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Shallow Foundation Design through Probabilistic and Deterministic 
Methods 

C. Pereira & L. Caldeira 
LNEC, Lisbon, Portugal 

ABSTRACT: The design of a shallow foundation with eccentric loading is presented for the ultimate 
limit state of the bearing resistance, according to the formulation presented in annex D of NP EN 1997-
1:2010. Probabilistic and deterministic methods were used. Concerning probabilistic methods, the ap-
proximate probabilistic methods, advanced first-order second-moment method (AFOSM) and first-order 
second-moment method (FOSM), were applied. For the deterministic calculation, the partial safety factors 
method recommended by the Eurocode and applied in most practical cases, was implemented. It was as-
sumed that problem variables, such as loads (permanent and variable vertical loads) and soil parameters, 
follow normal distribution functions. However, the horizontal variable load and the depth of foundation 
were described by the Gumbel and the rectangular distribution functions, respectively. The results ob-
tained by approximate probabilistic methods were validated by Monte Carlo simulations. Comparisons 
were made between the results of the three design methods used. 

Keywords: Shallow foundation; Hasofer-Lind method; Bearing resistance; Partial safety factor; Prob-
abilistic methods. 

 
1 INTRODUCTION 

The traditional approach used in structural analysis and design is deterministic. In these methods, the 
characteristic values of the random variables are usually considered. However, the respectively random 
variable uncertainties are indirectly taken into account via partial safety factors calibrated semi-
probabilistically, which is essentially, according to Massih and Soubra (2008), in part, a “factor of igno-
rance”, but also, to take into account design situation and parameters not considered in the analysis. As an 
alternative to the previous method, one can use probabilistic approaches, that are a more rational way of 
structural analysis and design, which enables to consider directly the inherent uncertainty of each variable 
in the problem under consideration. 

The Eurocode design philosophy (NP EN 1990:2009) prescribes the partial safety factors method as 
the principal design method. However, the possibility of applying probability methods is also given. 

The design of the width B of a square shallow foundation, subjected to an eccentric load, arising from 
the application of deterministic and probabilistic methods, is herein presented and compared for the ulti-
mate limit state verification of the bearing resistance. As stated into Eurocode 7 (NP EN 1997-1:2010), 
EC7, the geotechnical structures design can be done by analytical, numerical, semi-empirical and pre-
scriptive methods. The design methodology implemented in this paper belongs to the analytical group and 
follows the formulation presented in annex D of EC7. Therefore, in drained conditions and in a homoge-
nous sandy soil with a near horizontal surface, the soil bearing resistance can be obtained by Eq. (1), for-
mulated by the theory of plasticity and based on experimental results. In Eq. (1), Nq and NȖ are the soil 
bearing capacity factors, sq and sȖ foundation shape factors, iq and iȖ coefficients due to load inclination, 
q’ the effective stress at the depth of foundation, Ȗ’ the effective soil unit weight, B’ the effective width of 
the shallow foundation and R/A’ is the ultimate vertical stress, with A’=B·B’. The expressions of the pre-
vious variables can be found in annex D of EC7. Figure 1 represents a sketch of the problem under study. 

199



 isN'B'isN'q
'A

R
qqq

2

1
  (1) 

In the next section, the random variables considered in the problem are introduced and characterized.  
The calculation of the width, B, of a square shallow foundation is done in the following for the ultimate 
limit state of the bearing resistance, through an approximate probabilistic method, developed by Hasofer-
Lind (1974). The results obtained are then compared with Monte Carlo simulations. To conclude about 
the non-linearity of the problem and the applicability of the probabilistic simplified approaches, the same 
problem was solved using the mean value first-order second-moment (MVFOSM). Finally, the shallow 
foundation was designed based on EC7, with the partial safety factors method and some conclusions are 
drawn. 
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Figure 1. Sketch of the problem. 

2 RANDOM VARIABLES 

In the probabilistic design, the uncertainties of the loads in time, the soil properties in space and the 
depth of foundation were directly considered. In Table 1, the random variables considered in the prob-
lem are characterized. 
 
Table 1. Random variables properties. 

