottom of harbour basins are often not designed for these 

extreme velocities this can lead to bottom erosion and possibly failure of berthing 

structures. This paper will discuss the procedure for designing complex new 

berthing facilities as presented in the new PIANC report on this subject. 

Introduction 

Marine transport is constantly increasing in scale in order to comply with the 

ever-changing demands of the international market. Ships are becoming larger and 

deeper, and to facilitate proper manoeuvring most are equipped with main propellers 

and bow thrusters. As a result of the increase in size and engine power of the 

propulsion systems the flow velocities have increased considerably. Because the 

bottom of harbour basins are often not designed for these extreme velocities this can 

lead to bottom erosion and possible failure of berthing structures (Figure I). Because 

of awareness of damage to existing harbour infrastructure and to provide guidance 

for properly designing future harbour facilities PIANC (Permanent International 

Association of Navigation Congresses - www.pianc-aipcn.org) installed a 

committee to prepare new guidelines for the design of berthing structures related to 

thrusters. The new guidelines (PIANC, 2010) give an overview of modem berthing 

structures, thrusters, berthing and departures procedures, the design philosophy, 

procedures to estimate the flow velocities in the thruster jets, and methods to 

determine size and extent of bottom protection or to estimate the depth of scour 

holes. The report replaces an older PIANC report (1997); see also Sas et al (20 10). 

This paper will discuss various aspects related to the design of complex new 

berthing facilities. 
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Figure 1. Observed erosion in front of a quay wall 

Quay structures 

There are many different berth structures in use throughout the world with 

water depth at the quay up to 20 m. Berth structures can be characterized in two 

main groups according to their relevance for the impact of thrusters and main 

propellers as follows (Figure 2) : 

A) Solid Berth Structures: 

• Sheet pile structures, and 

• Gravity structures 

B) Open Berth Structures 

gravity structure 

Sheet pile 

anchored sheet pile 

structure 

Pile 

Figure 2. Schematised examples of berthing structures 

The scour problem related to Solid Berth Structures is limited to erosion of 

the bed material in front of the structure, whereas scour related to Open Berth 

Structures is more complex and can include: 

• scour around the piles in particular those near the berthing face, and 

• scour of the slope underneath the quay, even up to the top. 

Although scour can occur near berth structures due to natural currents as 

well, berth structures are specifically vulnerable to scour caused by vessel's main 

propeller action and thrusters. Especially during berthing and unberthing, eroding 

forces on the seabed in front of the berth or on the slope underneath the berth can be 

substantial. Resulting current velocities due to the action of the main propellers or 

thrusters can reach up to 8 mls near the bed, while for example the tidal current is 

typically limited to around I or 2 mls. 
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Propulsion systems 

Container vessels, RolRo vessels and ferries are known to be major 

contributors to erosion near berths. These ship types can be equipped with (Figures 3 

and 4): 

• Main propellers at the ship's stem: conventional propellers, azimuthal 

systems (diameter up to 10 m) 

• Thrusters (diameter up to about 3 m) 

• Water jets (outflow opening about I m) 

The advantages of azimuthal systems lie in the capacity for rotating the pods, 

providing 3600 for maneuvering purposes. The total power can reach 25 MW. 

bow thruster water iet 
Figure 4. Examples of thrusters and water jets 

Thrusters are placed in a smooth tunnel near the bow in single or twin units 

in different frames, taking in water from one side and expulsing it out the other. 

They are very useful for turning maneuvers without tug assistance. This subtype is 

usually called bow thruster when located near the bow, or stem thruster in other 

positions (aft). Transverse thrusters lose their efficiency at sailing speeds above 2 

knots. The power of these systems can reach 4 MW. 

Fast ferries are often equipped with water jet systems. Sea water passes 

through a nozzle where an axial pump is located. A considerable jet of water is 

impelled backwards through the aft pipe system. These jets are usually installed in 

pairs. Maneuvering is very easy when one jet is pushing forward and the other 

pulling backward. The installed power of these systems can reach 26 MW. 
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Design philosophy 

The main distinction in design philosophies is between (Figure 5): 

A. Design to protect the bottom in front of the structure in order to avoid 

scour, or 

B. Design to protect the structure in order to avoid negative impacts to the 

structure resulting from scour 

Although in both cases the ultimate goal and result is the protection of the 

structure, in some cases the designer could decide to accept anticipated scour near 

the structure but secure the structural integrity in a different way, which in certain 

cases may be more cost-effective and suitable. It may be more effective and 

appropriate to design the structure for greater depths taking into account that deep 

scour holes may develop in front of it, than it would be to put all focus of the design 

in avoiding any movement or erosion of bed material. Alternatively, a third option 

of desiogn philosophy could be to focus attention on avoiding scouring forces to 

happen. 

