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Abstract—This paper focuses on how to ensure the robustness
of the resolution of Shallow Water Equations in the TELEMAC2D
computation code in the case of rain induced runoff on steep
slopes. To reproduce these conditions, a straight channel with a
variable slope on which drops a constant rain is defined. With
this test case, a comparison between the simulated discharge
at the outlet and an analytical solution of the Shallow Water
Equations for the rising part of the hydrograph and the plateau
has been done. By stopping the rain in the middle of a simulation,
numerical results and an analytical solution of the kinematic
wave approximation were confronted during the emptying of the
domain.

Limitations of the numerical resolution are highlighted with
the finite volume schemes. Improvements were made to better
represent the rainfall-runoff responses, like another method
of hydrostatic reconstruction [7] which has been implemented.
Then, the model is extended to pollutant transfers and sediment
transport in suspension. These results provide a strong basis for
future application of modeling erosion at the watershed scale.

I. INTRODUCTION

The sediment transfers at the watershed scale involve
several processes, because of the heterogeneity of the soil, but
also the different flow regimes due to the complex topography
of the field and the time and space variability of the mete-
orological conditions. In the mountainous regions, the filling
of reservoirs is an important issue in terms of efficiency and
environmental acceptability for producing hydro-electricity.
Thus, the modelling of the sediment tranfers on highly erodible
watershed is a key challenge from both economic and scientific
points of view. A physically-based representation provides
an explicit representation of the hydraulic and sedimentary
variables, but needs several parameters and a fine discretization
of the domain. The erosion processes being heavily reliant on
the flow characteristics, we must have a robust and accurate
representation of hydraulic dynamics. A simple test case has
been defined in order to evaluate the different resolution
methods of the Shallow Water equations with TELEMAC2D,
in the particular case of steep slopes and shallow water depths.

One of the main difficulties is to have a numerical scheme
able to represent correctly the hydraulic transfers, preserving
the positivity of the water depths, dealing with the wet/dry
interface and being well-balanced (in the sense of [13]) mean-
ing preserving the hydrostatic balance of a lake at rest. Few

schemes verifying these properties exist, and their accuracy
still need to be evaluated in the case of rain induced runoff
on steep slopes. Moreover, it is necessary to represent the
suspension of tracers and sediments in the flow, from the
hillslopes to the outlet of the watershed, with as little disper-
sion as possible in supercritical flow. In TELEMAC2D, several
advection schemes have been recently implemented ( [15] and
[14]) to overcome this problem for river flow applications and
need to be tested for runoff simulations. Subsequently, it is
important to figure out the mesh and the hydraulic scheme
effects on the erosion generation to anticipate the scaling effect
for a real watershed application.

In this paper, a straight channel test case, with a variable
slope, on which drops a steady rain is used, which represents
what can be observed in a mountain watershed context. Differ-
ent finite volume schemes are analyzed, and more particularly
their bottom source term discretization. Then, the advection of
passive tracer is tested in this situation to evaluate its efficiency.
Finally, SISYPHE is used to represent the soil erosion on the
test case and a study of the effect of the hydraulic scheme on
rill generation has been realized.

II. MATERIALS AND METHODS

In this work, the simulations have been performed with the
V7P1R1 version of TELEMAC2D and SISYPHE.

A. Presentation of the test case

Following the work of [16], a test case on a straight channel
of dimensions 4.04 X 0.115 m is created. On this domain, a
steady rain, with an intensity of 25 mm/h, is applied during
100 s. The discharge at the outlet of this channel is observed.
The duration of the simulation is 200 s, the first 100 seconds
describing the rise of the hydrograph and the constant value
and the last 100 seconds the emptying of the domain. The
spatial discretization of the channel is a triangular mesh with
a length of 1 cm. The choice of this test has been motivated
by the fact that [9] gives analytical solutions for the discharge.
To avoid effects of the upstream wall boundary, a 5 meters
channel is created and the rain starts to fall 0.96 m away.
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Fig. 1: Illustration of the partially wet and fully wet regimes
at the interface of two cells

B. Overland flow simulation

To simulate rain induced runoff, TELEMAC2D solves the
Shallow Water equations which are:

∂U

∂t
+

∂F (U)