Random variable Distribution function μ CV 

Permanent vertical load Normal 3000 0.10 

Variable vertical load Normal 1000 0.50 

Variable horizontal load Gumbel 250 0.25 

Saturated soil weight Normal 20 0.05 

Soil friction angle Normal 32 0.07 

Depth of foundation Rectangular between z = 1.5 and z = 2.5 m 

 
The uncertainty quantification of the actions was done according to the Joint Committee on Structural 
Safety recommendations, JCSS (2001). As a result, a normal distribution was selected to represent the 
permanent and variable vertical loads with a coefficient of variation, CV, of 10 and 50 %, respectively. 
JSCC considers the live load constituted by three parts: the overall mean load intensity for a particular 
user category, a zero mean normal distributed variable and a zero mean random field with a characteristic 
skewness to the right. For simplicity, only the first and second parts were considered, assuming a constant 
spatial distribution. Taking into account that the horizontal variable load was due to the wind action, the 
Gumbel distribution, with a CV of 25 %, was considered for the type of uncertainty involved in this kind 
of natural phenomenon. 

There are numerous studies that characterize and quantify the uncertainties of the physical and 
mechanical properties of soils. Based on studies of other researchers, Chalermyanont and Benson (2005) 
reported that a normal distribution is suitable to describe the unit weight and internal friction angle of 
soils. According to Phoon and Kulhawy (1999), the unit weight and the angle of internal friction typically 
have values of CV between 3 and 10 % and between 5 and 11 %, respectively, conveniently weighted 
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along the mobilized soil mass. In the present communication CV values equal to 5% and 7% were 
considered for the unit weight and the internal friction angle, respectively. 

Table 2 represents the correlation matrix assumed between the random variables, after some reflection 
about the physical behaviour of the variables. 

 
Table 2. Random variables correlation matrix. 

Random variable Saturated soil weight Soil friction angle 

Saturated soil weight 1.0 0.5 

Soil friction angle 0.5 1.0 

3 PROBABILISTIC METHODS 

According to the EC0, the structural safety verification, for one particular reliability level, is done 
through the limit state concept. A limit state is the limit beyond which the structure does not satisfy the 
relevant design criteria. So, for each structural system, the relevant limit state must not be exceeded 
during the lifetime of the structure, for any design situation with probability of occurrence. 

Reliability is the probability of a structure properly performing the functions for which it was designed 
over a given time. The structural reliability is normally evaluated using two measures, related by 

 fP1  (2) 

where ȕ is the reliability index and Pf is the failure probability. Φ-1
 represents the inverse of the cumula-

tive distribution of a standard normal variable. For current structures, with an expected lifetime of 50 yr, 
the EC0 sets a minimum reliability index of 3.8 for the ultimate limit states design, which corresponds to 
a Pf = 7.2×10

-5
, concerning RC2 class and CC2 (medium consequence for loss of human lives and 

considerable economic, social or environmental consequences). It was assumed in this paper that the 
shallow foundation is a current structure. 

In general, the failure probability can be determined using: accurate analytical integration, numerical 
integration methods, approximate analytical methods (like FORM methods) and simulation methods. The 
FORM methods include the first-order second-moments methods, FOSM, and the advanced first-order 
second-moment methods, AFOSM. 

3.1 Hasofer-Lind method 

In its original form, the Hasofer-Lind method, which belongs to AFOSM, is applicable to problems with 
uncorrelated normal random variables. The corresponding reliability index is defined as the minimum 
distance from the origin of the reduced coordinate system to the performance function,  and can be 
expressed as 

 'Xg

   '*x'*x
T

HL   (3) 

where  is the point of the performance function closest to the origin in reduced coordinates, named 
calculation or design point. In this definition, the original coordinate system n21  is trans-
formed into a reduced coordinate system 

 '*x 
 x,...,x,xX 

 'x,...,'x,'x'X n21  according to Eq. (4). Thus, the annulment of 
the performance function is made in the reduced coordinate system,   0'Xg . 

For nonlinear performance functions, the minimum distance calculation is an optimization problem, 
defined by ȕHL minimization, with the constraint condition     0 'xgxg . This calculation procedure was 
implemented in the program Mathcad 14. According to Low and Tang (1997), it is possible to consider 
the correlation between random variables in the value of the reliability index by Eq. (5), where ρ-1

 is the 
inverse matrix of correlation coefficients. 
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For random variables with non-normal distributions, the Rackwitz and Fiessler (1976) method was 
used to transform the variables distribution into an equivalent normal distribution. The estimation of the 
equivalent normal distribution parameters, X i

 and X i
, is performed by imposing equality of the 

cumulative distribution functions, F, and probability density functions, f, at the design point, 

N N

201



 n'*x,...,'*x,'*x'*X 21 of the non-normal variables and the equivalent normal variables. The parameters of 
equivalent distributions were determined by 
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The ultimate limit state verifications of bearing resistance took into account four load combinations, 
presented in Table 3. As the problem contains two variable actions, the EC0 states that, for each 
combination, one of these actions shall be selected as principal action and the other, named   
accompanying action, shall be affected by the coefficient, to take into account the reduced probability of 
the action variables simultaneously reach extreme values. In the probabilistic approach, the EC0 defines 
the 0  value for normal distribution according Eq. (8), where V is the CV of the accompanying action for 
the reference period, T1 the greatest basic period of combined variable actions and T the reference period 
(50 yr). It was considered that the basic period for the vertical and horizontal variable actions is 7 yr 
(typical for imposed loads on building floors) and 1 yr (associated to climate actions), respectively. It was 
found that T1 = 7 yr. 

