
Conference Paper, Published Version

Rustico, Eugenio; Jankowski, Jacek; Hérault, Alexis; Bilotta, Giuseppe;
Del Negro, Ciro
Multi-GPU, multi-node SPH implementation with arbitrary
domain decomposition

Verfügbar unter/Available at: https://hdl.handle.net/20.500.11970/100905

Vorgeschlagene Zitierweise/Suggested citation:
Rustico, Eugenio; Jankowski, Jacek; Hérault, Alexis; Bilotta, Giuseppe; Del Negro, Ciro
(2014): Multi-GPU, multi-node SPH implementation with arbitrary domain decomposition. In:
9th International SPHERIC Workshop, Paris, France, June, 03-05 2014. Chatou: EDF.

Standardnutzungsbedingungen/Terms of Use:

Die Dokumente in HENRY stehen unter der Creative Commons Lizenz CC BY 4.0, sofern keine abweichenden
Nutzungsbedingungen getroffen wurden. Damit ist sowohl die kommerzielle Nutzung als auch das Teilen, die
Weiterbearbeitung und Speicherung erlaubt. Das Verwenden und das Bearbeiten stehen unter der Bedingung der
Namensnennung. Im Einzelfall kann eine restriktivere Lizenz gelten; dann gelten abweichend von den obigen
Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

Documents in HENRY are made available under the Creative Commons License CC BY 4.0, if no other license is
applicable. Under CC BY 4.0 commercial use and sharing, remixing, transforming, and building upon the material
of the work is permitted. In some cases a different, more restrictive license may apply; if applicable the terms of
the restrictive license will be binding.



Multi-GPU, multi-node SPH implementation with

arbitrary domain decomposition

Eugenio RUSTICO*,

Jacek JANKOWSKI

Bundesanstalt Für Wasserbau

Karlsruhe, Germany

eugenio.rustico@baw.de

Alexis HÉRAULT

Conservatoire National

des Arts et Métiers

Paris, France

& Sezione di Catania

Istituto Nazionale

di Geofisica e Vulcanologia

Catania, Italy

Giuseppe BILOTTA,

Ciro DEL NEGRO

Sezione di Catania

Istituto Nazionale

di Geofisica e Vulcanologia

Catania, Italy

Abstract—We present a restructured version of GPUSPH [4],
[8], [11], a CUDA-based implementation of SPH. The new version
is extended to allow execution on multiple GPUs on one or
more host nodes, making it possible to concurrently exploit
hundreds of devices across a network, allowing the simulation
on larger domains and at higher resolutions. Partitioning of the
computational domain is not limited anymore to parallel planes
and can follow arbitrary, user-defined shapes at the resolution
of individual cells, where the cell is defined by the auxiliary grid
used for fast neighbor search. This allows optimal partitioning
even in the case of complex domains, such as rivers with U-
turns. The version we present also includes many additional
features that have been developed on GPUSPH. Particularly
important are: the uniform precision work by Hérault et al. [13],
which is essential for numerical robustness in the case of very
large ratios between the domain size and particle resolution; a
compact neighbor list, which allows larger subdomains to be
loaded on each device; the semi-analytical boundary conditions
by Ferrand et al. [9], [12], and support for floating objects [14].
All of these features are seamlessly supported in single-GPU,
multi-GPU and multi-node modes.

I. INTRODUCTION

From a computational perspective, one of the most impor-

tant benefits of the weakly-compressible Smoothed Particle

Hydrodynamics (SPH) numerical method is its embarrassingly

parallel nature. This has led to a number of implementations

of SPH for high-performance parallel computing platforms,

most recently focusing largely on Graphic Processing Units

(GPUs) [4], [5] and similar architectures, which have shown to

be very efficient alternatives to traditional CPU clusters both

in terms of performance/price and in terms of performance/

power consumption ratios.

GPUs hold tens of compute units with hundreds of process-

ing elements which operate in parallel to concurrently execute

a large number of instances of computing kernels, the equiv-

alent of standard CPU functions, in a shared-memory model

(all processing elements can access the same global memory),

allowing a well-tuned GPU program to easily perform 100×

faster than equivalent serial CPU implementations.

Limitations in GPU usage are largely determined by mem-

ory occupation, since even the most expensive, compute-

dedicated GPUs are currently limited to 6GB of RAM for

a single device, almost an order of magnitude less than the

amount of memory that can be found on a high-end work-

station. To circumvent this limitation, and to further reduce

runtime, a second level of parallelism needs to be introduced,

by using multiple GPUs connected to the same host CPU.

