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Bottom friction plays an important role in modelling river flows. In three-dimensional (3D) 

models, the vertical discretization is commonly based on σ-layers or z-layers. In this paper 

we focus on a well-known problem encountered when applying z-layers: local truncation 

errors in the computation of bottom shear stress and near-bed turbulence along a sloping 

bottom as e.g. in the case of 3D river simulations. This problem stems from the ‘staircase’ 

representation of the bottom and results in difficulties in the computation of morphological 

changes. We consider uniform channel flow and analyze the influence of variations in near-

bed layer thickness on the local truncation errors in the vertical diffusion term. Application 

of both an algebraic turbulence model, based on a prescribed mixing-length and the 

standard k-ε turbulence model to compute the eddy viscosity is investigated. We consider 

two approaches that reduce the local truncation errors and inspect their applicability for 

more general flow situations. 

 

INTRODUCTION 

 

The computation of bottom shear stress and near-bed turbulence in three-dimensional (3D) 

hydrodynamic models is of key importance for determining flow resistance and morpho-

dynamics. For the vertical discretization in such 3D models, commonly either terrain-

following σ-layers (Phillips [10]) or strictly horizontal z-layers are used (Figure 1). Both 

approaches have their advantages and disadvantages. 

Using σ-layer models, problems arise when modelling stratified flow above steep 

bottom slopes, as shown by e.g. Stelling and Van Kester [12] and Van Kester et al. [5]. The 

z-layer discretization, on the other hand, results in a ‘staircase’ representation of the bottom 

and free surface, see Figure 1. Even using a partial-cell approach (Adcroft et al. [1], 

Pacanowski and Gnanadesikan [8]), the staircase boundaries cause problems. Firstly, 

implicit form drag may be generated due to inadequate treatment of the advection terms 

(see e.g. Beckmann and Döscher [3], Chen [4], Penduff et al. [9], Zhao [14] and Kleptsova 

et al. [6]). Secondly, large ratios in layer thickness - occurring when the bottom or free 

surface passes through a layer interface - result in discontinuities in the velocity and shear 

stress (Figure 1). This is especially critical for the bottom shear stress distribution as it is 

often applied in (coupled) sediment transport and morphodynamic models. 





 (1) 

 

The pressure gradient in horizontal direction p ̃x is assumed to be equal to the free-surface 

slope, multiplied by the gravitational acceleration g and the free-surface slope is assumed 

parallel to the bottom, i.e. p ̃x = gζx = -gib, where ib is the bottom slope (positive 

downwards). 

The water column is discretized using horizontal z-layers. We improve the staircase 

representation of the bottom and free-surface level by applying a partial-cell approach, 

resulting in a varying layer thickness near the bottom and free-surface. At the free-surface 

and bottom we specify the shear stress (wind and bottom friction) as boundary conditions. 

Discretizing the diffusion term using central differences one obtains for a layer k: 

 

 (2) 

 

where ∆zk is the layer thickness of layer k and ∆zk+1/2 = ½(∆zk+∆zk+1). The viscosity ντ is 

given (or computed) at the layer interfaces. At this point we are merely interested in the 

effects of large ratios in layer thickness near the bottom. We therefore only consider the 

equation in the layer containing the bottom: k = m. In Eq. (2) we insert the boundary 

condition for the bottom shear stress τb /ρ = ντuz = , where  is the shear velocity and 

we introduce Rm = ∆zm+1 / ∆zm as the layer thickness ratio between layers m+1 and m.  

The equation for layer m becomes: 

 

 (3) 

 

ANALYSIS OF THE EQUATIONS 

 

Discontinuities in velocities and bottom shear stress are known to occur when the bottom 

passes through a layer interface, introducing thin layers. We therefore investigate the 

behaviour of the local truncation error of the diffusion term as a function of the ratio in 

near-bed layer thickness Rm.  

The analytical expressions for the velocity and turbulent eddy viscosity are: 

 

 (4) 

 



 (5) 

 

where H is the total water depth, z0 is the roughness height and κ the von Kármán constant. 

The latter expression for ντ corresponds to the application of an algebraic turbulence model 

based on the mixing-length concept (see e.g. Nezu and Nakagawa [7]). We assume these 

relations hold at least (approximately) in the near-bed layers. In the tests (Figures 4 and 5) 

we investigate the local truncation errors when the standard k-ε turbulence model is applied 

and compare with these analytical profiles.  

Substituting expressions (4) and (5) in Eq. (3) yields the local truncation error in the 

near-bed layer em: 

 

 (6) 

 

If one integrates Eq. (2) over all layers, one obtains the result gib = / H (assuming 

zero wind shear stress). Using this expression we obtain the relative local truncation error in 

the near-bed layer Em = em / (gib): 

 

 (7) 

 

This term depends on Rm, but also on H, z0 and ∆zm. We can reduce the number of 

variables and gain some more insight in the error by introducing the ratios R0 = z0 / ∆zm and 

RH = H / ∆zm. Inserting these expressions in Eq. (7), we obtain: 

 

 (8) 

 

R0 is usually much smaller than the other ratios and can commonly be neglected. We 

therefore focus on the behaviour of the truncation error as a function of Rm and RH. Figure 2 

displays Em (in %, i.e. multiplied by 100) as a function of these two ratios for a roughness 

height z0 = 0.0023m. Three things can be noted: 

 

• The error Em < 20% for Rm ≈ 1 (equidistant near-bed layering) for RH < 10-15. 

• The error Em < 20% for RH ≈ 3 (H ≈ 3∆zm) for Rm < 6-8. 

• The error grows rapidly in all other situations (Em > 500%). 

 









and the k-ε turbulence model. Preliminary tests using the new method for the flow over a 

bottom bump show promising results. The simple modifications allow the direct use of 

computed bottom shear stresses for morphodynamical simulations. 
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