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1 INTRODUCTION 

The fall velocity of sediment particles, also called the terminal or settlement or more often settling veloci-
ty is one of the most important particle characteristics in sediment transport studies and plays important 
role for the understanding of suspension, deposition, mixing and other physical as well as chemical and 
biological exchange processes. This settling velocity is directly related to the relative flow conditions ex-
isting between the sediment particle and the motion of the water. It depends in a certain form on the size, 
shape, and the surface roughness of the particle and the viscosity of the fluid (Yang, 1996). 

Owing to the fact that sediment transport in rivers is sensitive to the settling velocity of the sedimen-
tary particles, many attempts to estimate the latter , starting with Stokes in (1851) and followed by, 
among others, Oseen (1927), Rubby (1933), Rouse (1938), Zanke (1977), Yalin (1977), Hallermier 
(1981), Dietrich (1982), Van Rijn (1989), Concharov [cited in Ibad-zadeh 1992], Julien (1995), Cheng 
(1997), Brown and Lawler (2003) and She et al. (2005), who all developed empirical or semi-empirical 
relations for estimating the settlement velocity of sediment particles. In a useful attempt, the US Inter-
agency Committee on Water Resources (1957) summarized the data obtained by several researchers by 
that time and published a graphical relation to estimate the drag coefficient which, subsequently, allows to 
calculate the fall velocity (Vanoni, 1957). 

More recently, Jimenez and Madsen (2003) presented a simple formula to calculate the fall velocity of 
natural particles with grain sizes ranging between 0.063 and 1mm. these authors thencompared their for-
mula with several other empirical formulas proposes by the references cited above and showed performed 
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ABSTRACT: One of the most important problems in irrigation canals is sedimentation of floating parti-
cles which, in the long-run may inhibit the canal's flow debit. Up-to-date the sedimentation science argues 
about the proper laws that govern the physics of the sedimentation process, namely, the settling velocity 
vs of a particle in a fluid flow, which is very dependent on the interaction between the fluid (e.g. water) 
and the sediment. Although the fundamental law describing this settling velocity, i.e. Stoke's law, has 
been known for quite some time, many scientists have been working in this field since then to come up 
with more precise descriptions of the sedimentation process. One essential key to do this properly is the 
exact definition of the physical properties of the fluid (water) and of the solid particles. In this study, eight 
related equations describing the settling velocity vs of a particle in a fluid have been studied and compared 
to each other. More specifically, for each of these eight equations, vs as a function of the diameter ds of 
the sedimentary particle has been computed for water temperature of 20

o
C. The range of ds from 0.005 

cm to 1 cm has been divided into three separate categories. Polynomial regression models of second order 
are fitted to the mean theoretical fall velocities in each diameter category using classical- and weighted 
least squares, with the latter allowing to better incorporate the heteroscedastic errors into the model. Very 
good model fits as indicated by R

2
 > 0.99, but more clearly, by low values of the AIC are obtained. Final-

ly, to generalize the results to other temperatures, linear corrections to the regression predictors of the fall 
velocities are proposed. 
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where CD= drag coefficient that is a function of Re and shape factor (Sf) - Sf = 0.7 for natural sediment 
particles -, vs= fall velocity(cm/s), ρ = mass density of water, and A= projected area of particle in direc-
tion of the flow. 

34
( )

3
W B sF F r gπ ρ ρ− = −  (3) 

where r = Particle radius, and ρs, ρ densities of sediment and water, respectively. 
The fall velocity is then calculated from Eqs. 2 and 3: 
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where, ds = 2r, the diameter of particle. 
Once the drag coefficient has been determined, the fall velocity can be calculated. Stokes (1851) de-

rived an expression for the drag force FD on a small spherical particle – with particle diameter ds equal to 
or less than 1mm – for Re<<1 (sub-laminar or creeping flow) by solving the Navier-Stokes equations 
(Graf, 1971) and came up with the famous Stokes' law: 

.2 24
6

Re

Eq

D s DF rv Cµπ= → =  (5) 

and putting this in Eq. 4 results in 

2( 1) /18s s sv g G d µ= −  (6) 

where μ= the dynamic viscosity of the fluid (N·s/m²) and Gs =
ρsρ  is the specific gravity of soil ~ 2.65. 

