
Conference Paper, Published Version

Prodanovic, Pat
QGIS as a pre- and post-processor for TELEMAC: mesh
generation and output visualization
Zur Verfügung gestellt in Kooperation mit/Provided in Cooperation with:
TELEMAC-MASCARET Core Group

Verfügbar unter/Available at: https://hdl.handle.net/20.500.11970/104315

Vorgeschlagene Zitierweise/Suggested citation:
Prodanovic, Pat (2015): QGIS as a pre- and post-processor for TELEMAC: mesh generation
and output visualization. In: Moulinec, Charles; Emerson, David (Hg.): Proceedings of the
XXII TELEMAC-MASCARET Technical User Conference October 15-16, 2030. Warrington:
STFC Daresbury Laboratory. S. 83-90.

Standardnutzungsbedingungen/Terms of Use:

Die Dokumente in HENRY stehen unter der Creative Commons Lizenz CC BY 4.0, sofern keine abweichenden
Nutzungsbedingungen getroffen wurden. Damit ist sowohl die kommerzielle Nutzung als auch das Teilen, die
Weiterbearbeitung und Speicherung erlaubt. Das Verwenden und das Bearbeiten stehen unter der Bedingung der
Namensnennung. Im Einzelfall kann eine restriktivere Lizenz gelten; dann gelten abweichend von den obigen
Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

Documents in HENRY are made available under the Creative Commons License CC BY 4.0, if no other license is
applicable. Under CC BY 4.0 commercial use and sharing, remixing, transforming, and building upon the material
of the work is permitted. In some cases a different, more restrictive license may apply; if applicable the terms of
the restrictive license will be binding.

QGIS as a pre- and post-processor for TELEMAC:
mesh generation and output visualization

P. Prodanovic
Hydrotechnical Engineer
Riggs Engineering Ltd.

London, Ontario, Canada
pprodanovic@riggsengineering.com

Abstract— This paper presents a summary of scripts
named pputils that link QGIS to tasks common in
numerical modeling of free surface flows, such mesh
generation and visualization of model output. QGIS is an
open source Geographic Information System under
active development and supported under all major
platforms. The scripts in pputils are written in the
Python programming language relying on libraries
Matplotlib, Numpy, and the Python parser scripts that
are part of the TELEMAC source code. Mesh generation
is accomplished by developing skeleton geometry within
the QGIS environment (model boundary, constraint
lines, islands, nodes, etc.) and exporting it to a WKT
(well known text) format. The WKT format is then used
by pputils to generate steering files for Triangle and
Gmsh mesh generation programs. The meshing
programs are then executed, and produce a mesh
respecting user specified constraints. The bottom
elevation and spacially varying friction attributes in the
generated mesh are created and final output saved for
further TELEMAC simulations. After the simulations
are complete, the scripts in pputils take the TELEMAC
output files and generate a set of gridded files (with a
user specified resolution), thus allowing snapshots of the
model output to be visualized within the QGIS
environment. The same also applies to display of vector
variables. Having model output available in the QGIS
environment allows the user to create publication quality
output of the TELEMAC simulation results.

I. INTRODUTION
Increasing development of open source Geographic

Information Systems (GIS) has had a marked impact in how
spacial data is managed. By being open source, current GIS
applications provide individual users with a real alternative to
commercially available GIS packages. In recent years open
source GIS has matured that it now allows users to perform a
wide variety of spacial data management tasks using both
vector and raster data. For example, open source GIS
applications provide numerical modeling specialist a useful
set of tools for vector based geometry manipulation (such as
importing and editing shoreline features, creating model
boundaries, adding constraint lines, islands, re-sampling

polylines, etc.). Tasks that in the past would require a
Computer Aided Design (CAD) packages, nowadays need
only an open source GIS package. The open source GIS
package relied upon in this work is QGIS [1]. Alternative
open source GIS applications include SAGA [2] and GRASS
GIS [3], GDAL [4] although there are others as well.

A typical free surface flow modeling project requires the
user to collect, assemble, merge, and edit geometric data like
topographic and bathymetric surveys, lidar data (masspoints
and breaklines), digital elevation models, etc. Free surface
modeling projects are defined here as those that study river or
coastal hydraulics, sediment transport, wave climate analysis,
water quality assessments, and others using 2D or 3D
numerical modeling codes. Typical projects of this kind also
require one to manage large data sets like aerial images, land
use data, and other spacial databases. Such data sets are used
in numerical modeling projects where the user is required to
define model boundary, construct internal constraint lines,
delineate islands or holes, and include other geometric
features in the domain. Following geometrical edits, the next
step is to apply a meshing algorithm to: i) construct terrain
models (or digital surfaces) that are used as the basis for
interpolating or assigning elevations, and ii) construct a
quality model mesh for use in numerical simulations. After
the input meshes are assembled, and bottom elevations and
friction or other attributes are assigned to the mesh, the
numerical simulations take place. Following completion of
the numerical simulations, results of the models need to be
conveyed, often to those not familiar with intricacies of
numerical analysis. High quality graphical outputs are thus
required to include in reports and provide the reader with a
graphical summary of simulated behaviour under study.

