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1 INTRODUCTION  

Turbulence and induced secondary flow field in 

the form of vortices around the bridge elements 

are considered to be the main cause of local scour. 

So, it has been investigated intensively in the last 

years both experimentally and numerically (e.g. 

Zanke 1982, Muzzammil and Gangadhariah 2003, 

Unger and Hager 2007, Dey and Raikar 2007, 

Kirkil et al. 2008, Link et al. 2008a, Gobert et al. 

2009, Kirkil et al. 2009). While most of these arti-

cles focused on scouring around circular pier in 

sand beds, only very few studies on scouring 

around non-circular piers in gravel bed are avail-

able in the literature. Raikar and Dey (2005a, b) 

presented experimental results on scour in uni-

form gravels, analyzing the effect of gravel size 

and gradation on equilibrium scour depth. In both 

mentioned studies, it was concluded that 

significant differences in scour are expected 

depending on the sediment type i.e. sand or 

gravel. Diab et al. (2009) presented experimental 

measurements of the distribution of time-averaged 

velocity components and flow vectors around a 

square pier in gravel. 

In this article, experimental investigation of 3D 

turbulent flow field around a square cylinder in a 

plane bed and an equilibrium gravel scour-hole is 

presented.            

2 EXPERIMENTATIONS 

Experiments were carried out in a large laboratory 
flume with 37m length, 2 m wide and 1 m deep. 
The flume has glass side-walls 26m long that help 
to observe and monitor the flow and sediment 
transport. A plexiglas square pier 0.20x0.20m, 
side facing the approaching flow,  was mounted in 
the middle of a working section located 16 m 
downstream of the flume entrance and having a 
length of 4 m, width of 2 m and depth of 0.55 m. 
A false bottom made of concrete plates was in-
stalled to avoid the filling of the whole flume with 
sediment. The plates rested on bricks, 0.5 m above 
the original flume bottom. The sides of the work-
ing section were coated with absorbing material to 
avoid secondary flow. 
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The employed bed material was gravel with 
grain sizes ranging between 2.25 and 4.00 mm 
and a sediment size for which 50% of the sedi-
ment is finer, d50 of 3.25 mm. The natural repose 
angle of sediment particles φ  was 35.5°. The 
geometric standard deviation of the particle sizes 
was gσ = [d84.1/d15.9]

0.50
 =1.20 and therefore the 

sediment was considered to be uniform (Dey et al. 
1995). The critical shear stress for the initiation of 
motion of isolated sediment particles was τcr = 
0.65 KN/m2. Experiments were conducted over 
100 hours with section-averaged flow depth of h = 
0.30 m and velocity Um = 0.616 m/s which was 
95% of the critical velocity for initiation of sedi-
ment motion at an undisturbed plane bed. An 
acoustic Doppler velocimeter (ADV), developed 
by SonTek (5 cm down-looking and sampling rate 
50 Hz), was used to measure the instantaneous 3D 
velocity. In order to obtain statistically time inde-
pendent average-velocity components, the sam-
pling durations were 3-4 min. Two experiments 
were conducted, namely (1) with a plane sediment 
bed and (2) in an equilibrium scour hole. Figure 1 
shows the coordinate system for the velocity mea-
surements.  

       

 
 

Figure 1. Measuring Coordinate System and scour pattern 
after t =100 hours. 

Bed topography was measured using a laser 
distance sensor (LDS) with an accuracy of ±0.30 
mm which was located inside the plexiglas pier. 
The sensor was driven by step-motors, for record 
of various vertical profiles in different half azimu-
thal planes. Flow depth was adjusted by a tail gate 
at the end of the flume, and measured with ultra-
sonic distance sensors (UDS) placed along the 
flume. For details on measuring system and scour 
measurements please refer to Link et al. (2008b) 
and Diab et al. (2008). Figure 2 shows the expe-
rimental set-up. 

 

 
 

 
 

Figure 2. Experimental set-up with plane (upper) and 
scoured bed (lower). 

The ADV measurements were carried out at 
pier front, sides and wake in azimuthal planes 
with θ = 0, 45, 90, 135 and 180º at different dis-
tances from the original gravel bed level with z = 
1, 3, 5, 7, 11, 13, 15, 17, 19, 23 cm. The reference 
level z = 0 correspond to the original flat bed ele-
vation. The lowest point of ADV Reading was 1 
cm above the bed. 

3 RESULTS AND ANALYSIS 

The presented experiment was conducted over 
100 hours till scouring approached equilibrium. 
Scouring started and progressed fast at the pier 
sides, the deepest point being found at θ = 45º 
during the first 3000s of experimentation. Later, 
maximum depth inside the scour-hole was ob-
served at the pier front with θ = 0º. At the pier 
wake with θ = 180º, deposition region was ob-
served during the first 3240s then scour sur-
rounded the pier perimeter. Final maximum scour 
depth in the equilibrium scour hole was 45.80 cm 
that was equal to 2.29 times the width of the pier 
width. Scour-hole side slopes diminished with θ, 
changing from an average of 36 to 16º at planes 
with θ = 0 and 180º. For more details on the geo-
metric properties of developing and equilibrium 
scour holes please refer to Diab et al. (2010).   