Both the density and the dynamic (i.e. also the kinematic viscosity ν=μ/ρ) of water are functions of the 
temperature (Streeter and Wylie, 1985). The kinematic viscosity is calculated by (Yang, 1996).  
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where T= temperature in 
o
C. The range of variations of these water characteristics is shown in Table 1. 

 
Table 1. Water characteristics 

ν (m
2
/s) μ (N-s/m)

2
 ρ (kg/m

3
) T (

o
C) 

1.785 * 10
-6

 1.781 * 10
-3

 999.8  0 

1.306 * 10
-6

 1.307 * 10
-3

 999.7  10 

1.003 * 10
-6

 1.002 * 10
-3

 998.2  20 

0.800 * 10
-6

 0.798 * 10
-3

 995.7  30 

0.658 * 10
-6

 0.653 * 10
-3

 992.2  40 

3 EMPIRICAL EQUATIONS FOR THE FALL VELOCITY  

As stated in the previous section, Stokes law is valid only for a small range of particle sizes and sub-
laminar flow (Re<<1). When Re is greater than 1, no explicit closed relationship exists anymore, so that 
one must rely on one of the many empirical formulae established over more than a century by the various 
researchers referenced in the introduction. Among these we analyze further in this study the experimental 
relationships for the fall velocity as listed in Table 2. The range of particle diameters investigated in the 
following is 0.005 to 1 cm and the shape factor Sf - defined as Sf = c/(ab)

1/2
 , where a,b,c, are the major 

axis of an equivalent ellipsoid, i.e. Sf = 1 for a spherical particle - has been fixed to 0.7, i.e. the value rec-
ommended by Wu and Wang (2006), as discussed earlier.  

Once the fall velocity vs has been calculated for all particles diameters ds for an individual water tem-
perature, the mean fall velocity 𝑥̅ for each ds obtained with the eight relationships is computed. To ac-
count for the often large differences in the theoretical predictions by some of the formulae, outlier data is 
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determined by a Boxplot method and subsequently eliminated in the classical least squares polynomial 
regression. 

 
Table 2. Experimental relationships for fall velocities in water as a function of particle size and water viscosity 

Author Equation 

Stokes (1851) vs = g(Gs-1)ds
2 / 18 ν Re<< 1 

Rubby (1933) 

vs = F [ds g(Gs-1)]
0.5

 

F = [ 2/3 + (36ν2
/ g(Gs-1) ds

3
) ] 

0.5
 – [36ν2

/ g(Gs-1) ds
3
]  

ds > 0.02 cm 

Zanke (1977) 
vs = (10 ν / ds) [(1+ 0.01 g(Gs-1) ds

3/ ν2
)

0.5
 – 1]  

0.1mm ≤ ds ≤ 1mm 

Cheng (1984) 
vs = ( ν / ds ) [ (25+1.2D*

2
)

0.5
 - 5 ]

1.5
 

D* = ds [g(Gs-1) / ν2
]

1/3
 

Van Rijn (1989) 

vs = g(Gs-1)ds
2
 / 18 ν      ds < 0.01 cm 

vs = 1.1 (g(Gs-1) ds)0.5      ds ≥ 0.1 cm 

vs = (10 ν / ds) [ ( 1 + 0.01 D*
3
)

0.5
 – 1 ]  0.01≤ ds < 0.1 cm 

Zhang (1989) vs = [(13.95 ν/ ds)
2
+ 1.09g(Gs-1) ds]

0.5
 – 13.95 ν/ ds 

Julien (1995) vs = (8 ν / ds) [(1 + (0.222 g(Gs-1) ds
3) / 16ν2

)
0.5

 – 1] 

Soulsbey (1999) vs = (10.36 ν / ds) [(1 + (0.156 g(Gs-1) ds
3
 ) / 16ν2

)
0.5

 – 1] 

D*= dimensionless particle coefficient 

4 DATA ANALYSIS 

4.1 Boxplot outlier test 

In a boxplot, introduced by Tukey (1977), the main elements are the median, the lower quartile (Q1) and 
the upper quartile (Q3). The boxplot contains a central line (median) and extends from Q1 to Q3. Cutoff 
points, known as fences, lie at 1.5 (Q3-Q1) below the lower quartile and above the upper quartile define 
the lower and upper limit of fences, LIF and UIF, respectively, i.e. 

