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ABSTRACT 

In order to investigate the hydraulic contact erosion during and after the 
installation of a stone column, model tests were carried out in the laboratory. Under a 

critical hydraulic gradient, some fine soil particles in the subsoil around the stone 
column may be brought into the pore space of the stone column under certain 

conditions. The critical hydraulic gradient not only depends on the type of stone 
columns and the fme grained soils around the stone columns, but also on the stress 

state in the subsoil. Terzaghi's filter criteria (Terzaghi 1948) do not apply to 

determine the critical hydraulic gradient. For the stone columns with a suitable grain 
size distribution the hydraulic contact erosion will not occur, and a geotextile cover 

around the stone column hardly influences the critical hydraulic gradient. The critical 

hydraulic gradient can be estimated by using present theoretical models. 

INTRODUCTION 

Vibro replacement stone columns are commonly used to .improve saturated 
soft subsoil which consists mainly of fine grained soils (Kirsch 1979). A cylindrical 

vibrator penetrates the subsoil to a designed depth at first (Fig. I a). During the 
penetration the subsoil consisting of fine grained soils around the vibrator is 

displaced laterally. Then, a coarse grained material exerting gradually the bottom of 
the vibrator is compacted by means of lateral vibration of the vibrator from the 

designed depth to the top of the ground surface (Fig. Ib). Subsequently a stone 
column made of coarse grained material is constructed in the subsoil (Fig. Ic) . The 

coarse grained material is usually gravel, stone and sand. Through vibration the 
subsoil made of fine grained soils around the stone column is furthermore displaced 

laterally. Through the lateral compression a filter zone can be developed and at the 

same time an excess pore water pressure Ue occurs in the subsoil around the stone 
column (Fig, I d). The measured results in situ have shown that the excess pore water 

pressure can be up to 35kN/m" (Weber 2006). Under the excess pore water pressure 
Uc the displaced subsoil begins to drain radially into the stone column (Fig. Id). The 

hydraulic gradient and the radial seepage force next to the boundary between the fine 

grained soil and the stone column can be relatively high at the beginning of the 

drainage. If the pore size of the stone column is relatively large and the excess pore 
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242 SCOUR AND EROSION 

water pressure is very high, the high seepage force may bring the particles of fine 

grained soil into the pore space of the stone column. That means that hydraulic 

contact erosion may occur at the boundary between the fine grained soil and the 

stone column under the condition of a very high excess pore water pressure. The 

hydraulic contact erosion may lead then to loosening or softening of the subsoil near 

the contact boundary and thus may reduce the bearing capacity of the stone column 

(Weber 2006). 

a) b) 

possible 

loose and l2=' 
soft zone 

filter zone x 

c) d) 

Figure 1. Constructing a stone column and excess pore water pressure Ue 

In order to avoid damage due to hydraulic contact erosion to the subsoil, 

columns can be surrounded by a geotextile (Raithel et al. 2005). The stone columns 

surrounded by a geotextile can also be used to improve the soft subsoil which 
consists of peat or mucky clay (Raithel 2006). The investigations of hydraulic 
contact erosion have shown that the critical hydraulic gradient of hydraulic contact 

erosion is dependent not only on the type of soils but also on the stress state at the 

contact boundary (Zou 1999 and Schmitz 2006). 
In order to investigate the fa ilure mechanisms and the critical hydraulic 

gradient of the hydraulic contact erosion during and after constructing stone columns 
in different soils with and without surrounding geotextile, model tests were carried 

out in laboratory. The experimental apparatus and results are reported in this paper. 

The mechanisms of the hydraulic failure in different soils and the effects of soil types 

and stress states on the critical hydraulic gradient are analyzed. The critical hydraulic 
gradients for different soils and under different stress states were estimated with 

different theoretical models. Some conclusions are made for practical applications. 

EXPERIMENTS 

Materials 

Three coarse grained soils G-l to G-3 were used as the material of the model 
stone columns for the tests. Their grain size distributions are shown in Figure 2. The 

grain size of G-I and G-2 are very uniform. G-3 is a mixture of sand and gravel. 