Given the rapid development of open source GIS
applications (QGIS in particular), the near future will likely
allow all tasks typical in free surface modeling projects to be
completed within a GIS environment. This means it would
likely be possible to open a GIS package, import the
necessary topographic and bathymetric data, build terrain
models to represent surfaces, produce a quality mesh of a
domain for use in simulations, interpolate the quality mesh
from the generated surface, write model steering files,
execute the numerical simulations, view model outputs, and
prepare publication ready figures of the desired output.

vcz18385
Typewritten Text
83

22nd Telemac & Mascaret User Club STFC Daresbury Laboratory, UK, 13-16 October, 2015

No doubt, creating an interface envisioned above will
require significant effort by many in the user community, but
tools are now available that make this possible. There has
been progress to date in the regard. Existing developments
include the following projects:

 Lutra Constulting's Crayfish project [5], which
allows visualization of hydraulic model output
within the QGIS environment,

 ETH Zurich's BASEMENT hydraulic modeling
system [6], and in particular its BASEmesh
QGIS plugin that allows the user to create
terrain surfaces, develop quality model meshes,
perform necessary data interpolations, and
prepare model geometry files all within QGIS,

 Uwe Merkel's TELEMAC Selafin Reader for
QGIS [7], that allows visualization of
TELEMAC model output within QGIS.

Each of the above projects has advanced use of using
open source software in free surface modeling projects. They
have served as both an inspiration and motivation for the
development of pputils that are the focus of this paper. The
main objective of pputils is to continue the trend in using
open source software as both pre- and post-processors for use
in free surface flow modeling projects.

One of the guiding principles that lead to the
development of pputils was driven by the need to efficiently
complete tasks typical in environmental flow modeling
projects, and the desire to do so entirely using open source
software. Use of commercially available software, or
software that is free but not in open source, was not further
considered.

The guiding criteria that was set when developing pputils
were the following:

 All code must be entirely in open source,

 It must work on all common platforms,

 It must have absolute minimal dependencies and
easy installation,

 It must be computationally efficient with
minimal execution times, and

 All scripts must be executed using standard
command line.

It is believed that if the above criteria are met, the tools
developed could easily be incorporated in a future graphical
user interface, and be integrated within an open source GIS
environment like QGIS.

A. Scope of paper
This paper presents a summary of command line tools

collectively named pputils that provide its users with an
ability to complete all aspects of a typical environmental
flow modeling project while using only open source
software. Background information is provided on the open
source software used, including QGIS, Triangle [8,9] and

Gmsh [10] meshing programs, as well as Numpy [11] and
Matplotlib [12] libraries part of the Python programming
language. An illustration of the process used in the
construction of meshes used in numerical simulations is
presented, and includes geometric input preparation using
QGIS (boundary definition, specifying mesh constraints, re-
sampling polylines, etc.), development of Triangulated
Irregular Networks (TIN) for terrain surfaces using Triangle,
quality mesh generation using Gmsh, interpolation of quality
mesh from a previously developed TIN, and creation of
Selafin files for use in simulations using the TELEMAC
modeling system. Visualization of the TELEMAC model
output within QGIS is also illustrated, using both field and
vector variables.

II. BACKGROUND
This section of the paper presents a brief overview of the

tools relied by pputils. For example, open source QGIS
application is required with which the user performs all
geometrical edits, and prepare input files used by scripts in
pputils. In this regard, QGIS is not used out of necessity, but
simply out of convenience. It is possible for the user to
create manually (in a simple text editor) all of the inputs
required for say, mesh generation using Triangle and Gmsh.
However, tasks like drawing and re-sampling polylines,
joining, breaking, merging and otherwise editing polygons
can be accomplished with relative ease using QGIS, that it
becomes simply easier to use a graphical user interface than
a text editor. As noted earlier, QGIS is used in this work,
although no doubt the same tasks could be carried out using
other GIS packages. Given the wide spread development of
open source software, other users may find ways to
accomplish same tasks differently, and perhaps more
efficiently than is presented in this paper.

A. Open source GIS
The focus on this paper is on using QGIS on pre- and

post-processing tasks associated with typical free surface
flow modeling projects using the TELEMAC modeling
system. QGIS is a free and open source Geographic
Information System application that, in the most general
sense, provides its users with editing, viewing and analysis of
spacial data. QGIS has reached a mature status in its
evolution, having a large number of volunteer developers
who provide regular updates and bug fixes to the program.
The application has been translated in approximately 50
languages, and is freely available on Windows, Mac and
Linux operating systems.

QGIS also interfaces with other open source GIS
packages, including GRASS, SAGA, GDAL and others, and
thus provides its users with access to a wide range of
geospacial tools all within one application. QGIS Plugins,
which are commonly written in the Python programming
language act to further customize and extend capabilities of
QGIS. The Crayfish, BASEmesh and Selafin reader for
QGIS projects are all plugins written to work inside QGIS.

vcz18385
Typewritten Text
84

22nd Telemac & Mascaret User Club STFC Daresbury Laboratory, UK, 13-16 October, 2015

B. Mesh generation for TELEMAC
Mesh generation for use in the TELEMAC modeling

system requires high quality triangular meshes. A number of
tools currently exist that accomplish this task. Perhaps the
most popular in the TELEMAC user community is the
BlueKenue application [13], developed by researchers at the
National Research Council in Ottawa, Canada. BlueKenue is
a pre- and post-processor for TELEMAC, with features to
generate and interpolate meshes, and read and view model
output. BlueKenue is free, but not in open source. It is
available only on the Windows platform.

