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Abstract—This paper is a continuation of "Ongoing research
on advection schemes", published in 2014 in this series of
proceedings. It is restricted to distributive schemes and comes
after the description of the new predictor-corrector introduced
in the previous paper. The developments and tests were done with
Telemac-2D but can be easily applied also to 3D. First a second
order in time version of this predictor-corrector is developed.
Then a new criterion for proving monotonicity is coined, which
allows to perform as many correction steps as we want, with
an arbitrary predictor which is just maintained within a given
range and is not even subjected to mass conservation. With
4 extra correction steps the rotating cone grows from 0.5331
to 0.75. At this level the problem of dry zones still remains.
To solve it, it is first shown that a fully implicit distributive
scheme is unconditionally stable, even on dry zones. However the
numerical diffusion is largely increased, losing all the benefits
previously gained. Then a locally implicit predictor-corrector
scheme is designed, with full implicitation only in the dry zones.
An unexpected consequence of this new scheme is that we
can choose an arbitrary time-step, and this allows to use the
distributive schemes in conditions where they perform better,
e.g. the rotating cone height after one rotation is now 0.79 in
the latest tests. This is much larger than the 0.39 of the NERD
scheme which was before the only distributive scheme working
with tidal flats. A new test case with bridge piers and an island
treated as a dry zone is presented. Monotonicity is well preserved
and mass conservation is obtained at machine accuracy.

I. INTRODUCTION

Mass conservation, monotonicity and dry zones are now

fairly well handled in the Telemac system, so that the nu-

merical diffusion of advection schemes becomes the new

frontier where progress is necessary to improve the quality

of studies. For example the study of pollutants in rivers, the

stability of stratifications, and the numerical simulation of non

linear waves are highly dependent on the quality of advection

schemes, and on the space and time orders. Improving on

this topic is not an easy task, since on one hand a couple of

theorems show that simple linear schemes cannot do the job,

and on the other hand this subject has been already heavily

investigated by many teams. Moreover we face additional

problems due to the free-surface flows, like the depth-averaged

or moving grid context, and still the treatment of tidal flats, that

at first sight precludes most existing solutions, since divisions

by the depth appear in many solution procedures.

In the 2014 Telemac User Club we presented several im-

provements. In finite volumes an approximate Riemann solver,

the Harten-Lax-van Leer-Contact scheme (HLLC, see [12])

with 1 and 2 order was presented. In finite elements, the

classical N and PSI distributive schemes could be improved

by adding the derivative in time in the upwinding process. It

was done in a predictor-corrector procedure, after the recent

publication by Mario Ricchiuto [11]. The predictor gives an

approximation of the derivative in time of the tracer, which

is then used in the corrector step. Three test cases were pre-

sented: a pollutant plume in a steady state river, the transport

of a stain, and the rotating cone. The height of the cone after

one rotation, which should theoretically be 1, was 0.2136

for the classical PSI scheme, 0.4710 for the HLLC second

order scheme, and 0.5331 for the new predictor-corrector PSI

scheme. The conclusion of this first paper announced: "We

now work on tidal flats, which could be dealt with by an

implicit predictor-corrector distributive scheme, as shown by

preliminary tests not treated here. Another promising issue

is the possibility of iterating the corrector step, which would

give even less numerical diffusion, which is also shown by

preliminary tests". The present paper will now detail in a

sequence the three main improvements obtained since the

first paper: a second order in time predictor-corrector scheme,

then the possibility of iterating the corrections, and in the

end a new approach, a locally implicit predictor-corrector

distributive scheme. The rotating cone test and a new test case

with bridge piers and an island will show the new features.

All the developments and tests are done with Telemac-2D but

the theory applies also to 3D, as the varying volumes around

points in 3D play the same mathematical role as the varying

depth in 2D.

II. A SECOND ORDER IN TIME PREDICTOR-CORRECTOR

DISTRIBUTIVE SCHEME

In the previous paper we reported theoretical mass conserva-

tion problems to get a second order in time predictor-corrector

scheme in the depth-averaged context, as was done in a simpler

context by Ricchiuto in his original paper. We now have found

a correct derivation, with boundary and source terms now

always taken into account in all the steps. We start from the

same predictor step, which is the classical PSI scheme:
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(1)

We recall that and are respectively the depths at

point at the beginning and at the end of the time step, is

the integral of the test function, and are the fluxues

between points given by respectively the N and PSI scheme.

is the initial value of the tracer at point , the final

value, and the value at the predictor step. is the time

step, is the boundary flux if is on a boundary and

a possible source term inside the domain, while is

the prescribed value of at the boundary, and the value

of the tracer at a source.