Their material parameters, i.e. grain size d17 for mass percentage 17%, uniformity 
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coefficient Cu, the minimum and maximum void ratio emin and ema, are listed in Table 

I. The void ratio em in and emax are measured under dry conditions. 

Gr.Jvcl Ston 

100 

90 

C'~Y T 
Fine 

S;" T 
Modlum I Coo.rso Fino I MC:i::

d 
I Coorso Fino I Medium I eoorse CS 

80 

I I I Il c~ . ~ ~ 
11 :r::- I II I 11 

T I Yy,,~ 
I II 1/ 

I I 11 /1 

I 
I a'/: I ~ , I I 

~ ~h1 
I / ~. I 

T 7 

; ~~rr --::::: ~ f l I 
I I J I 

1fT "T ]7 1 I II I I 

'" '" 70 
$ 
~ 60 

~ 50 
Co 

~ 40 

::;; 3D 

20 

10 

0,001 0,01 0.1 10 100 

Grain size in mm 

Figure 2. Grain size distribution 

Table 1. Material oarameters of coarse grained soils 

Material d17 (mm) Cu (-) emax (-) emin (-) ID (-) e (-) 

G-I 9 1.4 0.39 0.27 0,50 0.33 
G-2 18 1.4 0.46 0.33 0,62 0.38 
G-3 0.6 12.5 0.40 0.25 0,53 0.32 

Three fine grained soils CL-I, Pt and CL-2 are used as fine grained soils 
around the model stone columns for the tests. Their grain size distributions are also 

shown in Figure 2. According to USCS classification they are called inorganic clays 
of low plasticity (CL-I), peat (Pt) and inorganic clays of low plasticity (CL-2). The 

organic content in the peat (Pt) is very high. Their material parameters, i.e. liquid 

limit WL, plastic limit Wp, organic content Vorg, effective cohesion c' and effective 

angle offriction <p' base on direct shear tests are listed in Table 2. The liquid limit WL 

and plastic limit Wp of the peat are very high. After the early research results (Zou 

1999 and Schmitz 2006) the critical hydraulic gradient of hydraulic contact erosion 
depends primarily on the strength of the fine grained soil, on the size of the coarse 

grained soil and on the stress state in the fine grained soil. Therefore, the details on 

fine grained fabric are not reported in this paper as important content. 

Table 2. Material parameters of fine grained soils 

Material WL(%) wp(%) Vore (%) c' (kN/m
2

) CD' (0) 

CL-l 27 16 < 1 7.2 31 
Pt 156 78 25 12 20 

CL-2 41 15 3 7.5 31 

The geotextile Type 100/200 from the company HUESKER was used as 

cover surrounding the model stone columns. The effective opening size of the 
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geotextile is 0 90 = 0.2 rnm. The water flow velocity through the geotextile under the 

water pressure head Hw = 50 m is VH SO = 5.10-3 m/s. 

Experimental apparatus and procedures 

All tests were carried out in a specially designed model box (Figure 3). The 

front wall of the model box consists of Plexiglas. The coarse grained soil I to model 

a stone column was constructed in the middle of the saturated fine grained soil 2 

which models the soils around stone columns in situ. The model stone column can be 

surrounded by geotextile (GT) or without geotextile. Above and below the saturated 

fine grained soil two clay layers 3 were laid as a sealing. Both the coarse and 

saturated fine grained soils can be loaded by a pressurized air cushion 4 under the 

pressure cry vertically. Under the pressure p the water in the tank 5 can flow through 

the entrance tube 6, porous plate 7 and the pore space of the saturated fine grained 

soil 2 and the stone column I, and then through the perforated plate 8 into the 

sedimentation tank 9. Afterwards it flows out through the output tube 10. The fine 

soil particles washed out are deposited in the sedimentation tank 9. The vertical 

pressure (stress) cry in air cushion 4 and the pressure p in the water tank 5 can be 

regulated. The length L of flow lines in the fine grained soil 2 is known. With the 

pressure p, the length Lund the unit weight Yw of water the hydraulic gradient i = 

p/(L·yw) in the fine grained soil 2 can be calculated. Prior to testing the fine grained 

soil 2 was saturated. 