Another set of pre- and post-processors for TELEMAC
(and other models) are Gismo, Janet, and Davit, developed
by Smile Consult GmbH [14]. Gismo, Janet, and Davit allow
their users highly advanced pre- and post- processing
capabilities. The programs from Smile Consult are
commercial applications and are available for Windows,
Mac, and Linux platforms.

Open source mesh generation for TELEMAC is perhaps
not as common as above applications. Triangle [8, 9] mesh
generator, developed by JR Shewchuk at the University of
California at Berkley, is available in its entirety as C source
code from the author's website. Further, description of
Triangle is given in [8]:

“Triangle is a C program for two-dimensional mesh
generation and construction of Delaunay triangulations,
constrained Delaunay triangulations, and Voronoï diagrams.
Triangle is fast, memory-efficient, and robust; it computes
Delaunay triangulations and constrained Delaunay
triangulations exactly. ... Features [of Triangle] include user-
specified constraints on angles and triangle areas, user-
specified holes and concavities, and the economical use of
exact arithmetic to improve robustness” p. 203.

After compiling Triangle, the program is executed from
the command line, with the user specifying a number of
parameters and input files. The BASEmesh QGIS plugin, is
one variant of pre- and post-processor to the Triangle mesh
generator. Another is pputils script (gis2triangle.py),
described in the subsequent section of this paper.

Another open source triangular mesh generator is Gmsh
[10], developed by Christophe Geuzaine and Jean-François
Remacle, at the Université de Liège, Belguim. Gmsh is an all
purpose 2D and 3D finite element mesh generator (more than
just triangular meshes are included), with a built-in GUI
CAD engine for pre- and post-processing. Gmsh's GUI is
developed using FLTK GUI toolkit, making it extremely fast,
light while at the same time providing its users advanced
graphical input and visualization features. The Gmsh
program is available as open source, and is supported in
Windows, Mac and Linux. The GUI has four different
modules: geometry, mesh, solver and post-processing.
Geometry for Gmsh can be generated interactively using its
GUI, or be imported from external files using a number of
different formats. Geometry can also be developed using
Gmsh's text based steering files.

Previously, Dr. Olivier Gourgue at the Flanders
Hydraulic Research developed a set of post-processing
scripts using Matlab named PUG [15] that are able to convert
Gmsh output to the Selafin format for use in TELEMAC
simulations. The PUG scripts also produce the TELEMAC
*.cli boundary conditions files.

C. Python programming language
In order to create a link between QGIS and mesh

generation programs Triangle and Gmsh, a script is needed to
convert GIS geometry and create a steering file understood
by each respective meshing algorithm. Further, scripts are
also needed to extract TELEMAC simulation output and port
it back to QGIS.

Package Numpy, used for scientific computing on the
Python language was heavily used in the development of
pputils scripts. Numpy's vectorized implementation of
common functions ensured that tasks involving numerical
calculations are executed extremely efficiently, with minimal
waiting times for the user. Using Numpy, rectangular grids
can be generated using tens of millions of cells in a matter of
seconds using just today's desktop computers.

The Python library Matplotlib was also heavily relied
upon in pputils, specifically its triangulation and gridding
algorithms. Matplotlib is a plotting library and is a numerical
extension of Numpy. Using Matplotlib triangulation
algorithms allowed scripts in pputils to carry out conversion
tasks (such as converting TELEMAC's simulation output to a
gridded format used by QGIS).

Python provides functionality of a general scripting
language with excellent libraries used for numerical analysis,
thereby making it an extremely useful tool for general
scientific analysis of data. Since Python programming
language is used by both QGIS and TELEMAC, it seems
natural that it also be used as a scripting language to link
QGIS and TELEMAC.

III. MESH GENERATION
There are at least two different types of meshes

commonly used in free surface flow modeling projects. One
deals with the generation of digital terrain surfaces or
Triangulated Irregular Networks (TINs) from topographic,
bathymetric, lidar and other digital data. TINs are used to
represent digital surfaces of table lands, rivers or sea beds,
and are used for, among other things, as a basis for
interpolating (and assigning elevations) to the quality mesh to
be used in numerical simulations. The other kind of mesh is
the quality mesh on which numerical simulations are carried
out. Regardless of the type of mesh the user wishes to
generate, input data preparation is very similar. A skeleton
geometry (meaning boundary polygon, constraint lines,
islands or holes, and/or embedded nodes) must be prepared
first.

A. Input preparation using QGIS
This section illustrates how to use the open source QGIS

application to develop skeleton geometry used for mesh
generation. The scripts in pputils will take the skeleton

vcz18385
Typewritten Text
85

22nd Telemac & Mascaret User Club STFC Daresbury Laboratory, UK, 13-16 October, 2015

geometry, do some format conversions, and then generate
steering files for both Triangle and Gmsh mesh generation
programs. It will be up to the user to launch these programs,
and generate triangular meshes. More on this process is
provided below.