1 31.5 , 1.5LIF Q IQR UIF Q IQR= − = +  (8) 

where the inter quartile range IQR is equal to Q3-Q1. In the present study, when using ordinary least 
squares regression, 37 data points (equal to 5% of the total data) have been eliminated by the outlier test. 

4.2 Least Squares (LS) and Weighted Least Squares (WLS) regression methods 

The goal is to fit the theoretical predictions of the various Stoke’s formulae for the fall velocities v (=y) as 
a function of the particle diameter d (=x) by more generally usable simple polynomials of order two: 

2

0 1 2i i i iy x xβ β β ε= + + +  (9) 

This equation can be written in matrix notation as 

y X β ε= +  (10) 

where X is an N x 3 predictor matrix whose three columns consist of (1, xi 
2

, xi
3
) (i = 1,..,N), β is the vector 

of unknowns and ε is a random error vector, assumed to be normally distributed, with expectation E(ε)=0 
and a variance matrix ψ = Vσ2

, where V is a diagonal matrix (i.e., the errors are uncorrelated) and σ2 
is an 

unknown common variance. This means that ε~𝑁(0,𝑉𝜎2). Such an error distribution is called heterosce-
dasdic (Beck and Arnold, 1977) and this is often not taken care of in regular least squares. In such a case, 
the classical least squares estimator (see Eq. 15, later) is then not any more a BLUE (best linear unbiasted 
estimator), i.e. not optimal (Beck and Arnold, 1977). 

720



In fact, the general linear model (10) for the unknown parameters β is solved by a least-squares ap-
proach (Draper and Smith, 1998). However, because of the heteroscedasticity, ordinary least squares is 
not valid, so that the maximum likelihood estimation (MLE) method must be applied (DeGroot and 
Schervish, 2002). In MLE the probability density function f(β,Y), i.e. the likelihood function L(β,Y) , is 
maximized or, more conveniently, its logarithm is ln f(β,Y) = ln L(β,Y) is minimized. For the estimation 
problem (10) and the statistical assumptions ln L(β,Y) can be written as (Beck and Arnold, 1977): 

1
ln ( , ) ln ( , ) ln(2 ) ln

2
MLL Y f Y N Sβ β π ψ= = −  + +    (11) 

where SML is the function to be minimized by the linear model: 

1( ) ( )T

MLS Y X Y Xβ ψ β−= − −  (12) 

As the first two terms in Eq. (11) are constant, its minimization is equivalent to minimizing Eq. (12) 
which results in the general heteroscedastic ML least squares estimator: 

1 1 1( )T T

MLEb X X X Yψ ψ− − −=  (13) 

or, with ψ = Vσ2
 , in the so-called weighted least squares estimator: 

1 1 1( )T T

WLSb X V X X V Y− − −=  (14) 

wherefore the elements of the diagonal matrix V
-1

 are associated with the weights wi of the observations. 
For the case that the weights wi are equal (=1), Eq. (14) becomes the ordinary least squares estimator: 

1( )T T

LSb X X X Y−=  (15) 

Both weighted (WLS) and ordinary (LS) least squares fitting will be applied to the means 𝑥̅𝑖 of the fall 

velocities predicted by the various Stokes formulae (usually seven or eight) in Table 1. For WLS the 

weights 𝑤𝑖 are set to 𝑤𝑖 = 1/𝑠𝑖2 , where 𝑠𝑖2 are standardized variances of the mean velocities, estimated 

by 𝑠𝑖2 =
∑ (𝑥𝑖𝑗−𝑥̅𝑖)2𝑛𝑗=1𝑛−1 /𝑥̅𝑖2 , and n is the number of formulae used to compute the mean 𝑥̅𝑖 of a velocity. 

The WLS- and LS- fitting models have been programmed in the R
®
 statistical environment. For the se-

lection of the optimal polynomial model, as well as for the comparison of the two model approaches, the 
coefficient of determination R

2
 – which often does not work well for heteroscedastic models (Beck and 

Arnold, 1977) – and the Akaike’s information criterion (AIC) (Akaike, 1974) are used. AIC is defined as 

2 2lnAIC k L= −  (16) 

where k is the number of estimated parameters in the model and ln L is as above. By minimizing the AIC, 
models with more parameters which always result in better fit, i.e. smaller residuals, are penalized. 