Figure 3. Experimental apparatus 

I : model clone column 

2: fine grained soi l 

3: seali ng 

4: air cushion 

5: water tank 

6: entrance tube 

7: porous plate 

8: perforated plate 

9: sedimentat ion lank 

GT: gcotext ilc 

Under a constant vertical stress cry the pressure p in the water tank 5, and the 

hydraulic gradient i can be increased stepwise. The interval of a pressure increase is 

approx. 10 hours. The dry mass I11d of the fine soil particles deposited in the tank 9 

can be determined depending hydraulic gradient i. The discharge q depends on 

hydraulic gradient i and can be determined by measuring the water volume />,. Vw 

flowing through the saturated fine grained soil. If under the pressure p = pcr for a 

constant pressure cry a hydraulic fracture occurs, i.e. a continuous flow canal has 

been formed in the fine grained soil, the discharge q (or the water volume />"V w ) 
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increases evidently and a large amount of fine soil particles are brought into the void 

space of the model stone column, and the corresponding hydraulic gradient is defined 

as critical hydraulic gradient icr. 

Under different pressures CYv and with different soil materials as model stone 
columns and as fine grained soils around the model stone columns, 19 model tests 

were carried out in laboratory. The vertical stress CYv , the length L of flow lines in the 

fine grained soil, the coarse grained materials and the fine grained soils for the 19 
model tests are listed in table 3. The relative density ID and the void ratio e of the 

model stone columns for the tests are shown in table I. 

T bl 3 T a e est proaram an cntIca lye rau d . . Ihd Ii d· c gra lent 

Test- Stone Fine Vertical With L Critical 

No. column grained stress cry Geotextile (em) hydraulic 

soils (kN/m
2

) gradient icr 

1/2 30 16 15/15 

3/4 60 16 35/35 

5/6 G-l/G-2 CL-I 90 No 16 53/53 

7/8 120 16 70/60 

9/10 150 16 90/80 

II G-I 180 16 110 

12/13 60 No IYes 10 55/45 

14/15 G-3 CL-2 90 No 1 Yes 10 75/75 

16/17 120 No IYes 10 85/85 

18/19 Pt 60 No IYes 10 551> 55 

OBSERVATIONS AND EXPERIMENTAL RESULTS 

Observations 

When the pressure p in the water tank 5 which corresponds to the hydraulic 

gradient, was relatively low, seepage occurred in the fme grained soil, but none or 
only a few of fme soil particles have been brought into the pore space of the stone 

column. With the increase of hydraulic gradient more and more fine soil particles 
were seen in the pore space of the stone column (Figure 4). When the pressure p in 

the water tank 5 was relatively high or near the vertical stress CYv , a continuous flow 
canal was formed in the fine grained soil, and a large amount of fine soil particles 

have been brought into the pore space of the stone column. Figure 4 shows the proof 
of an eroded flow canal. The corresponding hydraulic gradient is the critical 
hydraulic gradient icr named above. 

Experimental results 

The increase of the dry mass IIld of the fme soil particles deposited in the tank 
9 with increasing hydraulic gradient i for tests 5 and 6 is shown in Figure 5, for 

example. Because the dry mass IIld deposited in the tank 9 is very low in relation to 

the total original mass which depends also on the height and width of the fme grained 
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soil , a normalized dry mass by the total original mass is not important. At first the 

dry mass iTId increases linearly with the hydraulic gradient. Just below the hydraulic 

gradient icr the dry mass iTId increases very evidently. This means that a large amount 

of fine grained soil has been washed away at the hydraulic gradient icr. The variations 

of discharge q with increasing hydraulic gradient i for tests 5 and 6 are also shown in 

Figure 5. The discharge q also increases linearly with the hydraulic gradient. At the 

same hydraulic gradient icr the discharge q suddenly becomes very high. This means 

that a continuous flow canal has been formed in the fine grained soil. This hydraulic 

gradient icr is the critical hydraulic gradient. It is very clear that just below the critical 

hydraulic gradient icr a continuous flow canal (no flow path) has been formed. 
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Figure 4. Fine soil particles in the stone column and eroded flow canal 
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Figure 5. Dry mass md and discharge q depending on the hydraulic gradient i 