∂x
= S, (1)

where U = (h, hu), F (U) = (hu, hu2 + gh2/2) and S =
(R,−gh(∂xz+Sf )) with h the water height in m, u the flow
velocity in m/s, g the gravity constant in m/s2, R the rain
intensity in m/s, z the bottom elevation in m and Sf the friction
slope. For that, the following explicit finite volume scheme is
used:

U t+1

i = U t
i −

∆t

∆x
(F t

i+1/2 − F t
i−1/2) +

∆t

∆x
Si, (2)

where F t
i+1/2 = F (Ui+1/2+, Ui+1/2−) is the numerical flux

at interface i+1/2 and Si = (Ri, si+1/2− + si−1/2+) are the
source terms. The friction slope is added to the scheme (2) by
a semi-implicit treatment (see [12], [5] and [10]). It follows a
Chézy’s law where the coefficient is set to 30 m1/2/s in this
case.

Concerning the bottom source term discretization, one can
use a hydrostatic reconstruction method and define the inter-
mediate states Ui−1/2+ = (hi−1/2+, hi−1/2+ui), Ui+1/2− =
(hi+1/2−, hi+1/2−ui), si−1/2+ and si+1/2−. The classical
hydrostatic reconstruction presented by Audusse et al. [1]
gives:

hi−1/2+ = max(hi + zi − max(zi−1, zi), 0),
si−1/2+ = g

2
(h2

i − h2
i−1/2+),

hi+1/2− = max(hi + zi − max(zi, zi+1), 0),
si+1/2− = g

2
(h2

i+1/2− − h2
i ),

while a new reconstruction method introduced by Chen and
Noelle [7] gives:

zi+1/2 = min(max(zi, zi+1),min(hi + zi, hi+1 + zi+1))
hi−1/2+ = min(hi + zi − zi−1/2, hi),

si−1/2+ = g
2
(hi − hi−1/2+)(zi−1/2 − zi),

hi+1/2− = min(hi + zi − zi+1/2, hi),
si+1/2− = g

2
(hi + hi+1/2−)(zi − zi+1/2).

Based on the definition given by [7], a fully wet and a
partially wet regime are distinguished at the interface of two
cells. The figure 1 illustrates these regimes. The Audusse et
al. [1] and Chen and Noelle’s [7] hydrostatic reconstruction
are computing exactly the same source term for the fully wet

case. The Chen and Noelle’s method modifies the source term
in the partially wet case to better take into account the slope
effect.

An alternative to the hydrostatic reconstruction, presented
by Berthon and Foucher [3], consists in modifying the scheme
(2) like:

U t+1

i = U t
i −

∆t

∆x
(Xi+1/2F

t
i+1/2 −Xi−1/2F

t
i−1/2) +

∆t

∆x
Si,

with Xk
i+1/2 =

{

hi

hi+zi
if F t

i+1/2 > 0
hi+1

hi+1+zi+1
elsewhere

. The intermediate

states become:

hi−1/2+ = hi+1/2− = hi + zi,
si−1/2+ + si+1/2− = g

2
Hi−1/2Hi+1/2(Xi+1/2 −Xi−1/2)

with Hk
i+1/2 =

{

hi + zi if F t
i+1/2 > 0

hi+1 + zi+1 elsewhere
.

The numerical fluxes are calculated with the HLLC method
introduced by [23] and applied to the Shallow Water equations
in [22].

C. Analytical solutions

[9] describes analytical solutions of the discharge at the
outlet of the domain of the Shallow Water equations (1) for
the rising part of the hydrograph and the constant value, and
a kinematic wave approximation solution (3) for the complete
problem. This approximation writes:

∂h

∂t
+

∂hu

∂x
= P,

∂z

∂x
= −Sf (3)

and the relative error between solutions of (1) and (3) is
inferior to 1% for the rise of the hydrograph and the plateau
for a slope superior to 1% on this test case. Using the exact
solution of (1) for the 100 first seconds and the exact solution
of (3) for the emptying of the domain, it is possible to compare
the precision of the schemes.