Multi-GPU usage in SPH has been shown in [8], [10], [11],

and is based on the principle of domain decomposition, where

each device is assigned either a fraction of the total amount

of particles in the simulation, or a section of the computa-

tional domain. Compared to single-GPU programming, using

multiple GPUs introduces a layer of complexity due to the

distributed memory (each device only has access to a fraction

of the entire particle system) and the need to exchange data

between different devices.

In this paper we present an enhanced version of GPUSPH,

that introduces an additional layer of parallelism by allowing

the distribution of the computation across multiple GPUs con-

nected to multiple host machines. To achieve this, the multi-

GPU version of GPUSPH [8], [11] has been restructured,

removing restrictions in the domain decomposition, refactor-

ing data transfers to allow transparent network usage, and

including a number of enhancements such as homogeneous

precision (see Hérault et al. elsewhere in these proceedings)

which are essential to avoid numerical issues in the large-scale

high-resolution simulations which are made possible by the

new opportunity to distribute computations across hundreds

of devices.

We will first present an overview of the general and techni-

cal features of GPUSPH for single devices (section II), which

will provide a basis to introduce the changes necessary to

support multiple devices on one or multiple host machines,

discussed in section III with the implementation details and

technical challenges. Results are presented and discussed in

section IV-B, leading to the conclusions in secion V.







9th international SPHERIC workshop Paris, France, June, 03-05 2014

Fig. 4. Dam-break problem distributed across two devices by a plane which
is not parallel to any of the axis. Particles are colored by device and shaded
by velocity.

Shepard, MLS, γ or SPS computation) are always executed

on internal particles only.

We also recall that Euler kernel barely manages to sat-

urate single GPUs and it is therefore not suitable to hide

the transfers times of positions and velocities of the edge

particles. Exchanging the forces acting on the particles, instead

of their positions and velocities, decreases the amount of

data that needs to be exchanged and allows transfers to be

started concurrently with a part of the Forces kernel. The

computation of the forces is therefore split into two chunks,

the first acting on a fraction of the domain that includes

edge particles, and the second consisting of internal, non-edge

particles only. The latter chunk is executed concurrently to the

exchange of data for the edge particles.

This scheme implies that each GPU must integrate both the

internal and external particles. Due to the very small runtimes

of the Euler kernel, this has no perceivable impact on the

overall simulation performance.

C. Bursts

The mentioned split constraint in the previous versions of

multi-GPU GPUSPH automatically caused the edge cells to

be sorted at the end of the particle array. This does not

hold anymore with the possibility of arbitrary domain splits:

edge particles might end up in a sparse distribution if sorted

according solely to the cell index, which would make them

particularly inefficient to read/write during transfers between

devices.

To maintain an efficient separation between internal and

edge cells, the two highest bits of the particle hash (used

for sorting) encode information about the internal, edge and

external status of each particle, ensuring that particles in the

same spatial condition are kept adjacent in memory: particles

in internal non-edge cells are stored first, followed by particles

in edge cells, followed by external particles.

Although this makes the split policy independent from the

cell linearization, it is still not guaranteed that the internal cells

that are going to be read by a neighbor device are always

consecutive in the particle list. In fact, cells can now have

multiple neighbor devices, and the series of edge cells that two

or more devices need to read might overlap and/or interlace;

on the other hand, making one transfer per cell would bring

excessive overhead.

To address this problem, an optimal list of bursts of cells is

computed according to the current DeviceMap. If two cells are

adjacent in memory and they have the same recipient device,

they also appear in the same burst. Each burst is characterized

by a sending or recipient device id, transfer direction, transfer

scope and cached particle indices, which are updated after each

sort. The transfer scope is either intra-node or inter-node: the

former is enacted directly by a single peer device copy, while

the latter requires explicit send and receive operations with

the underlying network communication library.

This solution allows to perform only the minimal set of

transfers across neighboring devices. With simple split poli-

cies, the optimal set consists of one single transfer. The bursts

sizes and the particle indices are cached and are not exchanged

until their value might have changed.

The same transfer hiding technique used in [11] is still

implemented. Since the second chunk of the Forces kernel is

issued asynchronously with the host, it covers both intra-node

and inter-node transfers scopes. We recall that the technique

of partitioning the workload of a kernel, with the aim of

transferring part of the output data as soon as it is ready, is

often referred to as striping.