The critical hydraulic gradients icr of the tests are listed in tables 3 and 4. The 

dependence of the critical hydraulic gradient icr on the vertical stress cry for different 

stone column materials (coarse grained soils) and for different fine grained soils, 

with and without geotextile, are shown in Figures 6. Below a low vertical stress crvc , 

e.g. cry < crvc = 80 kN/m
2

, the critical hydraulic gradient icr increases linearly with the 

vertical stress cry, and for the same fine grained soil the critical hydraulic gradient icr 

is independent of the material of stone columns. In this case, the pressure p in the 

water tank 5, corresponding to icr has always been near to the vertical stress cry. The 

vertical effective stress in the [me grained soil was equal to zero approximately. That 

means that a continuous flow canal will occur if the pore water pressure is equal to 
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the vertical stress cry. Therefore, the hydraulic gradient corresponding to the vertical 

stress cry is an upper boundary of the critical hydraulic gradient. 

18/1 9 

55 /> 55 

Above a relatively high vertical stress cryC, e.g. cry > crvc = 80 kN/m
2

, the 

dependence of the critical hydraulic gradient icr on the vertical stress cry deviates from 

the linear relation (Figure 6). In this case, the critical hydraulic gradient icr is lower 

than the upper boundary. Under the same vertical stress cry > cryC the critical hydraulic 

gradient icr is different for different coarse grained soils (Figure 6 a) . The fmer the 

materials of stone colunms are for the same fine grained soil, the higher is the critical 

hydraulic gradient icr. After the early research results (Rehfeld 1967, Zou 1999 and 

Schmitz 2006) the critical hydraulic gradient icr depends on the pore size of coarse 

grained soils. The larger the pore size, the lower is the critical hydraulic gradient icr. 

The grain size of G2 is larger than the grain size of G 1. The pore size of the G2 is 

larger than the pore size of G 1. Therefore, the critical hydraulic gradient icr of the 

stone colunms G2 is lower than that of the stone colunms Gl. Particularly, the larger 

the pore size of coarse grained soils, the lower is the critical vertical stress cryc. More 

details on the influence of the pore size on the critical hydraulic gradient icr and its 

physical mechanisms were reported by Rehfeld 1967, Zou 1999 and Schmitz 2006. 
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Figur e 6. Dependence of critical hydraulic gradient icr on vertical stress cry 

Using G-3 (a mixture of sand and gravel) as the material of the model stone 

colunm, the critical hydraulic gradient icr with and without geotextile is almost 

identical (Figure 6 b). This means that, in this case, the geotextile surrounding the 

colunm does not influence the critical hydraulic gradient icr. If the critical hydraulic 

gradient icr is near the upper boundary, the critical hydraulic gradient is also 

independent on the type of fine grained soils by using G-3 as the material of the 

model stone colunm. 
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The experimental results have indicated that the critical hydraulic gradient ier 

also depends on the length L of the flow lines. More research in that area will be 

necessary to clarify the details. 

THEORETICAL ESTIMATION 

In order to estimate critical hydraulic gradients icc, Rehfeld 1967 proposed the 

theoretical equation (1): 

. c' 
1= - --- ---

cr 4.4. d
p 

• Y,.. · tanqJ' 
(1) 

Where dp is the so-called equivalent pore diameter of the coarse grained soil (stone 

column) and can be calculated with equation (2): 

(2) 

By using the theoretical equations (1) and (2) after Rehfeld 1967 as well as 

the parameters listed in tables I and 2 the critical hydraulic gradients ier are 

calculated and shown in Figures 6, in comparison with the experimental results. 

Because in the theoretical equation (1) the influence of stress state was not 
considered, the calculated critical hydraulic gradient is independent of the vertical 

stress cry. For stone columns G-1 and G-2 and for the fine grained soil CL- l the 

calculated critical gradient ier is lower than the experimental results for cry > 30 and 

50 kN/m
2 

respectively (Figure 6 a). For stone column G-3 and for the fine grained 
soil CL-2 the calculated critical gradient is much higher than the experimental results 

(Figure 6 b). The discrepancy between the experimental data and theoretical results 

may be primarily due to neglecting the influence of stress state. The strength 

parameters c' and <p', the model parameter dp and the model assumption of Rehfeld 
1967 may influence the theoretical results. 