D. Passive tracer and sediment transport

As described in [21], the suspended sediment transport is
governed by the advection equation:

∂hC

∂t
+

∂huC

∂x
= E −D, (4)

with C the volumic concentration of sediment in the flow,
E the erosion flux in m/s and D the deposition flux in
m/s calculated with the classical Krone-Partheniades law with
cohesive sediments. In each simulation, the bed is considered
uniform, with one class of sediment. To simulate soil erosion
with SISYPHE, the following parameters are chosen:

• Partheniades coefficient: 10−3 m/s,

• Critical erosion shear stress: 0.05 Pa,

• Critical deposition shear stress: 0.05 Pa,

• Sediment diameter: 40 µm,

• Skin friction coefficient: 1.

The passive tracers are simulated with the continuity equa-
tion (4) without source terms. To solve this equation, the LIPS
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Fig. 2: Discharge (m3/s) at the outlet of the domain during
200 s, comparison between simulation and analytical solution
with the Audusse et al. reconstruction [1]

scheme has been used with three corrector steps (see [15]) as
well as the ERIA scheme (see [14]), for their ability to deal
with vacuum states.

III. RESULTS

A. Hydraulic tranfers

The behaviour of the schemes are compared to the anali-
tycal solution to compare their accuracy in the case of runoff
with shallow water depths and steep slopes.

Figure 2 presents the discharge at the outlet with the
classical hydrostatic reconstruction (Audusse et al. [1]). This
scheme presents a limitation for steep slopes. Indeed, the
results for the 5% and 50% slopes are identical. Moreover,
for the 1% slope simulation, an irregularity is observed during
the emptying of the domain after 160 s.

With the Chen and Noelle’s [7] hydrostatic reconstruction,
the discharges at the outlet are closer to the analitycal solu-
tions. The figure 3 presents these results. This method corrects
the slope limitation observed previously. However, there is a
lag between the simulation results and the exact solution for
the 5% slope and the irregularity at the end of the simulation
for the 1% slope is more important.

The third scheme introduced by Berthon and Foucher [3]
has been implemented in TELEMAC2D and tested. The figure
4 shows the results of the simulations with this scheme. This
method is very efficient to solve the Shallow Water equations
in this case. Nevertheless, this scheme has difficulties to treat
the dry zones. Indeed, figure 5 shows aberrant velocities at the
wet/dry interface with the Berthon and Foucher’s scheme [3].
To limit that effect, the fluxes between wet and dry cells has
been calculated with the Chen and Noelle’s scheme, and this
modification improves the treatment of vacuum states, as it is
shown in figure 6. This modification improves the results on
this test case but does not ensure a better equilibrium of the
scheme in other configurations. The figure shows also that
the boundary condition accelerates the flow significantly with
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Fig. 3: Discharge (m3/s) at the outlet of the domain during
200 s, comparison between simulation and analytical solution
with the Chen and Noelle’s reconstruction [7]
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Fig. 4: Discharge (m3/s) at the outlet of the domain during
200 s, comparison between simulation and analytical solution
with the Berthon and Foucher’s scheme [3]

the Berthon and Foucher’s scheme [3] but it has been tested
in every configuration that the downstream boundary does not
impact the hydraulic results, shifting it several meters far from
the discharge measurement, or creating a break in slope to
accelerate the flow at the end of the channel.

To evaluate the precision of each scheme, table I shows
the relative error of the computed discharges at the outlet com-
pared with the analytical solution of the shallow water equation
during the first 100 second of the simulations. The emptying of
the domain is not taken into account because the exact solution
of the kinematic wave system (3) is only an approximation of
the Shallow water equations (1) solved numerically. The error
is calculated by comparing the simulated value of the discharge
qs and the exact solution qe at each second, with the relation:

Err =
Σ100

i=1

|qs−qe|
qe

100
.
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Fig. 5: Velocities (m/s) along the channel depending on the
chosen scheme for the 5% slope simulation
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Fig. 6: Velocities (m/s) along the channel, effect of the cor-
rection on the Berthon and Foucher scheme for the 5% slope
simulation

TABLE I: Relative error (%) of each scheme for the rise of
the hydrograph and the constant value

Slope

Scheme
Audusse et al. Chen and Noelle Berthon and Foucher

1% 7.97 8.86 5.88

5% 12.3 4.43 3.90

50% 24.7 1.02 2.71

The Berthon and Foucher’s scheme [3] is the more efficient for
the gentlest slopes (1% and 5%) while the Chen and Noelle’s
scheme [7] is more accurate for the steepest slope. Concerning
the Audusse et al. scheme [1], it is more precise than the Chen
and Noelle’s scheme for the 1% slope, then, as it is shown in
figure 2, for the 5% and 50% slopes, the results are far from
the analytical solution.