The logic in how data management is used in pputils
parallels the data management structure used by the
BASEmesh QGIS plugin. There are some differences, of
course. First, the user is required to define a polyline
representing the boundary of the mesh domain. A required
condition is that the boundary polyline be a closed shape,
implying that the same coordinate be used as starting and
ending point. Second and optional, internal constraint lines
are developed, and can be either closed or open polylines.
Third and optional, islands (or holes) in the domain are
defined using closed polylines. Finally, the user must define
a master nodes file, which contains vertices of all of the
boundary, constraint, and island (if any) files. Creation of the
master nodes files in QGIS is rather simple, as the user is
required to merge all of the polylines, extract their vertices as
individual nodes, and save the file as a text based xyz format.
If there are to be embedded nodes in the mesh (as would be
the case in the generation of digital surfaces or TINs), the
nodes file must include these, in addition to the vertices of
the boundary polyline, lines and islands. The inherent
assumption in the above procedure is that all of the polyline
vertices must snap (within a reasonable horizontal tolerance)
to the coordinates of the master nodes file. Note that only the
master nodes file contain xyz attributes), while the boundary,
line constraints, and holes files contain shapeid,x,y attributes.
The scripts that generate the mesh generation steering files
for Triangle and Gmsh use sophisticated searching
algorithms that look up the z value from the master nodes file
for all boundary, lines, and island files (if any).

The user is required to save within QGIS individual files,
according to the formats specified. For the master nodes file,
an xyz, comma separated file suffices. For the boundaries,
lines, and hole files, the easiest is to save each as a WKT
(well known text) format within QGIS. A script within the
pputils named wkt2csv.py takes the files in WKT format, and
converts them to a shapeid,x,y comma separated format used
by pputils.

In summary, before going to mesh generation, the user
prepares nodes.csv (required), boundary.csv (required),
lines.csv (optional) and holes.csv (optional) files.

B. Triangulated Irregular Network (TIN) using Triangle
mesh generator
As a note of completeness, pputils use a slightly different

format for specification of holes for use in the Triangle mesh
generator. Simply by virtue of the requirements of the
Triangle's steering file, the boundary of the holes should be
included as closed lines in the lines file, and point
coordinates (holeid,x,y) within hole boundary must be
included in the holes file. Examples provided with the pputils
source code explain this further.

In order for the user to generate a TIN surface using the
Triangle mesh generator, the following files are required:

1. nodes.csv (containing a list of all nodes in xyz
format, comma separated),

2. boundary.csv (containing comma separated node
listings of mesh boundary, specified as
shapeid,x,y),

3. lines.csv (optional, containing comma separated
constraint lines or breaklines, specified as
shapeid,x,y). If there are holes, they should be
specified as closed lines in the lines file.

4. holes.csv (optional, containing comma separated
point file with holeid,x,y attributes). x,y
coordinates should be placed inside the hole
closed polyline.

After creating the above files, the user creates the
Triangle steering file by executing the following Python
script:
python gis2triangle.py -n nodes.csv -b
boundary.csv -l lines.csv -h holes.csv -o
out.poly

If there are no lines or holes files needed, the user simply
enters 'none', without the quotes as the -l and -h argument to
the script.

The file out.poly is generated that is a steering file for
Triangle. To generate the TIN mesh, the user executes the
Triangle mesh generator using previously compiled binary
program:
triangle_64 out.poly

Where triangle_64 is the Linux 64 bit version of the
Triangle mesh generator. The compiled binaries in pputils
also provide triangle_32 and triangle_32.exe, and represent
Linux 32 bit and Windows 32 binaries.

The above command generates out.1.node, out.1.ele and
out.1.poly text based files. A script in pputils takes these and
creates an Adcirc based mesh:
python triangle2adcirc.py -n out.1.node -e
out.1.ele -o out.grd

Where the out.grd is the TIN in Adcirc mesh format. The
Adcirc format was selected for use in pputils as it is a simple
text based mesh file.

Suppose the user wishes to convert the out.grd TIN file to
a regular *.asc gridded file (often referred to as the digital
elevation model or DEM), the following would be executed:
python adcirc2asc.py -i out.grd -s 10 -o
out.asc

Where the out.grd is the Adcirc TIN file generated above,
-s parameter is the output grid spacing in meters (10 m in
above example), and -o parameter is the resulting output
DEM file. The Matplotlib library is used to read the
triangulation from the TIN file, and create a gridded DEM
file. The *.asc file can easily be loaded into QGIS, or be used
in input to other gridded based numerical simulation
applications (like the SWAN wave model for example).

vcz18385
Typewritten Text
86

22nd Telemac & Mascaret User Club

Testing was done by reducing the grid resolution and
producing a DEM with tens million grid points. The
processing for this task took in the order of seconds on a
desktop computer due to vectorized Numpy and Matplotlib
functions.

Lastly, should the user wish to display the mesh within
the QGIS environment, the following script should be used:
python adcirc2wkt.py -i out.grd -
outWKT_e.csv outWKT_n.csv

Where the outWKT_e.csv and out WKT_n.csv files are
WKT (well known text) format output of the elements (as
polygons) and nodes (as points) that can be easily loaded into
QGIS.

Alternatively, the following script could be used to create
a *.dxf file of the Adcirc file:
python adcirc2dxf.py -i out.grd -

Where -i represents the input Adcirc file and
output file written in *.dxf format.

An example output of the TIN model of the bathymetry
of Lake Manitouwabing, located in northern Ontario, Canada
is shown in Figure 1 (global view) and Figure 2 (zoomed in
view).

Figure 1: Lake Manitouwabing TIN generated by Triangle

Even though this section uses the Triangle mesh
generator to generate a TIN, Triangle can also be used to
create a quality mesh for use in numerical simulations. The
interested user is thus directed to documentation of Triangle
which covers command line flags and input parameters used
to produce a quality based mesh. Note the same steering file
generated by gis2triangle.py would be used as a starting point
towards this task.