3.1 Velocity Measurements 

Figure 3 shows the contours of the time-
average absolute velocity, 222 wvuU total ++=   
at azimuthal-half planes with θ = 0, 45, 90, 135 
and 180º in cm/s for plane bed (left) and equilib-
rium scour hole (right). totalU  is a scalar quantity 
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that represents the intensity of the total velocity.  
For the plane bed, the magnitude of totalU  in-
creases with increasing θ from 0 to 135º then di-
minishes towards the pier wake with θ = 180º. At 
θ = 45º, the existence of flow separation due to the 
pier edge cause smaller values of totalU . A region 
of rapid changing in totalU  near the bed is clear 
from the concentration of contour lines. In the 
equilibrium scour hole, totalU  values are smaller 
than those over the plane bed. At θ = 0º, the verti-

cal flow component and the absence of the tan-
gential velocity u is evident. At θ = 90º, the tan-
gential velocity u is a predominant flow feature. 
While the vertical flow and the tangential velocity 
characterize together the flow at θ = 135º. At the 
pier wake with θ = 180º, the lower values of totalU  
near the pier face is observed due to the back flow 
and the lower values of the radial velocity and it 
grows toward the downstream. 
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Figure 3. Contours of time-averaged absolute velocity 
222 wvu ++  (in cm/s) at azimuthal planes with θ =0, 45, 

90, 135 and 180º for plane bed (left) and for scoured bed (right). 

Figure 4 shows the contours of the time-average 

vertical velocity vector, 22 wv +  at azimuthal 

planes with θ = 0, 45, 90, 135 and 180º in cm/s for 

plane bed (left) and equilibrium scour hole (right). 

The characteristics of the horseshoe vortex and 

the strong downflow inside the scour hole at the 

pier front and sides with θ = 0 to 60º are observed. 

The flow is horizontal above the scour hole for r 

>2b for the solid bed and r > 3b for the equilib-

rium phase between θ = 0 to 45º. Then the flow 

gradually curves down towards the pier. At θ = 90 

and 135º, the flow becomes outwards the pier 

above the scour hole with low circulation motion. 

At θ = 180º, it shows a swirl motion near the pier 

with r < 2b, and then the flow becomes gradually 

outwards the pier over the flow depth in the solid 

bed case. For the solid bed, the horseshoe vortex 

is not distinct while it becomes strong at the pier 

front for the equilibrium phase and decreases with 

increase in θ. 
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Figure 4. Velocity vector 22 wv +   (in cm/s) at azimuthal planes with θ =0, 45, 90, 135 and 180º for plane bed 
(left) and for scoured bed (right). 

3.2 Turbulence Field 

The pattern of turbulence intensities ''uu , ''vv , 

and ''ww  (in cm/s) at azimuthal half-planes with θ 

=0, 90 and 180º for plane bed (left) and for 

scoured bed (right) are shown in figures 5, 6 an 7.  

The distribution of the turbulent intensities at dif-

ferent azimuthal planes is identical. The radial and 

tangential components of turbulent intensities are 

larger than the vertical one. At the pier front and 

sides, with θ = 0 and 90º, the magnitudes 
''uu , 

''vv  and 
''ww decrease with the vertical distance 

from the bed. At θ = 180º on the scoured bed, the 

turbulent intensities first increase with z until an 

imaginary line of separation at a depth of 0.45-

0.75 times the local scour depth inside the scour 

hole (see Diab et al. 2009), then decrease again 

vertically, forming a core of high turbulent inten-

sity over whole of the scour hole. At planes with θ 

= 0 and 90º, the turbulence intensities increase 

with decreasing distance to the pier when r < 2b 

due to the down flow and flow separation. The 

maximum turbulent intensity was found as a core 

at the upstream pier face. 

The contours of the turbulent kinetic energy 

TKE [= )(50.0 '''''' wwvvuu ++ ] at the pier front, 

sides and wake with θ = 0, 90 and 180º for plane 

and scored beds are plotted in figure 8. The distri-

bution of TKE is similar to that of the turbulent in-

tensity components. TKE values increase with θ 

and with decreasing r and z. The effect of turbu-

lence leads to much more scouring in front of the 

pier than at the pier wake where up flow occurs.    

Unfortunately- to the best of our knowledge- 

very few researches on scouring and flow field 

around square pier in gravel beds are available for 

comparison of the presented results. Nevertheless 

the results of Dey and Raikar (2007) show a simi-

lar trend.
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Figure 5.  Contours of tangential turbulence intensity  ''uu (in cm/s) at azimuthal planes with θ =0, 90 and 180º for 
plane bed (left) and for scoured bed (right). 
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Figure 6.  Contours of radial turbulence intensity  ''vv (in cm/s) at azimuthal planes with θ =0, 90 and 180º for plane 
bed (left) and for scoured bed (right). 
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Figure 7.  Contours of vertical turbulence intensity  ''ww (in cm/s) at azimuthal planes with θ =0, 90 and 180º for 
plane bed (left) and for scoured bed (right). 
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Figure 8.  Contours of turbulent kinetic energy TKE (in cm2/s2) at azimuthal planes with θ =0, 90 and 180º for plane 
bed (left) and for scoured bed (right). 

4 CONCLUSIONS 

An experimental investigation on the three dimen-
sional turbulent flow field around a square cylin-
der in a uniform gravel bed under the clear water 
scour condition was presented. Point measure-
ments allowed the quantitative description of the 
main flow features around a square cylinder in a 
plane bed and in an equilibrium scour hole. The 
spatial distribution of time-absolute velocity, flow 

vectors, turbulence intensities components and 
turbulent kinetic energy using acoustic Doppler 
velocimeter ADV has been presented. The results 
are useful for validation of CFD models that can 
be used to simulate scouring around bridge ele-
ments improving their design.   
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