Thus, we choose the Chen and Noelle’s [7] hydrostatic

TABLE II: Concentration (g/l) of polluant for each scheme at
one point at the outlet of the domain

Slope

Scheme LIPS [15] ERIA [14]

Chen [7] Berthon [3] Chen [7] Berthon [3]

1% 0.967 0.998 0.973 0.998

5% 0.970 0.999 0.970 0.999

50% 0.995 1.000 0.995 1.000

reconstruction and the Berthon an Foucher’s scheme [3] to test
the tracers advection schemes and to couple the model with
SISYPHE because of the slope limitation with the Audusse et
al. [1] technique.

B. Polluant transfers

The objective here, is to ensure that these transport schemes
can be used with the two new hydraulic finite volume schemes.
A source term value of 1 g/l is fixed at one given point of the
mesh, on the upstream part of the channel. The concentration
at the central point of the outlet is measured. The table II gives
the results of the concentration at the outlet for each scheme.

The results are similar, except for the 1% slope simulation
where the ERIA scheme is more efficient. This scheme is
chosen to solve the advection of the suspended sediment
transport.

C. Erosion generation

1) Erosion without bottom modification: To simulate the
erosion on the test case, we focus on the 5% and 50% slope
because the maximal bed shear stress of the 1% simulation
does not allow to have significant results. For every simulation,
the erosion is homogeneous across the flow and is growing
along the channel. Figure 7 shows the evolution of the bottom
at the end of the simulations. On the 5% slope simulations,
there is less erosion with the Chen and Noelle’s scheme [7]
than with the Berthon and Foucher’s scheme [3], which is
coherent with lag seen in figure 3. Concerning the 50% slopes,
the erosion is similar for each scheme and the downstream
boundary condition causes a deposition which is more im-
portant with the Berthon and Foucher’s scheme [3]. Figure 8
shows the volumic concentration along the channel at the end
of a 100 s simulation. We can observe that the concentration
is lower for the Chen and Noelle’s method [7] for the 5%
slope which follows the results of the bottom evolution (figure
7). Concerning the 50% slope, the concentration profiles are
similar. Some oscillations appear downstream in the Chen and
Noelle’s signal.

2) Erosion with topographical perturbation: Laboratory
experiments ( [2], [18]) have shown that rainfall in a straight
channel could create a rill network due to erosion. This
network depends on the spatial distribution and properties
of the soil at the initial state. In our theoritical model, the
soil is perfectly uniform at the initial state and the governing
equations are solved to give exactly the same results along
a cross section of the channel. To create a rill network, a
perturbation of the soil at the initial state is introduced by
adding to the topography a random number from a uniform
law at each node of the mesh. The random number is drawn in
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5% slopep

50% slopep

Fig. 7: Evolution of the bottom after 100 s of simulation with the two finite volume schemes and the 5% and 50% slopes
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of simulation with the two finite volume schemes and the 5%
and 50% slopes

different intervals which characterize the size of the topograph-
ical perturbation. The sizes are 10−2 m, 10−3 m, 10−4 m and
10−5 m respectively defined by randomly drawing values from
intervals of [−10−2; 10−2], [−10−3; 10−3], [−10−4; 10−4] and
[−10−5; 10−5]. Figure 9 illustrates the bottom elevation at
the intial state for each size of the perturbation. For these
simulations, we focus on the 5% slope case because the size
of the distribution susceptible to generate rill erosion changes
with the 50% slope.

Figure 10 presents the form of the erosion after 100 s
of simulation depending on the range of the random number
draw. For a 10−5 m and 10−4 m height of the perturbation,
the bottom is smoothed whatever the hydraulic scheme, but
the smoothing is more visible with the Berthon and Foucher’s
scheme [3], especially for the 10−4 m perturbation. For a 10−3

m size of the perturbation, a rill network is created, but the
rills are wider with the Berthon and Foucher’s scheme. For the

higher height of the perturbation, we can see local erosion at
certain points because the flow is blocked by the topographical
pertubation and accumulates. For the Berthon and Foucher’s
scheme [3], local erosion is observed almost everywhere in the
domain. This is due to the difficulty to treat the dry cells caused
by the added topography. This highlights the difficulty of this
scheme to handle wet/dry transition, even with the modification
presented in III-A.