 
 

Table 3. Load combinations. 

I Gv+y0Qv+Qh 

II Gv+Qv+y0Qh 

III Gv+Qh 

IV 
Gv+Qv 

(load without eccentricity) 
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Table 4 presents the values of B for each of the four action combinations, with the respective design 
points. It was determined B = 4.56 m. In this example, the design was determined by the actions combina-
tions I and III. 
 
Table 4. Width B obtained by the Hasofer-Lind method, with the respective design points. 

Load 
combinations 

B 
(m) 0  

Ȗsat
* 

(kN/m3) 
φ* 
(º) 

z* 
(m) 

Gv
* 

(kN) 
Qv

* 
(kN) 

Qh
*
 

(kN) 

I 4.56 0.36 17.63 25.14 1.70 3059.29 383.66 387.56 

II 4.42 0.55 17.39 24.47 1.68 3151.18 1419.82 146.67 

III 4.56 - 18.25 26.84 1.78 2906.23 - 522.47 

IV 4.12 - 17.42 24.53 1.67 3178.60 1495.34 - 

3.2 Monte Carlo simulations 

The validation of the results obtained by the previous method was performed by conducting Monte Carlo 
simulations. Using the program Risk, the best fit distributions of the results of four Monte Carlo 
simulations were determined. A simulation was run for each load combination, and the corresponding 
failure probability and reliability index were evaluated. Each simulation contained the generation of 
100 000 sets of random numbers. The adjustment of the distribution function to the Monte Carlo 
simulation results was made applying chi-square method. 
 
Table 5. Results from the Monte Carlo simulations and validation of the results obtained by Hasofer-Lind method. 

Load combina-
tions 

B 
(m) 

Best distribution 
fit 

Distribution parame-
ters 

Pf ȕMC ȕMC/ȕHL 

I 4.56 LogNomal 
μ = 985.15 
σ = 385.7 

Shift = -231.35 
1.32×10-4 3.65 0.96 

II 4.42 LogNormal 
μ = 1097.3 
σ = 437.97 

Shift = -227.84 
4.88×10-5 3.90 1.03 

III 4.56 LogNormal 
μ = 956.47 
σ = 375.57 

Shift = -218.09 
9.97×10-5 3.72 0.98 

IV 4.12 LogNormal 
μ = 1220.9 
σ = 485.29 

Shift = -245.39 
3.20×10-5 4.00 1.05 
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Table 5 represents the values obtained by Monte Carlo simulations and Figure 2 presents graphically the 
same results. The results obtained by the Hasofer-Lind method have small deviations compared to those 
obtained by Monte Carlo simulations. In this case, a maximum deviation of 5 % was found in the 
reliability index, for the load combination IV. Based on these results, the calculation of width B, by the 
Hasofer-Lind method, is considered as valid. 
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Figure 2. Monte Carlo simulation results. 

3.3 FOSM 

In this section, the FOSM was used to solve the same problem. FOSM is also known as the mean value 
first-order second-moment method, MVFOSM. In this method, the information of the random variables 
distribution is ignored. The performance function is linearized by the first-order approximation of a 
Taylor series development, evaluated at the mean values of the random variables, using the statistical 
moments up to the second order (mean values and variances). It comprises a higher degree of 
approximation than the Hasofer-Lind method. 

Limiting the Taylor series expansion of the performance function to linear terms produces the 
expressions represented by Eq. (9) and Eq. (10), as first order approximation of the mean value and the 
variance, respectively. 
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where 

  jij,iji X,XCov   (11) 

In situations of lack of an explicit performance function, such as the results from numerical models, the 
determination of σz can be performed by the central difference approximation for the calculation of the 
first derivative (finite difference method). According to this method, the expressions represented in 
Eq. (12) to Eq. (15) are considered. 
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Table 6 represents the reliability index, ȕ = μz / σz, and its failure probability, obtained by FOSM for the 
load combinations used in 3.1. The results of the exact derivative and central difference approximation 
are presented. 

 
Table 6. Reliability index and failure probability determined by FOSM. 