D. Network communication

Inter-node communication relies on the widely used MPI

standard. Since GPU-based clusters recently grew in popular-

ity, some MPI implementations started to offer GPU-specific

features. One important feature for applications requiring

frequent data transfers across devices of the same network, as

GPUSPH does, is RDMA (Remote Direct Memory Access)

capability, which allows for zero-copy networking.

Low-level communication libraries need to stage the data in

temporary buffers before sending them to the network adapter.

These data might be in turn need to be staged in an application

buffer as an output from the GPU device, resulting in two host

copies before the actual network communication. RDMA al-

lows the MPI library to fetch the data directly from the device

memory, reducing the host overhead by about one half [6].

GPUDirect is the commercial name of one implementation of

this mechanism between NVIDIA GPU devices and Mellanox

network adapters [7]. MPI libraries supporting this technology

are sometimes referred to as CUDA-aware, and allow GPU

memory pointers to be passed directly to the MPI function

calls.

GPUSPH can optionally exploit the GPUDirect technology

if the underlying MPI library supports it. Our tests relied on

the MVAPICH2 library [1], which was the first CUDA-aware

MPI implementation. However, MVAPICH2 does not currently

support multiple devices per process whe using GPUDirect.

We overcame this limitation by running on each node multiple

single-GPU processes instead of one multi-GPU process. This

comes at the price of doubling the memory usage on host side;

luckily this is not a problem as the major memory limitations





9th international SPHERIC workshop Paris, France, June, 03-05 2014

Weak scaling of

GPUs n. of parts ∆p seconds iterations MIPPS MIPPS/GPU

1 1.6M 0.004 3,300 23,445 12 1.00

2 3.2M 0.003225 4,100 29,485 23 0.96

3 4.8M 0.0028 5,100 34,160 33 0.92

4 6.4M 0.00256 5,700 37,564 43 0.90

5 8.0M 0.00238 6,500 40,691 50 0.83

6 9.6M 0.002234 7,100 43,483 59 0.82

TABLE II
ASSESSMENT OF WEAK SCALING IN THE DAMBREAK3D CASE, WITH STRIPING ENABLED.

Fig. 7. Three-device section (10M particles) of a fish-pass simulation with
50M particles across 16 devices on 8 nodes. Particles are colored by velocity.

with 9 pools plus the inlet and outlet area (Fig. 5). The full

channel is 16m long, while the smallest geometric detail (the

wall thickness) is 0.04m wide. To obtain meaningful results,

we must be able to resolve the smallest details with a sufficient

number of particles (at least 10): we must therefore have ∆p ≤

0.004m, resulting in no less than 50M particles, which is larger

than the amount that can fit even on a high-end device.

The possibility to simulate the Fishpass problem in a

multi-node environment was fundamental for the quality of

the results, which we are still validating against laboratory

measurements. We have run simulations with 50M particles

distributed across 16 devices, with a split roughly correspon-

dent to a pool for each device (Fig. 7). The performance of

such simulations is ≃ 145 MIPPS with naive transfers and

≃ 151 MIPPS with all the optimizations enabled.

Since 12 MIPPS is the average performance of a single

device of one node, the speedup is slightly higher than 12.6×,

with 16× being the theoretical maximum. In this case the

scaling efficiency is ≃ 79%, which is lower than the single-

node multi-GPU efficiency, but still a very satisfactory initial

result. The results suggest that further analysis of the MPI

performance is needed.

We have also run a DamBreak3D simulation with 107

million particles across all the 16 devices of the network and

we could potentially increase this number by tweaking specific

parameters (e.g. tuning the size of the neighbor list to fit the

needs of a specific problem).

V. CONCLUSIONS AND FUTURE WORK

We presented a scalable multi-node, multi-GPU implemen-

tation of the CUDA-based SPH fluid simulator GPUSPH. It

is possible to partition the simulation with an arbitrary split

function, with minimal overlap of neighboring cells.

A smart cell addressing technique ensures that neighboring

cells are compacted in an optimal number of bursts for data

exchanges; this allows for minimal data transfers over the

network as well as across GPUs on the same machine.

Communication overheads are covered overlapping compu-

tations and data transfers. Performance scales almost linearly

with the number of devices, with an efficiency of over 80%

both in terms of strong and weak scaling in single-node

simulations, and over 75% in multi-node simulations.