STFC Daresbury Laboratory, UK

the grid resolution and
producing a DEM with tens million grid points. The
processing for this task took in the order of seconds on a
desktop computer due to vectorized Numpy and Matplotlib

Lastly, should the user wish to display the mesh within
the QGIS environment, the following script should be used:

-o

Where the outWKT_e.csv and out WKT_n.csv files are
WKT (well known text) format output of the elements (as

ts) that can be easily loaded into

Alternatively, the following script could be used to create

-o out.dxf
i represents the input Adcirc file and -o is the

An example output of the TIN model of the bathymetry
of Lake Manitouwabing, located in northern Ontario, Canada

in Figure 1 (global view) and Figure 2 (zoomed in

Figure 1: Lake Manitouwabing TIN generated by Triangle

Even though this section uses the Triangle mesh
generator to generate a TIN, Triangle can also be used to
create a quality mesh for use in numerical simulations. The
interested user is thus directed to documentation of Triangle

ags and input parameters used
to produce a quality based mesh. Note the same steering file
generated by gis2triangle.py would be used as a starting point

Figure 2: Close up of Lake Manitouwabing TIN

C. Quality mesh generation using Gmsh
As an alternative to Triangle, the user is also given the

option to use the Gmsh mesh generator. In the same way as
Triangle, the user is expected to prepare the following input
files:

1. nodes.csv (containing a list of all nodes in xyz
format, comma separated),

2. boundary.csv (containing comma separated
node listings of mesh boundary, specified as
shapeid,x,y),

3. lines.csv (optional, containing comma separated
constraint lines or breaklines, specified as
shapeid,x,y). The lines can be either
closed lines,

4. holes.csv (optional, containing comma
separated hole or island closed polylines
specified as holeid,x,y).

To generate a steering file for use in Gmsh, the user
would use the following script:

python gis2gmsh.py -n nodes.csv
boundary.csv -l lines.csv
out.geo

As before, if there are no lines or holes files the user
simply enters 'none' without the quotes as the
in the script. pputils assumes the refinement of the Gmsh
mesh (i.e., how mesh grows from
controlled by the spacing of the nodes in the boundary, lines
and/or hole files. This is only one way of specifying mesh
growth in Gmsh. There are others as well. The interested
user is directed to the Gmsh model documentation f
information on this subject.

STFC Daresbury Laboratory, UK, 13-16 October, 2015

Figure 2: Close up of Lake Manitouwabing TIN

Quality mesh generation using Gmsh mesh generator
alternative to Triangle, the user is also given the

option to use the Gmsh mesh generator. In the same way as
Triangle, the user is expected to prepare the following input

nodes.csv (containing a list of all nodes in xyz
format, comma separated),
boundary.csv (containing comma separated
node listings of mesh boundary, specified as

lines.csv (optional, containing comma separated
constraint lines or breaklines, specified as
shapeid,x,y). The lines can be either open or

holes.csv (optional, containing comma
separated hole or island closed polylines
specified as holeid,x,y).

To generate a steering file for use in Gmsh, the user
would use the following script:

n nodes.csv -b
l lines.csv -h holes.csv -o

As before, if there are no lines or holes files the user
simply enters 'none' without the quotes as the -l and -h flags
in the script. pputils assumes the refinement of the Gmsh
mesh (i.e., how mesh grows from small to large elements) is
controlled by the spacing of the nodes in the boundary, lines
and/or hole files. This is only one way of specifying mesh
growth in Gmsh. There are others as well. The interested
user is directed to the Gmsh model documentation for more

vcz18385
Typewritten Text
87

22nd Telemac & Mascaret User Club

The file out.geo is a steering file for Gmsh. To generate
the quality mesh using the command line, the user could
execute the following:
gmsh -2 out.geo

Where the -2 option specifies that the 2d triangular mesh
is to be generated. Alternatively, the user is also given the
option to launch the Gmsh GUI (which is available in Linux,
Mac and Windows) and open the out.geo steering file.
Immediately upon opening the Gmsh GUI, the user will see
the skeleton geometry (that was originally created in QGIS).
Once in the Gmsh GUI, the user can further edit the meshing
parameters (select how mesh grows, place attractors, etc.).
Please refer to the Gmsh user documentation for further
details.

Execution of the Gmsh program produces th
file, which is a Gmsh formatted mesh file. The following
script in pputils converts it to the Adcirc mesh file:
gmsh2adcirc.py -i out.msh -o out_gmsh.grd
Where out.msh is the Gmsh generated mesh file, and the
out_gmsh.grd is the same mesh in the Adcirc format.

Once the mesh is in the Adcirc format, the user can use
adcirc2wkt.py script (see above) to create WKT format of
the element polygons and node points for viewing the mesh
within QGIS. Alternatively, the user can convert the Adcirc
format to a *.dxf file using adcirc2dxf.py for mesh
visualization using existing CAD based packages.

An example of using Gmsh is shown in Figure 3
the generated mesh was used in the simulation
sediment transport at Wheatley Harbour, Lake Erie.

D. Interpolation of quality mesh from a TIN
Suppose now that we have a TIN file (generated by

Triangle), and converted to an Adcirc format (tin.grd) and
also the quality mesh generated by Gmsh, also in Adcirc
format (mesh.grd). The task now is to assign elevation
every node of the mesh.grd file from the tin.grd file.