Once the polynomial coefficients have been determinded by the two least squares methods, 90% - con-
fidence intervals for the predictors 𝑦𝑖𝑝𝑟𝑒𝑑 are computed by (Draper and Smith, 1998) 

2 1 1

0.05, ( 1) ( )pred T T

i N k i iCI y t s x X V X x− −
− −= ± ∗  (17) 

where xi denotes the predictand, and s
2
 =  𝑆𝑀𝐿/(𝑁 − 𝑘) is the residual variance of the model fit. 

As it was not possible to fit the whole the diameter range 0.005 cm<ds ≤1cm of the various Stoke for-
mulae by one polynomial curve, the regressions were carried out for three separate diameter categories -
0.005cm ≤ds≤ 0.01cm, 0.01cm<ds≤ 0.1cm and 0.1cm<ds ≤1cm-. Moreover, since the fall velocity depends 
on the water temperature (Interagency Committee, 1957), all regressions are done for the reference tem-
perature of 20

o
C. After that, the regressed velocities are linearly corrected for other temperatures. 

5 RESULTS AND DISCUSSION 

For 20
o
C water temperature, the fall velocities as a function of the particle diameter are calculated by the 

eight relations given in Table 1, wherefore the specific formula restrictions as noted in the table have been 
respected, so that for some diameters the fall velocity could not be calculated by all eight relations. Next, 
iutlier velocity data for a particular diameter are determined by the Boxplot test (Eq, 8) and thus eliminat-
ed from the subsequent regression analysis. 
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The left panels of Fig. 2 show the fall velocity points generated in this way for the three particle size 
categories, as discussed. For each category the mean data for each particle size has been calculated and a 
regression line is fitted to this mean data by LS and WLS where, moreover, the constant term 𝛽0 in Eq. 
(9) has been omitted in the least squares regression. 

 

 
Figure 2. Left panels: Empirically computed velocities (Table 1) for the three diameter categories. Right panels: Mean veloci-

ties with +- standard deviation segment, regression curve and 90% confidence lines for the corresponding catego-
ries. 

 
Table 3. Statistical results of LS- and WLS polynomial regression model for fall velocities for T=20

o
C 

Diameter interval Method 
Equation 

vs= b1 ds + b2 ds
2
 

R
2
 AIC sd(b1) sd (b2) 

0.005cm ≤ ds ≤ 0.01cm 
LS vs= 8.32 ds + 6583 ds

2
 0.99 - 20.68 3.74 443.0 

WLS vs= 8.53 ds + 6544 ds

2
 0.99 -20.93 3.63 416.7 

0.01cm < ds ≤ 0.1cm 
LS vs= 158 ds - 415.9 ds

2
 0.99 -1.84 3.70 45.55 

WLS vs= 163 ds - 473.5 ds

2
 0.99 -8.74 2.21 31.17 

0.1cm < ds ≤ 1cm 
LS vs= 78.0 ds - 39.36 ds

2
 0.99 40.91 3.98 4.90 

WLS vs= 84.8 ds - 47 .45 ds
2
 0.99 45.71 4.41 5.84 
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The results of the polynomial regression analysis are summarized in Table 3. Based on the values of R
2
 

which, as mentioned is not always a good indicator of the goodness of a regression fit, and better, the 
AIC, the best polynomial is highlighted for each diameter category. Also indicated are the standard-errors 
of the two estimated regressors  𝑏1 and  𝑏2. The corresponding p- values indicate that these regressors are 
statistically significant, particularly, for the second and third diameter groups which encompass more data 
than the first one.  Table 3 indicates also that for the first two diameter categories WLS provides better 
results than LS, whereas for the last category the opposite is true. However the differences appear to be 
only minor.   The selected polynomial regression lines are shown, together with the lower and upper 
confidence lines (Eq. 17), in the right panels of Fig. 2. Also plotted are the error bars, indicating the 
standardized (normalized) standard deviations si of the mean fall velocities, i.e. the predictors. 

 

 
Figure 3. Left panels: Regression residuals for the three diameter classes. Right panels: Corresponding normal Q-Q plots. 

One can notice that these are becoming steadily larger with increasing particle diameter or fall velocity, 
i.e. heteroscedasticiy is clearly present in the data. 