IV. DISCUSSION

The hydrostatic reconstruction of Audusse et al. [1] can
be a good choice for modelling hydraulic transfers over a
watershed complex topography because of its properties. The
positivity preserving and well-balanced properties, as well as
its ability to deal with dry zones are crucial. The limitation of
this technique, exhibited in figure 2, is a well-known problem.
Indeed, [11] highlighted that for certain combinations of mesh
size, slope and water height, the velocities are underestimated,
in particular when h < ∆z, with ∆z the bottom difference
between two neighboring points. This problem can be solved
with a mesh refinement in a way to be always in the case
h > ∆z, but this is very expensive in term of computational
time, especially with a view to model erosion on an entire
watershed.

The development of the Chen and Noelle’s [7] hydro-
static reconstruction method allows to overcome this problem.
This technique consists of modifying the classical hydrostatic
reconstruction when h < ∆z, to take the full slope effect
into account, while maintaining all the good properties of the
scheme. Nevertheless, this modification causes problem when
∆z ≈ h where the hydraulic values are not well calculated. For
an application to a watershed case, this case is often oberved,
for instance in the transition from plot runoff to river flow.

Analysis of the volumic concentration profiles confirms the
diagnosis performed in the hydraulic part. Indeed, the 5% slope
case is coherent with the underestimation of the velocities
observed in figure 3. The computed shear stress being pro-
portional to the square velocity, the difference between the
concentration profile with the two schemes is even bigger
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Fig. 9: 3D view of the initial bottom elevation in function of the range of the topographical perturbation

Chen and Noelle’s scheme [7][ ]

Berthon and Foucher scheme [3][ ]

Fig. 10: Rills formation as a function of the range of the topographical perturbation, showing evolution of the bottom after 100
s of simulation

with a threshold law as the one used. Concerning the 50%
slope simulation, the oscillation with the Chen and Noelle’s
technique [7] is due to the topographic difference created by
the erosion. Indeed, the transport capacity of the flow is more
important in this case so the bed evolution is faster and more
susceptible to get close to the situation where ∆z = h.

The Berthon and Foucher’s scheme [3] presents issues at
the wet/dry interface. These problems can be limited by using
the Chen and Noelle’s scheme [7] between a wet and a dry
cell, but the equilibrium of the scheme is no more respected.
In figure 10, for the highest magnitude of the topographical
perturbation, these problems explain why the highest local
erosion is simulated with this scheme. Its difficulty to deal
with dry zones is an obstacle to its use for an application
in watershed erosion. However, some treatment exists for this
kind of problem (see [19]) but still needs to be adapted to this
scheme.

V. CONCLUSION

The TELEMAC-SISYPHE hydrosedimentary computation
code is adapted to river simulations. To extend the use to a
watershed scale, a simple test case of runoff has been defined.

After highlighting the limits of the hydrostatic reconstruc-
tion present in the finite volume resolution for hydraulic
computation (Audusse et al. [1]), two new schemes have been
tested and have shown their efficiency in this test case (Chen
and Noelle [7] and Berthon and Foucher [3]). The Chen and
Noelle’s hydrostatic reconstruction method is recommended
as it is a good compromise between accuracy and robustness,
has positivity preserving and well-balanced properties and is
capable of handling the dry zones.

The advection schemes for passive tracer LIPS [15] and
ERIA [14] give satisfactory results. When erosion is gen-
erated by SISYPHE on a smoothed bottom, the erosion is
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homogeneous and the evolution of the bottom follows the
hydraulic results. To generate rill erosion, a perturbation has
been added to the bottom toopography. These configurations
give very different results for these two schemes, and highlight
the importance of the robustness of the Chen and Noelle’s
scheme.

As a perspective, there are still some ways to improve
the code on this test case like adapt the treatment of the
wet/dry interface with the Berthon and Foucher’s [3] scheme
or improve the Chen and Noelle’s [7] method. Another scheme
will be tested in future work: the Bouchut and Morales scheme
[4] based on subsonic reconstruction. Then, these new methods
will be confronted to real cases, thanks to data provided by
the Draix-Bleone observatory [17]. The scale effects and the
transition between hillslopes runoff and river flow will also be
studied.
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