Exact derivative Central difference approximation Action 
combina-

tions 

B 
(m) 

0  μ σ ȕFOSM Pf,FOSM 
0  μ σ ȕFOSM,a Pf,FOSM,a 

I 4.56 0.349 737.2 362.1 2.036 2.09×10-2 0.348 737.2 367.9 2.004 2.26×10-2 

II 4.42 0.590 812.7 398.4 2.040 2.07×10-2 0.589 812.5 405.0 2.006 2.24×10-2 

III 4.56 - 727.6 353.6 2.058 1.98×10-2 - 727.6 359.2 2.026 2.14×10-2 

IV 4.12 - 894.2 433.8 2.062 1.96×10-2 - 894.2 441.1 2.027 2.13×10-2 

 
The difference between the results of the variance of the performance function, obtained by exact 
derivative or by central difference approximation, is very small, despite of the very sharp shape and non-
linearity nature of the performance function. The reliability indexes obtained are quite similar in both 
cases. Thus, in the inability to determine the exact partial derivatives of different variables, the central 
difference approximation allows, in a simple manner, the determination of similar results to the derivation 
of the exact function of performance. 

However, the results obtained by FOSM differ greatly from the results obtained by the Hasofer-Lind 
method, which have been confirmed by Monte Carlo simulations. The FOSM is only accurate in special 
situations, such as when all variables are normal and statistically independent and the performance 
function is almost a linear combination of these variables, which is not the present case. The absence of 
the distribution functions of the variables information and the use of a linearized performance function 
around its mean point can lead to significant errors. In this case, as shown in Figure 3, a reliability index 
of 3.8 could not be achieved with this method for any load combinations, despite of the width value 
considered. In this case, this approximate method does not produce acceptable results. 

 

0,0

0,5

1,0

1,5

2,0

2,5

3,0

2 3 4 5 6 7 8 9 10

b
F

O
S

M

B (m)

Comb. I Comb. II

Comb. III Comb. IV

0

400

800

1.200

1.600

2.000

2 3 4 5 6 7 8 9 10

μ z
; 
σ z

B (m)

μ-I μ-II μ-III μ-IV

σ-I σ-II σ-III σ-IV

 
Figure 3. Reliability index, mean value and variance evolution with B for FOSM. 
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4 PARTIAL SAFETY FACTORS METHOD 

According to the recommended in EC7, the design of the width B of a shallow foundation was made by 
the three approaches presented in Table 7, considering the partial safety factors presented in Table 8 and 
the characteristic values shown in Table 9, obtained from the distribution functions presented in 2. 

This communication presents the comparison between the three Eurocode design approaches, even 
knowing that each European country adopted only one design approach. 

 
Table 7. Eurocode design approaches. 

Design 
approaches 

Combinations 

C1 A1 ”+” M1 ”+” R1 
DA1 

C2 A2 ”+” M2 ”+” R1 

DA2 A1 ”+” M1 ”+” R2 

DA3 (A1 or A2) ”+” M1 ”+” R1 

 

Table 8. Partial safety factors recommended by Eurocode. 

Actions Soil parameters 

fav 1 M1 1 

A1 un-

fav 
1.35 

tan(φ) 
M2 1.25 

fav 1 M1 1 
Permanent 

A2 un-

fav 
1 

sat  
M2 1 

fav 0 Resistance 

A1 un-

fav 
1.5 R1 1 

fav 0 R2 1.4 
Variable 

A2 un-

fav 
1.3 R3 1 

 

Table 9. Characteristic values obtained from the distribution functions of the random variables (EC7). 

Random 
variables 

Mean 
values 

Characteristic values 
Percentile 

(%) 
Random 
variables 

Mean 
values 

Characteristic values 
Percentile 

(%) 

3493.5 Gv,k,sup 95 21.65 γsat,k,sup 95 
Gv (kN) 3000 

2506.5 Gv,k,inf 5 

sat  

(kN/m3) 
20 

18.36 γsat,k,inf 5 

2026.9 Qv,k,desf 98 35.7 φk,sup 95 
Qv (kN) 1000 

0 Qv,k,fav - 
φ (º) 32 

28.3 φk,inf 5 

412 Qh,k,desf 98 2.45 zk,inf 95 
Qh (kN) 250 

0 Qh,k,fav - 
z (m) 2 

1.55 zk,sup 5 

 

Table 10 presents the results of width B for each design approach considered in Table 7. The 
corresponding design values of the six variables are also indicated. As can be seen in this example, for the 
DA1-C1 and DA2 approaches the horizontal load is most relevant while, in the other two approaches, the 
vertical loads increase their importance in comparison with the horizontal load effects. 