The rather long derivation of the corrector step will not

be given here, it is obtained with the construction of a fully

implicit and a fully explicit scheme, and then by blending them

with the implicitation coefficient . When is involved

in the fluxes, it is replaced by , which does not spoil the

mass conservation if this is correctly done at the level of the

conservative form. We eventually find the following equation,

which is by construction mass conservative:

(2)

Backward arrows are put on terms which are treated al-

together with upwinding, at element level, in the same way

that leads from N to PSI scheme. At element level derivatives

in time are first equally shared between the 3 points of the

triangle, this is considered to be the equivalent of a N scheme,

then the PSI limitation is applied to the whole contribution

that includes the fluxes. Mass conservation is rather easy to

prove, with the help of the discretised continuity equation,

but a proof of monotonicity was impossible to find, unless

some restrictions are applied to , namely that is not too

far from , and this idea will be also used for iterating the

corrector. A very important point is that the mass conservation

is ensured whatever the mass of , because it is both in the

left- and righ-hand side and can be cancelled, except in fluxes

that do not contribute to a change of mass. The monotonicity

proof can thus be done with an arbitrary . We write the

corrector in the following way, as already done in the previous

paper:

(3)

All and are in the range [0,1] to account for the upwind-

ing limitation. is a notation for .

Note that if we fall back to the classical N or PSI

scheme, which is stable, so we can expect to keep this stability

if is chosen not too far from . We now want to have

positive coefficients for all values of in the right-hand side.

Only the coefficients of and are questionable. They

are:

Coefficient of :

(4)

Coefficient of :

(5)

or may be negative but the positivity of is

largely ensured by the stability condition of the predictor, as

we have:
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(6)

As a matter of fact, we can take (worst case

scenario), and replace the and by ,

and we fall back to the classical stability condition.

We now write:

(7)

(8)

with and in the range [0,1]. and are the

local extrema that should not be trespassed, computed with

the neighbouring values of and . We want to find the

solutions under which:

(9)

with: , and in the

range [0,1]. In fact there is not always a solution, even with

very small time steps, and we had to change the strategy.

Choosing and under the stability condition of the

first order in time of the predictor-corrector, we looked for

a condition on as a function of , and it gave:

(10)

(11)

which is equivalent to:

(12)

(13)

Our solution resorts to imposing these conditions to every

, which, as we have said, does not spoil the mass con-

servation even if we change the mass of . In some severe

conditions, when the restrictions apply, the second order will

simply not be reached.

III. ITERATING THE CORRECTIONS

We have shown in the previous section that any predictor

value can be used in the corrector step, provided that it remains

within a certain distance from the initial value . The

corrector can thus be applied as many times as we want, taking

every time as new predictor the value of the last iteration. The

same principle can be applied also to the first order in time

predictor-corrector scheme, but the condition appears to be

different:

(14)

It can also be shown that this condition is naturally ensured

by the PSI scheme which is our predictor, so the limitation

does not need to be applied at the first iteration. Iterating the

corrector proves to be very efficient, as shown by the rotating

cone test. We recall that in this case the mesh is a 20.1 m x

20.1 m square composed of 4489 squares of side 0.3 m, each

one split into two triangles. With the first order scheme we

find after one rotation:

number of corrections cone height after one rotation

0 0.21 (PSI scheme)

1 0.53

2 0.69

3 0.74

4 0.75

21 0.75

It seems that we have rapidly a dramatic improvement,

after very few iterations of the corrector. The state-of-the-art

obtained last year, 0.53, is boosted to 0.75. Comparing order

1 and order 2 of the N predictor-corrector with corrections

scheme yields:

corrections cone height, order 1 cone height, order 2

0 0.18 (N scheme) 0.18 (N scheme)

1 0.50 0.48

2 0.68 0.60

3 0.74 0.63

4 0.75 0.64

5 0.76 0.64

6 0.77 0.65

Figure 1, for order 1 and Figure 2 for order 2 show the

cone after one rotation of the N predictor-corrector with

six corrections. The shape is different but there is no clear

advantage of order 2 in this case. However the convergence

tests, not shown in this paper, show the gain in order, though

order 2 is not exactly achieved, as was already found with

unstructured meshes.

IV. DRY ZONES: A LOCALLY IMPLICIT

PREDICTOR-CORRECTOR SCHEME

It can be shown that when the tracer is semi-implicited in

the fluxes with a coefficient , the stability criterion on the

time is divided by and becomes:

(15)

A fully implicit distributive scheme becomes uncondition-

nally stable, even on dry zones. However tests show that such

a scheme is far too diffusive. This is why we looked for a
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Fig. 1. Rotating cone test, cone after one rotation. N predictor-corrector with
6 corrections, order 1.