This design philosophy issue is not much different from the usual design 

question what level of damage to accept in order to optimize a design for long-term 

functionality and cost-effectiveness over the lifetime of the structure. The answer to 

that question is highly dependent on the specifics of a situation, and will have to be 

considered by the designer. Relevant factors that will have to be taken into account 

are: 

• 
• 

• 
• 

• 

• 

• 

Cost (for both initial construction as well as maintenance) 

Environmental aspects (considerations related to allowing large movements 

of bed material versus installation of for example a hard bottom protection) 

Options to -and ease of- performing monitoring and any needed maintenance 

Risk to the structure if scour would be more than an acceptable level and/or 

not detected in time 

Impacts and possibility of performing repair work in case damage to the 

structure would occur 

Effects on deepening or other berth modifications potentially required in 

future years 

Any other potential functions of the local bottom (e.g. nearby slopes, buried 

utilities/outfalls, etc.) 

Having made the necessary choices one can start the design. The first step is 

to compute the outflow velocity taking into account the geometry of the quay 

structure, berthing procedure, and etcetera. 

Berthing and departing procedures 

Sailing speed of a vessel during berthing and departure will be relatively low. 

One consequence of this low speed is that the vessel's manoeuvrability is 

significantly reduced and that the vessel cannot rely on the rudder to the same level 

as during regular sailing speeds. For this reason, assistance from tugs and/or bow 

thrusters is commonly used during berthing and departure. In some cases and to 
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some degree a bow thruster can substitute the workings and/or need of a tug during 

berthing or departure. 

Figure 5. Design process 

Main factors in managing a berthing or departure manoeuvre are typically 

wind and current. Either one can apply great force on a vessel during such 

manoeuvres and will be a main driver in determining ultimate need for tugs. A 

certain vessel that may normally depart by use of main propeller and bowthruster 

may require tug assistance if wind or current are strong. Figure 6 shows berths 

layouts with unberthing manoeuvres. 

NaVigation channe 

St<:lmthrvstElf<,nclmain 

pro~lIr l nd\Jcec!erOS lon 

Quay structure Quay structure 

Unberthin wall Unberthin 

Figure 6. Un berthing manoeuvres 

The applied engine power is not constant in time. In the first moments more 

power will be used. Moreover, the impact of the thrusters depends on the stage of 

the unberthing manoeuvre. No good data is available on how long captains use their 

thrusters. Furthermore, it is important to realize that the installed power has 

increased over time but is not specifically designed for berthing/unberthing but also 

for carrying out manoeuvres in turning basins in general. In other words: applying 
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100% of the installed power is a conservative estimate. This is underlined by results 

of questionnaires of the Harbour Authorities of Antwerp and Rotterdam resulting in 

the conclusion that use is typically limited to 75% or less of the installed power of 

the bow thrusters. The same holds true for the main propellers. In general, the 

applied power is: 

• main propellers: !>"PPhed = (10 - 20% ) . Ph,slalled and under strong current 

and wind conditions the applied power may increase to 40% of the installed 

power 

• thrusters: always 100% of installed power, however for very high powered 

thrusters this might be a too conservative assumption 

This requires information on the installed engine power. The ship owner 

should be able to provide this information. Sometimes, the ship dimensions can help 

in selecting a reasonable value, for example for container vessels Roubos (2007) 

presented relations between the ship width Es and the installed power P'lil'lIsle,. as well 

as for the propeller diameter of thrusters as function of the ship width : 

P,hl'lI""" = 83Es -1400 

D'h,.,,"cc = 0.05E, + 0.464 

Roubos also presented relations for the main propeller system of containers 

vessels. It should be noted that nowadays the largest container vessels have engines 

up to 100,000 kW. However, specific equations for all ship types are not available 

and consequently the designer will have to rely on information from the ship owner. 

Flow velocities in thrusters 

In general, jets generated by propulsion systems can be distinghuised from 

submerged free jets. A free jet is defined as the water flowing out of an orifice into 

the surrounding water without any disturbance by lateral boundaries or walls that 

may hinder the spreading of the jet (Albertson et aI , 1950). Main differences are : 

propeller jets have a rotational flow velocity and swirl at the tip of the propeller 

blades which results in a higher turbulence level and a shorter length of the flow 

establishment zone compared to free jets. 