In this case, the width B would be determined by the approach DA3, obtaining B = 6.05 m. This value 
is 33 % higher than the value obtained by the method of Hasofer-Lind. In the four approaches, the 
deterministic method gave always higher values of B than the probabilistic methods. Assuming, that the 
Eurocodes take into account the uncertainties considered in the probabilistic methods, this means that, for 
the variability assumed, the partial safety factors present in EC7 were calibrated for lower failure 
probabilities. Table 10 represents the reliability indexes determined in accordance with the Hasofer-Lind 
method for the dimensions obtained by the partial safety factors method. As can be seen, all the values 
are higher than the limit imposed by EC0 (3.8). 
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Table 10. Width B designed by the partial safety factors method, recommended by the EC7. 

Calculation 
approaches 

BEC7 
(m) 

Gv,d 
(kN) 

Qv,d 
(kN) 

Qh 
(kN) 

γsat 
(kN/m3) 

φ  
(º) 

z 
(m) 

BEC7/BHL ȕHL 

C1 4.93 2506.5 0 618.0 18.36 28.32 1.55 1.08 4.23 
DA1 

C2 5.62 3493.5 1843.7* 535.6 18.36 23.32 1.55 1.23 4.88 

DA2 5.41 2506.5 0 618.0 18.36 28.32 1.55 1.19 4.70 

DA3 6.05 4716.2 2128.2* 618.0 18.36 23.32 1.55 1.33 5.21 

* value affected by 0  

 
The Eurocodes partial safety factors were calibrated semi-probabilistically, taking into account the past 
relevant geotechnical experience, in order to not cause any design disruption. For comparison, Table 11 
presents the partial safety factors determined from the results obtained in 2.1 with the probabilistic 
method. The results are very different from those proposed by EC7. In general, the partial factors are 
smaller than those recommended in the regulation. For the material properties, the values of the partial 
safety factors are close to those recommended by EC7. The values for the foundation level are near the 
unit, comparing with a characteristic value. This means that the consideration of the mean value for 
geometric variables with significant variance, recommended by EC0, is not the best option. At last, the 
loading partial safety factors are, in some cases, very different than the values suggested by the EC0. 

However, in these analyses, the experience of historical cases was overlooked, which have in 
consideration another type of uncertainties, namely, spatial variability, construction activities and 
calculation model accuracy. 

 
Table 11. Determination of the partial safety factors from the results obtained by the Hasofer-Lind method. 

Action 
combinations 

ȖȖ Ȗφ Ȗz 
Gv

* 

(kN) 

Qv
* 

(kN) 

Qh
*
 

(kN) 

I 1.041 1.147 0.912(zk,sup) 0.876(Gv,k,sup) 0.526(Qv,k,desf) 0.941(Qh,k,desf) 

II 1.056 1.183 0.923(zk,sup) 0.902(Gv,k,sup) 0.700(Qv,k,desf) 0.647(Qh,k,desf) 

III 1.006 1.064 0.871(zk,sup) 0.832(Gv,k,sup) - 1.268(Qh,k,desf) 

IV 1.054 1.180 0.928(zk,sup) 0.910(Gv,k,sup) 0.738(Qv,k,desf) - 

5 CONCLUSIONS 

This paper presents the design of the width B of a square shallow foundation subjected to eccentric load-
ing, through deterministic and probabilistic methods for the ultimate limit state of the bearing resistance. 
Width B was obtained by the Hasofer-Lind method. Those results were validated by Monte Carlo simula-
tions and compared with other design methods, namely probabilistic and deterministic methods. 

The MVFOSM utilization does not give adequate results, achieving undervalued levels of safety. This 
method should not be used in problems with high nonlinear solutions. 

The results show that the level of safety determined by Hasofer-Lind method is smaller in comparison 
with the partial safety factors method. In that way, there are two possibilities to explain the differences: 
the partial safety factors method is overly conservative or the Hasofer-Lind method does not consider all 
the uncertainties of the problem. 

The Eurocodes partial safety factors were calibrated semi-probabilistically by performing probabilistic 
calculations, being adjusted accordingly to the experience gained over time. What is shown by the results 
is that the direct utilization of probabilistic methods does not take into consideration important 
uncertainties related to construction activities and soil variability. So, without consideration of these types 
of uncertainties, these probabilistic methods should be applied carefully, due to the fact that can produce 
unsafe designs compared with the level of safety considered over time. 

As future development of the present work, the different sources of uncertainties, namely, spatial 
variability, construction activities and calculation model precision, shall be incorporated in the 
probabilistic methods for designing shallow foundations, in order to incorporate the calibration of the 
partial safety factors or to establish the probabilistic methods as an alternative design methodology. 
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