The following script in pputils does just that:
python interp.py -t tin.grd -m mesh.grd
mesh_interp.grd
Where the mesh_interp.grd is the quality mesh with node z
values interpolated from the TIN file. Matplotlib library is
used to recreate the triangulation of the TIN, and assign the z
values to quality mesh. Note that the mesh must entirely be
within the boundary of the TIN. If this is not the case, a
warning message is displayed at the promp
user of this fact.

Of course, the user could easily have used Fudaa [16] or
BlueKenue to carry out the task of interpolation as well.

STFC Daresbury Laboratory, UK

The file out.geo is a steering file for Gmsh. To generate
the quality mesh using the command line, the user could

2 option specifies that the 2d triangular mesh
e generated. Alternatively, the user is also given the

option to launch the Gmsh GUI (which is available in Linux,
and Windows) and open the out.geo steering file.

Immediately upon opening the Gmsh GUI, the user will see
originally created in QGIS).

Once in the Gmsh GUI, the user can further edit the meshing
parameters (select how mesh grows, place attractors, etc.).
Please refer to the Gmsh user documentation for further

Execution of the Gmsh program produces the out.msh
file, which is a Gmsh formatted mesh file. The following
script in pputils converts it to the Adcirc mesh file:

o out_gmsh.grd
Where out.msh is the Gmsh generated mesh file, and the

Adcirc format.
Once the mesh is in the Adcirc format, the user can use

adcirc2wkt.py script (see above) to create WKT format of
the element polygons and node points for viewing the mesh

Alternatively, the user can convert the Adcirc
a *.dxf file using adcirc2dxf.py for mesh

visualization using existing CAD based packages.
shown in Figure 3, where

the generated mesh was used in the simulations nearshore
sediment transport at Wheatley Harbour, Lake Erie.

rpolation of quality mesh from a TIN
Suppose now that we have a TIN file (generated by

Triangle), and converted to an Adcirc format (tin.grd) and
also the quality mesh generated by Gmsh, also in Adcirc
format (mesh.grd). The task now is to assign elevations to
every node of the mesh.grd file from the tin.grd file.

The following script in pputils does just that:
m mesh.grd -o

Where the mesh_interp.grd is the quality mesh with node z
TIN file. Matplotlib library is

used to recreate the triangulation of the TIN, and assign the z
values to quality mesh. Note that the mesh must entirely be
within the boundary of the TIN. If this is not the case, a
warning message is displayed at the prompt informing the

Of course, the user could easily have used Fudaa [16] or
BlueKenue to carry out the task of interpolation as well.

Figure 3: Nearshore mesh around Wheatley Harbour, Lake
Erie, Ontario, Canada

E. Creation of Selafin files fo
simulations
Once the mesh_interp.grd Adcirc file is generated, the

last step in the procedure is for the user to convert the Adcirc
file to the Selafin format. There are at least three of the
existing tools available to the TELEMAC user co
that will do this. The user can:

1. Use Fudaa pre-processor, and convert Adcirc to
Selafin mesh,

2. Use BlueKenue to import the Adcirc mesh, and
save the imported mesh to Selafin format.

3. Use STBTEL program (part of the TELEMAC
source code) to convert Adc

STFC Daresbury Laboratory, UK, 13-16 October, 2015

Figure 3: Nearshore mesh around Wheatley Harbour, Lake

Creation of Selafin files for use in TELEMAC

Once the mesh_interp.grd Adcirc file is generated, the
last step in the procedure is for the user to convert the Adcirc
file to the Selafin format. There are at least three of the
existing tools available to the TELEMAC user community
that will do this. The user can:

processor, and convert Adcirc to

Use BlueKenue to import the Adcirc mesh, and
save the imported mesh to Selafin format.

Use STBTEL program (part of the TELEMAC
source code) to convert Adcirc to Selafin format.

vcz18385
Typewritten Text
88

22nd Telemac & Mascaret User Club STFC Daresbury Laboratory, UK, 13-16 October, 2015

There is an example in the validation cases on how to convert
Adcirc mesh to Selafin mesh. After generating the Selafin
files, the user then proceeds with numerical simulations using
the TELEMAC modeling system.

IV. TELEMAC OUTPUT VISUALIZATION USING PPUTILS
Following completion of the numerical simulations using

the TELEMAC system the user can port the output to QGIS
using scripts in pputils. Please note however, that pputils
output visualization is never intended to replace visualization
that is typically done with BlueKenue, Fudaa, Davit, etc. At
present time scripts in pputils are only meant to take select
TELEMAC output (at key time steps), and generate
publication style graphical output for use within the QGIS
environment. Simulation output can then be overlaid with
aerial photos, and annotated with labels, arrows, etc.

In order to get the TELEMAC output to QGIS, pputils
relies on the Python parser scripts that are already part of the
TELEMAC source code. For easy portability, the Python
parser scripts (used for reading and writing TELEMAC data)
have been copied and are included in the pputils distribution.
The disadvantage of this is that a TELEMAC user will have
these scripts in two places (one part of TELEMAC and one
part of pputils). However, the advantage of including the
Python parser scripts provides for easy installation, allows
use of pputils without the need to update system path
variables. A further advantage of including a copy of the
Python parser scripts is that pputils can act as a standalone
set of utilities, and could be open to more than just
TELEMAC users. For example, those using Adcirc and/or
SWAN could also benefit from them as well.