Multi-node and multi-GPU simulations support the same

feature set of single-GPU ones, including floating objects,

semi-analytical boundaries, SPS viscosity and homogeneous

precision. The latter is particularly important for multi-device

simulations, as it allows problems with almost arbitrarily large

domains and high resolutions, without loss of accuracy.

Since the load-balancing in the previous multi-GPU, single-

node version of GPUSPH is too simple to deal with the

new partitioning opportunities introduced in the multi-node

version of GPUSPH, we are currently working on an advanced

load balancing engine with cell granularity which will further

improve the simulator performance, particularly in the case

of unbalanced topologies or hardware with heterogeneous

computational powers.

REFERENCES

[1] Liu J., Wu J., Panda D.K. (2004) High Performance RDMA-Based

MPI Implementation over InfiniBand International Journal of Parallel
Programming 32(3):167–198.

[2] Rogers B.D., Dalrymple R.A. (2005) Three-Dimensional SPH-SPS Mod-

eling of Wave Breaking, Symposium on Ocean Wave Measurements and
Analysis, ASCE, Madrid.

[3] Green S. (2010) Particle simulation using CUDA. [Online.] Avail-
able: http://developer.download.nvidia.com/compute/
DevZone/C/html/C/src/particles/doc/particles.pdf

[4] Hérault A., Bilotta G., Dalrymple R.A. (2010) SPH on GPU with CUDA,
J. Hydr. Res. 48:74–79.



9th international SPHERIC workshop Paris, France, June, 03-05 2014

[5] Crespo A.J.C., Dominguez J.M., Barreiro A., Gómez-Gesteira M.,
Rogers B.D. (2011) GPUs, a new tool of acceleration in CFD: Efficiency

and reliability on Smoothed Particle Hydrodynamics methods, PLoS
ONE, 6(6):e20685. doi:10.1371/journal.pone.0020685.

[6] Wang H., Potluri S., Luo M., Singh A.K., Sur S., Panda D.K. (2011)
MVAPICH2-GPU: optimized GPU to GPU communication for Infini-

Band clusters Computer Science — Research and Development 26(3–
4):257–266.

[7] Shainer G., Ayoub A., Lui P., Liu T., Kagan M., Trott C.R., Scantlen
G., Crozier P.S. (2011) The development of Mellanox/NVIDIA GPUDi-

rect over InfiniBand—a new model for GPU to GPU communications

Computer Science — Research and Development 26(3–4):267–273.

[8] Rustico E., Bilotta G., Hérault A., Del Negro C., Gallo G. (2012)
Smoothed Particle Hydrodynamics simulations on Multi-GPU Systems

in 20th nternational Euromicro Conference on Parallel, Distributed and

Network-Based Processing PDP, pp:384–391.

[9] Ferrand M., Laurence D., Rogers B.D., Violeau D., Kassiotis C. (2012)
Unified semi-analytical wall boundary conditions for inviscid, laminar

or turbulent flows in the meshless SPH method, Int. J. Num. Meth. Fluids
71(4):446–472.

[10] Domı́nguez J.M., Crespo A.J.C., Valdez-Balderas D., Rogers B.D.,
Gómez-Gesteira M. (2013) New multi-GPU implementation for

Smoothed Particle Hydrodynamics on heterogeneous clusters. Com-
puter Physics Communications 184:1848–1860. doi:10.1016/j.

cpc.2013.03.008

[11] Rustico E., Bilotta G., Hérault A., Del Negro C., Gallo G. (2014)
Advances in Multi-GPU Smoothed Particle Hydrodynamics Simulations,
IEEE Transactions on Parallel and Distributed Systems 25(1):43–52
doi:10.1109/TPDS.2012.340

[12] Mayrhofer A., Ferrand M., Kassiotis C., Violeau D., Morel F.-X. (2014)
Unified semi-analytical wall boundary conditions in SPH: analytical

extension to 3-D, Num. Alg. doi:10.1007/s11075-014-9835-y
[13] Hérault A., Bilotta G., Dalrymple R.A. (2014) Achieving the best

accuracy in an SPH implementation, in 9th International SPHERIC

Workshop

[14] Bilotta G., Vorobyev A., Hérault A., Mayrhofer A., Violeau D., Modeling

real-life flows in hydraulic waterworks with GPUSPH, in 9th Interna-

tional SPHERIC Workshop