Fig. 2. Rotating cone test, cone after one rotation. N predictor-corrector with
6 corrections, order 2.

scheme that would be locally implicit, with full implicitation

only on dry zones.

A. Semi-implicit predictor

We choose to solve in the predictor step the following

equation:

(16)

B. Corrector

Now that we have an approximation of the final con-

centration, we can write the original derivative in time in the

form:

(17)

where the term can be transfered in the

right-hand side. Separating the contribution of fluxes between

explicit and implicit terms, we get:

(18)

We now want to add upwinding to the derivative in time,

and we also include in the upwinding the explicit part of the

flux contributions. It gives, still using our backward arrays

notation:

(19)

Note that a tentatively second order upwinded contribution

should be:

(20)
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but it is not what is naturally given by the derivation, the reason

being that this would lead to mass errors, because is built

with and can replace safely only when used with ,

not with .

C. Monotonicity

As the mass is correct by construction, the only remaining

question is the monotonicity. We now rewrite our corrector

step so that only positive coefficients of values of appear.

We also introduce coefficient and as before to account

for the PSI reduction of the upwinded terms, it yields:

(21)

With this form we see that the only risk of negative coef-

ficients happens with . The coefficient of is positive

thanks to the stability condition that has been previously

chosen. Without the extra derivative in time, we would have

to ensure the positivity of:

Denoting:

(22)

which leads to the condition:

(23)

Now we see that there is a risk of negative coefficient of ,

unless we consider a limitation of . As the terms depending

on are negative in the coefficient of we remain on the

safe side by choosing . As before, we now introduce:

(24)

(25)

We are left with proving that:

(26)

we denote:

(27)

It eventually yields:

(28)

or:

(29)

which is:
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(30)

We see that need to have:

(31)

If : positivity is ensured and then the worst situation

happens when , in which case we get the condition:

(32)

which also reads:

(33)

We now assume that the time step was chosen so that:

(34)

which gives the property:

(35)

Our most demanding condition for is then (the smallest

is to be considered):

(36)

If : only the positivity gives a condition and again

the worst condition is and we get the condition:

where the stronger condition, again obtained with the mini-

mum , is:

(37)

We end up with the general condition:

(38)

which is also:

(39)

Now the next question is: is this property ensured by

when we use a semi-implicit predictor? We have:

(40)

which is equivalent to:

(41)

Denoting:

and remarking that in the right-hand side all terms are

balanced by a of some sort, we can write:

(42)

and:

(43)

The maximum of is obtained with the

maximum of . Under the condition 34 this maximum is

which is less than . So we get indeed the property:

(44)
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which is the condition found for the explicit predictor, and

which could be even stricter if we impose a non zero minimum

of .

With we arrive at:

(45)

which is identical to the property found for the explicit

predictor. This long derivation shows that the locally implicit

scheme basically behaves like the explicit option. However, we

have so far only half of the monotonicity proof, because a new

and unexpected problem occurs: the sum of the coefficients

of values of is no longer correct after PSI reduction. This

problem is addressed in the next paragraph.

D. A correct sum of coefficients

It is easy to see that our final linear system is in the form

other terms which all

contain well balanced differences of values of , for example

. It can be deduced by this

that we have in the end a correct interpolation of

values of , with the sum of coefficients equal to 1. This is

however not the case if such balanced terms are reduced by

a PSI limitation in an unbalanced way. In what precedes it is

the case with the term:

The balance of is ensured by

terms and this is no longer the case after

PSI reduction of only the explicit part. We are thus doomed to

reduce only true differences of values. In the case of term:

(46)

a solution consists in not upwinding all the terms, but only

those that can be balanced in the PSI reduction, denoting:

(47)

we replace our term by:

(48)

This can be done at the element level when doing the PSI

reduction.

E. Choosing the local semi-implicitation

Assuming that the classical condition of the explicit N

scheme gives the limitation:

(49)

which is the condition 23 with , and prescribing a

number of steps into a time step we now want for the

implicit predictor-corrector:

(50)

which yields:

(51)

To get the same implicitation as the one step semi-implicit

N we thus just need to multiply the number of time steps by

2.

Choosing the N scheme, a number of corrections of 5, the

height of the rotating cone after 1 rotation, depending on the

number of substeps , gives:

1 2 3 4 5 6 7

height 0.09 0.12 0.14 0.16 0.18 0.20 0.24

8 9 10 11 12 13 14

height 0.28 0.33 0.41 0.46 0.53 0.59 0.64

15 16 17 18 19 20 21

height 0.69 0.72 0.75 0.77 0.77 0.78 0.78

After it gradually decreases, so 20 is an optimum.