A. Displaying field variables
Displaying TELEMAC field variable (such as depths,

velocity magnitudes, wave heights, etc.) with pputils is
achieved by first probing the TELEMAC result file (assumed
as result.slf) with the probe.py script, as follows:
python probe.py -i result.slf
Where -i represents the input file to probe. The output of the
probe.py script simply tells the user what variables are saved
in the result file, and what time steps are included. Most
importantly, the probe.py script outputs the index of the
variables and index of the time steps in the result file. An
example of execution of the probe.py script on an existing
output of the Telemac-2d simulation would be as follows:
The input file being probed: result.slf
Variables in result.slf are:

 v variable name

0 --> VELOCITY U
1 --> VELOCITY V
2 --> WATER DEPTH
3 --> FREE SURFACE
4 --> BOTTOM
5 --> WIND ALONG X
6 --> WIND ALONG Y
7 --> COURANT NUMBER
number of records in input file : 25

t time (s)

0 --> 0.0
1 --> 3600.0
2 --> 7200.0
3 --> 10800.0

24--> 86400.0

Suppose that the user wishes to display in QGIS the field
variable free surface (-v index of 3) one hour into the
simulation (-t index of 1 corresponding to simulation time
3600 s). The following pputils script would be executed:
python sel2asc.py -i result.slf -v 3 -t 1 -s
2.0 -o output.asc
Where -s parameter represents the grid spacing in meters
(2 m grid spacing in above example). The sel2asc.py script
parallels the adcirc2asc.py script, where Matplotlib reads the
triangulation from the TELEMAC output file, and creates a
gridded DEM file of the specified output variable for a
specified time step using specified grid spacing.

B. Displaying vector variables
In order to display the vector variables within QIGS, the

Field Renderer plugin [17] developed by Chris Crook out of
New Zealand is used. The Field Renderer plugin requires the
position (x and y) along with u- and v- components of the
vector variable to be loaded as points within QGIS. In other
words, it needs x, y, u, v points file. The pputils script
extract.py is used to write this data from the TELEMAC
results file. Suppose the user wishes to display within QGIS
the velocity vectors for time step 24 (corresponding to
simulation time 86,400 s), the following would be required:
python extract.py -i result.slf -v 0 1 -t 24
-o output.txt
Where -i is the Selafin result file to extract from, -v 0 1 are
the indexes of the u- and v- component of the velocity vector
(see output of probe.py above), -t is the time step to extract,
and -o is the resulting text based output file containing x, y,
u, v for each node in the Selafin file of the model results. The
output.txt file is then loaded into QGIS, and the Field
Renderer plugin is used to display the vector field within the
QGIS.

An example of using the sel2asc.py and QGIS Field
Renderer is shown in Figure 4 to display flood depths and
velocity vectors during for a simulation of a flood wave of an
urban area in London, Ontario, Canada using Telemac-2d.

vcz18385
Typewritten Text
89

22nd Telemac & Mascaret User Club

Figure 4: Flood depths and velocity vectors of
simulation using Telemac-2d at London, Ontario, Canada

C. Future developments
The post-processing of TELEMAC output using pputils

are able to display single snapshots of field and vector
variables for use in QGIS. At the present time, the intent of
the post-processing features within pputils is to facilitate
select graphical output for in QGIS for the preparation of
reports and publication quality figures. To that end, having a
small number of plots, overlaid with aerial photos and
annotated with text, suffices.

Future developments may include different ways of
visualizing 2d simulation model output in QGIS, and could
include a full fledge post-processor with full animation
control, extraction of cross sections, time series displays at
select nodes, etc.

Note that pputils is work in progress, and
continually be refined and updated. The files included in the
distribution also include a number of example
assist the user in applying the code to their domains.
can be downloaded from the following links

https://drive.google.com/open?id=0B7ZAQz
SQW0q-NDlwbXBnbm1weUU

V. CONCLUSIONS
This paper presents a set of tools named pputils intended

to be used for pre- and post-processing used in typical free
surface flow modeling projects (mesh generation, digital
surface creation, interpolation of mesh, display of model
output). The main goal of the pputils project is to present the

STFC Daresbury Laboratory, UK

Figure 4: Flood depths and velocity vectors of an urban flood

at London, Ontario, Canada

processing of TELEMAC output using pputils
are able to display single snapshots of field and vector
variables for use in QGIS. At the present time, the intent of

processing features within pputils is to facilitate
t for in QGIS for the preparation of

reports and publication quality figures. To that end, having a
small number of plots, overlaid with aerial photos and

Future developments may include different ways of
ation model output in QGIS, and could

processor with full animation
control, extraction of cross sections, time series displays at

pputils is work in progress, and will
ted. The files included in the

distribution also include a number of examples, which will
to their domains. pputils

s:

https://drive.google.com/open?id=0B7ZAQz

This paper presents a set of tools named pputils intended
processing used in typical free

surface flow modeling projects (mesh generation, digital
surface creation, interpolation of mesh, display of model

of the pputils project is to present the

interested user with a set of tools that will allow the
completion of an entire free surface flow modeling project
from start to finish using only open source software. With
this respect, pputils are able to achiev

REFERENCES

[1] QGIS Development Team. QGIS Geographic Information System.
Open Source Geospatial Foundation Project, 2015.
http://qgis.osgeo.org.