For further model verification residual plots and Q-Q normal plots are shown in Fig. 3. The residual 
plots, namely that of the largest diameter category, shows variations which might be further evidence for 
the heteroscedasticiy , with E(ε) = 0, but with no specific trend. The Q-Q plots indicate that the assump-
tion of normally distributed errors ε~𝑁(0,𝑉𝜎2) is true. Thus, the theoretical statistical properties of the 
MLE, namely, unbiasedness and minimum variance (Draper and Smith, 1998) appear to be guaranteed. 

As the previous regression analyses of the fall velocity have only been carried out for a water tempera-
ture of 20

o
C, corrections for other temperatures have been done by a linear adjustment. More specifically, 

for temperatures T other than 20
o
C, the fall velocity 𝑣𝑠𝑇is calculated by 

20T

s sv v v= +  (18) 

where 𝑣𝑠20 is the velocity for 20
o
C water temperature and ∆v is the correction coefficient, which is com-

puted from the difference of the theoretical mean velocity (Table 1), with the corresponding temperature 
T, and of the 20

o
C- regression predictor (Table 3). 

The results obtained for ∆v as a function of the particle diameter are listed in Table 4 for temperatures 
T= 0, 20, 30 and 40

o
C. Values for other temperatures may be estimated by linear interpolation. 
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Table 4. Fall velocity correction coefficient ∆v as a function of the particle diameter for different temperatures. 

ds(cm) T=0
o
C T=10

o
C T=30

o
C T=40

o
C ds(cm) T=0

o
C T=10

o
C T=30

o
C T=40

o
C 

0.005 -0.09 -0.05 0.05 0.09 0.09 -0.75 -0.31 0.22 0.37 

0.006 -0.12 -0.07 0.07 0.15 0.1 -0.61 -0.25 0.17 0.3 

0.008 -0.22 -0.11 0.1 0.23 0.2 -0.39 -0.16 0.11 0.19 

0.01 -0.3 -0.16 0.17 0.33 0.3 -0.3 -0.12 0.08 0.15 

0.02 -1.01 -0.44 0.36 0.65 0.4 -0.25 -0.1 0.07 0.12 

0.03 -1.06 -0.46 0.36 0.65 0.5 -0.21 -0.09 0.06 0.11 

0.04 -1.06 -0.45 0.34 0.6 0.6 -0.19 -0.08 0.05 0.09 

0.05 -1 -0.42 0.31 0.54 0.7 -0.17 -0.07 0.05 0.09 

0.06 -0.94 -0.39 0.28 0.49 0.8 -0.16 -0.06 0.05 0.08 

0.07 -0.87 -0.36 0.25 0.44 0.9 -0.15 -0.06 0.04 0.07 

0.08 -0.81 -0.33 0.23 0.41 1 -0.14 -0.06 0.04 0.07 

 

6 CONCLUSIONS 

The analysis of sediment transport in river engineering problems, such as sedimentation in river courses, 
morphological changes of river banks, designing the settling basins of water conveyance networks, and 
sedimentation of dam reservoirs, needs suitable relations to estimate the fall velocity vs of sediment parti-
cles. This fall velocity of a particle in a fluid is computed from a force equilibrium, i.e. in which the sum 
of the gravity-, buoyancy- and fluid drag force are equal to zero. The fall velocity depends on the density 
and viscosity of the fluid, and the density, size (diameter ds), shape, and surface texture of the particle. 

In this study eight of the most important relations developed over a period of more than a century for 
the fall velocity for a range of particle sizes have been evaluated. A mean fall velocity from these pro-
posed relationships is computed and these have been used, after elimination of outliers by a boxplot 
method, to develop new, but simple, second order polynomial equations for vs (ds). Both, classical least 
squares and a maximum likelihood method have been employed, wherefore the latter allows the incorpo-
ration of the heteroscedascity of the model errors by a weighted least squares approach, so that the esti-
mator should theoretically be more reliable. For both methods, very good adjustments of the “observed” 
mean velocities by the polynomial regressions are obtained, as measured by R

2
 of 0.99, but more distinct-

ly, by low values of the AIC. We advocate to use these regression equations in future applications of sed-
iment transport as discussed above, as they truly represent a distillation of the many historical, sometimes 
confusing, empirical relationships between settling velocity and particle size. 
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