With , if we now vary the number of corrections we

get:

corrections 1 2 3 4 5 6

cone height 0.54 0.71 0.76 0.77 0.78 0.79

corrections 7 8 9 10 11 12

cone height 0.79 0.79 0.79 0.79 0.79 0.79

Six iterations here already give an optimum result. It is

noteable that we get a slightly better result than the previous

predictor-corrector approach. It is due to the fact that we can

now look for the better time stepping, independently of any

stability condition.
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Fig. 3. The bridge pier test case with a tracer and an island.

V. A TEST CASE WITH DRY ZONES

The test case called "pildepon", a flow around bridge piers,

in the portfolio of examples has been chosen, but the bottom

has been modified so that a part of the domain is dry, thus

forming an island. To achieve this a disc of radius 4 m has been

carved out around the point of coordinates (6,0), by setting the

bottom elevation at 5 m instead of 0. In Figure 3 the tracer on

the island has been artificially set to 0 after the computation,

to visualise the island. Otherwise the values are between 1 and

2, according to the initial and boundary conditions. The island

contour is uneven due to the mesh roughness. Being a steady

state, this case is not really meant for the predictor-corrector

approach since the derivative in time is 0, but we show the

ability of the locally implicit scheme to cope with dry areas.

For this case the number of corrections is 0 and there is no

sub-stepping.

VI. CONCLUSION

Thanks to a local semi-implicitation depending on the local

stability condition we could eventually build a distributive

advection solver with a number of interesting properties:

Mass conservation

Monotonicity

Low numerical diffusion

Ability to cope with dry zones

Unconditional stability

The height of the cone after one rotation is now more than 3

times higher than what we get with the original PSI scheme,

also higher than the method of characteristics. There is no

extra problem with domain decomposition parallelism. The

only drawback so far is the fact that there are linear systems to

solve. Given the fact that the algorithm is potentially uncondi-

tionnally stable, the number of sub-steps, which was originally

given by the stability analysis, is now a tuning parameter

yielding more or less numerical diffusion. The number of

corrections after the predictor step is also a parameter, but

it seems that no more than 5 to 6 iterations is enough to

get optimum results. A problem remains: the locally implicit

scheme is only a first order scheme, because so far we could

not get 2 order without getting non linear terms in the final

system.

We shall now try to apply these ideas to 3D. It should not

be too difficult, as we already know that the varying depth is

replaced in 3D by the varying volumes around points, so that

all our theory is readily applicable.

A potential improvement would be to avoid solving too

many linear systems. In the corrector steps, taking advantage

of the fact that a good predictor mass is not a problem, except

for the last correction, it could be possible to downgrade

the accuracy, or every correction could be considered as an

iteration in a Newton-Raphson process, this is left for further

researches.

REFERENCES

[1] HERVOUET J.-M., PHAM C.-T.: Telemac version 5.7, release notes.
Telemac-2D and Telemac-3D. 2007.

[2] HERVOUET J.-M., RAZAFINDRAKOTO E., VILLARET C.: Telemac
version 5.8, release notes. Telemac-2D, Telemac-3D and Sisyphe. 2008.

[3] HERVOUET J.-M.: Telemac version 5.9, release notes. Bief, Telemac-
2D, Telemac-3D and Sisyphe. 2009.

[4] HERVOUET J.-M.: Telemac version 6.0, release notes. Telemac-2D and
Telemac-3D. 2010.

[5] HERVOUET J.-M., RAZAFINDRAKOTO E., VILLARET C.: Telemac
version 6.1, release notes. Telemac-2D, Telemac-3D and Sisyphe. 2011.

[6] ATA R., HERVOUET J.-M.: Telemac version 6.2, release notes.
Telemac-2D, Telemac-3D. 2012.

[7] HERVOUET J.-M., PAVAN S.: Telemac version 6.3, release notes.
Telemac-2D, Telemac-3D. 2013.

[8] http://www.opentelemac.org/
[9] HERVOUET J.-M.: Hydrodynamics of free surface flows, modelling

with the finite element method. Wiley & sons. 2007.
[10] ABGRALL R., MEZINE M.: Construction of second order accurate

monotone and stable residual distribution schemes for unsteady flow
problems. Journal of Computational Physics. 188:16-55. 2003.

[11] RICCHIUTO M.: An explicit residual based approach for shallow water
flows. Inria Research Report n 8350, Project-Team Bacchus, September
2013.

[12] TORO E.F.: Riemann Solvers and Numerical Methods for Fluid Dy-
namics. Springer, 2009.

vcz18385
Typewritten Text
82