In order to estimate the critical hydraulic gradient ier depending on the 

vertical stress cry, Zou 1999 proposed the equation (3): 

i = _ 2_c'_--.:(""s_-_,;,,--· t_an_qJ,-',"-) _. 0'-,,:..,-' 

a 0.5 ·d
p

• y,.. .(1 +';0 ' tanqJ') 
(3) 

Schmitz 2006 has determined the dependence of the parameters So and 1; in 

equation (3) on the vertical stress cry by means of numerical calculations and 

proposed that the value of the parameter S in equation (3) should be between 0.2 and 

0.6 . Using equations (3) and (2), with the parameters in tables 1 and 2 as well as with 

S = 0.46 the critical hydraulic gradients ier depending on the vertical stress cry are 

calculated, where the parameters So and 1; depending on the vertical stress cry are 
determined according to Schmitz 2006 and are shown in Figure 7. 
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The calculated critical hydraulic gradients icr are shown in Figures 6, in 

comparison with the experimental results. The calculated critical hydraulic gradient 

icr according to Zou and Schmitz depends on the vertical stress crv • For stone column 
G-I and G-2 and for the fine grained soil CL-J the calculated critical gradient icr is 

lower than the experimental results (Figure 6 a). For stone column G-3 and for the 
fine grained soil CL-2 the calculated critical gradient is higher than the experimental 

results (Figure 6 b). The discrepancy between the experimental data and theoretical 
results may be primarily due to material and model parameters . 

To estimate the critical hydraulic gradient accurately, the parameter in tables 

J and 2 as well as the parameters So and S in equation (3) must be determined 

reasonably. 

CONCLUSIONS 

Terzaghi's filter criteria (Terzaghi 1948) are geometric criteria. Therefore 

they do not apply to determine the critical hydraulic gradient. 

If the excess pore water pressure occurring during the installation of a stone 

column is very high, the dissipation of the excess pore water pressure may 
theoretically cause a process of fme grained soil around the stone column moving 

into the pore space of the stone column. The higher the excess pore water pressure is, 

the more fine soil particles are brought into the pore space of stone columns. Under a 
very high excess pore water pressure, a continuous flow canal may occur. Thus, 

hydraulic contact erosion may occur at the boundary between the fme grained soil 
and the stone column. Within our investigations it is checked whether the above 

mentioned processes can occur under conditions of practical relevance. 
The critical hydraulic gradient of the hydraulic contact erosion not only 

depends on the materials of stone columns and the fine grained soil around the stone 

columns, but also on the stress state in the subsoil. The larger the pore size of the 
stone column, the lower is the critical hydraulic gradient. The higher the shear 

strength and the stress of the fine grained soil, the higher is the critical hydraulic 
gradient. For a relatively low stress in the subsoil the critical hydraulic gradient is 

corresponding to the vertical stress crv in the subsoil. If the excess pore water 

pressure in the subsoil is near the vertical stress crv , the hydraulic contact erosion may 
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occur. For relatively high stresses in the subsoil, the water pressure corresponding to 

the critical hydraulic gradient is lower than the vertical stress CJv in the subsoil. 
The measured results in situ have shown that the excess pore water pressure 

is not very high (Weber 2006). If the grain size distribution of stone columns is well 

graded, the strength of the fine grained soils is relatively high and thus hydraulic 

contact erosion will not occur in the subsoil surrounding the stone column. 

If the material of stone columns has a suitable grain size distribution, e.g. 
well graded, a geotextile surrounding the stone column hardly influences the critical 
hydraulic gradient ieT• 

The critical hydraulic gradient for the hydraulic contact erosion can be 
estimated using the theoretical equation (1) or (3) approximately. For an accurate 

estimate of the critical hydraulic gradient, reasonable determination of the model and 

soil parameters in equation (1) and (3) is necessary. 

So far our investigations have shown that contact erosion of soil surrounding 
vibro stone columns has no significant influence for a wide variety of conditions in 

situ. 
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