Based on the free jet approach formulas have been derived to compute the 

relevant flow velocities for vertical walls (Schmidt, 1998). The maximum flow 

velocity at the bed in the comer is (Figure 7): 

Vbollom.,h,.,,,"'" = a L 1.9 VO.l''''"SIe'' (_D_x_'_ J-
IO 

with (XL = I for h,lD < 3 
thrllster 

( J

O.33 

with the outflow velocity V = I .15 p" ",,,,,,,,. 
O.,itrus ter D2 

Pw II/rust..:r 

where x, is the distance along the jet axis between outflow opening and quay wall. 
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Above a slope the area for flow propagation will be increasingly reduced by 

the slope and the water level. Research by Schokking (2002) and Romisch (2006) 

founded that: 

V axis.thm'\'rer = 1.OVa.'ltms,cr (_D_
x_'_ J-0033 for I < x,lD'hrustcr < 6 

l/tn/ster 

Va';o'o,"n""" = 2.3 (_D_x_'_ J-OOS25 
flimSier 

for x,lD,hrus'er > 6 

Figure 7. Flow field induced by a bow thruster 

Scour prediction 
The flow velocities induced by a thruster may cause scour if those are higher 

than the threshold value of the bed material. Recently, Romisch (2001) modified 

equations derived by Schmidt (1998) for scour in front of a closed quay wall (Figure 

7) into: 

: =C.,,4.6(: J
2

0

25 
for ~~1.4 

85 cr B el' 

with B = ~ the hydraulic load. Furthermore, the stability criterion Ber = 1.2, the 
vd"gl!. 

relative density /', (= p,lp - 1 where ps is the specific weight of the bed material and 

p is the specific weight of water) and Cm = 0.3 during berthing maneuvers. 

Open quay structures consist of a superstructure built on piles with often, but 

not necessarily, also a slope underneath. The piles form obstacles for the flow 

resulting in contraction between the piles and horse shoe vortices at the piles. 
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Figure 8. Jet impact on the slope of an open quay structure 

The above means that the following situations will have to be considered 

regarding the flow field and the subsequent scour below the quay deck (see Figure 

8): 

• Effect of piles 

• Effect on the slope 

• Effect of oblique jet 

The effect of the slope already has been discussed above, while the effect of 

the oblique jet can be accounted for by a larger distance. Taking into account the 

effect of the piles on the flow will be more challenging. Considering thrusters, in 

most situations the flow direction will be perpendicular to the quay structure. In 

general, the flow velocity directly adjacent to a pile will be about twice the approach 

flow velocity (Breusers et ai, 1977). 

Regarding scour, the pile diameter will be much smaller than the water depth 

allowing the following formula to be used to estimate the final scour depth 

(Hoff mans & Verheij , 1997): 

S, = 2.0b 

with b = pile diameter. 

Mostly, a group of piles supports the superstructure (Figure 9). In those 

cases, the spacing s between the piles is important as is the flow direction. If the 

spacing is larger than about 5b the scour holes of the individual piles do not impact 

each other. If the spacing is less than 5b, particular formulas should be used which 

take into account the different effects (Richardson & Davis, 2001): 

Se = 2.0Kb with K = K grollp K oriemGliO" K shape 

The value of the various K-factors vary between 1.0 and 2.0. 

A case study showing how to deal with scour at open quay structures is not 

available, because to the authors knowledge no particular experiments have been 

done except by Chin et al (1996). They carried out laboratory tests on scour at quay 

structures due to propeller jets (Figure 10) and published the results inclusive the 

following equation for the maximum scour depth So: 
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v: 
Se = O.21DoFo with the densimetric Froude number Fo = ~ 

vdsog/':,. 

where Do is the outflow diameter, Vo the outflow velocity, dso the median diameter 

bed material, g the gravitational constant and /:; the relative density. Note that the 

equation derived by Chin et al differs considerably with the earlier presented 

equations for the scour S since it does not contain the pile diameter b. It makes clear 

that research is required. 
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Figure 9. Definition sketch of piles 
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Figure 10. Results of laboratory experiments (Chin et ai, 1996) 

Conclusions and recommendations 

The new PIANC report "Guidelines for berthing structures related to 

thrusters" presents procedures to design berthing structures taking into 

account modem thrusters, complex quay walls and berthing and departure 

procedures. For solid berth structures, such as gravity walls and sheet pile 

structures, the procedure is straight forward. For open berth structures, such as 

a superstructure built on piles above a slope, a straight forward procedure is 

not available. Based on established well-known design rules for pile structures 
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a procedure is proposed. It is recommended to validate the proposed method 

by carrying out physical tests. Furthermore, it is recommended to collect data 

on the use of thrusters, particularly the duration and percentage of use of the 

installed engine power. 
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