[2] O. Conrad et al. “System for Automated Geoscientific Analyses
(SAGA) v. 2.1.4”, Geoscientific Model
1991-2007.

[3] GRASS Development Team, Geographic Resources Analysis Support
System (GRASS) Software. Open Source Geospatial Foundation
Project, 2015. http://grass.osgeo.org.

[4] GDAL. Geospatial Data Abstraction Library: Version 2.0.0, Ope
Source Geospatial Foundation, 2015. http://gdal.osgeo.org.

[5] Lutra Consulting Development Team, Crayfish QGIS plugin, 2015.
http://www.lutraconsulting.co.uk/products/crayfish

[6] D. Vetsch et al. “System Manuals of BASEMENT, Version 2.5”.
Laboratory of Hydraulics, Glaciology and Hydrology (VAW), ETH
Zurich, 2015. http://www.basement.ethz.ch.

[7] Uwe Merkel Consulting Engineers, TELEMAC Selafin Reader for
QGIS, 2015. http://www.uwe-merkel.com/wordpress.

[8] J.R. Shewchuk, “Triangle: Engineering a 2D Quality Mesh Gener
and Delaunay Triangulator”, in “
Towards Geometric Engineering
editors), volume 1148 of Lecture Notes in Computer Science,
Springer-Verlag, Berlin, 1996, pp. 203

[9] S.W. Cheng, T.K. Dey, and
generation, CRC Press, 2012.

[10] C. Geuzaine and J.F. Remacle, “Gmsh: a three
element mesh generator with built
facilities”, International Journal for Numerical Methods in
Engineering, 2009, vol 79, no 11, pp. 1309

[11] S. van der Walt, S.C. Colbert and G. Varoquaux, “The NumPy Array:
A Structure for Efficient Numerical Computation”, Computing in
Science & Engineering, 2011, vol 13, pp. 22

[12] J.D. Hunter, “Matplotlib: A 2D Graphics En
in Science & Engineering, 2007, vol 9, pp. 90

[13] National Research Council of Canada, BlueKenue: software tool for
hydraulic modelers, Ottawa, Ontario, Canada, 2015, http://www.nrc
cnrc.gc.ca/eng/solutions/advisory/blue_kenue_index.h

[14] Smile Consult GmbH, Janet, Gismo and Davit pre
processors for free surface numerical models, 2015,
http://smileconsult.de.

[15] O. Gourgue, Pre- and post-processing of Unstructured Grids (PUG),
2015, http://www.oliviergourgue.net/pug.

[16] Fudaa, Object Oriented and Distributed Integration Platform For
Scientific Codes, 2015, http://sourceforge.net/projects/fudaa.

[17] C. Crook, QGIS Vector Field Renderer plugin, 2013,
https://github.com/ccrook/QGIS

STFC Daresbury Laboratory, UK, 13-16 October, 2015

interested user with a set of tools that will allow the
completion of an entire free surface flow modeling project
from start to finish using only open source software. With
this respect, pputils are able to achieve just that.

EFERENCES
QGIS Development Team. QGIS Geographic Information System.
Open Source Geospatial Foundation Project, 2015.

O. Conrad et al. “System for Automated Geoscientific Analyses
(SAGA) v. 2.1.4”, Geoscientific Model Development, vol 8, pp.

GRASS Development Team, Geographic Resources Analysis Support
System (GRASS) Software. Open Source Geospatial Foundation
Project, 2015. http://grass.osgeo.org.
GDAL. Geospatial Data Abstraction Library: Version 2.0.0, Open
Source Geospatial Foundation, 2015. http://gdal.osgeo.org.
Lutra Consulting Development Team, Crayfish QGIS plugin, 2015.
http://www.lutraconsulting.co.uk/products/crayfish.
D. Vetsch et al. “System Manuals of BASEMENT, Version 2.5”.

ulics, Glaciology and Hydrology (VAW), ETH
Zurich, 2015. http://www.basement.ethz.ch.
Uwe Merkel Consulting Engineers, TELEMAC Selafin Reader for

merkel.com/wordpress.
J.R. Shewchuk, “Triangle: Engineering a 2D Quality Mesh Generator
nd Delaunay Triangulator”, in “Applied Computational Geometry:

Towards Geometric Engineering” (M.C. Lin and D. Manocha,
editors), volume 1148 of Lecture Notes in Computer Science,

Verlag, Berlin, 1996, pp. 203-222.
S.W. Cheng, T.K. Dey, and J.R. Shewchuk, Delaunay mesh

C. Geuzaine and J.F. Remacle, “Gmsh: a three-dimensional finite
element mesh generator with built-in pre- and post-processing
facilities”, International Journal for Numerical Methods in

2009, vol 79, no 11, pp. 1309-1331.
S. van der Walt, S.C. Colbert and G. Varoquaux, “The NumPy Array:
A Structure for Efficient Numerical Computation”, Computing in
Science & Engineering, 2011, vol 13, pp. 22-30.
J.D. Hunter, “Matplotlib: A 2D Graphics Environment”, Computing
in Science & Engineering, 2007, vol 9, pp. 90-95.
National Research Council of Canada, BlueKenue: software tool for
hydraulic modelers, Ottawa, Ontario, Canada, 2015, http://www.nrc-
cnrc.gc.ca/eng/solutions/advisory/blue_kenue_index.html.
Smile Consult GmbH, Janet, Gismo and Davit pre- and post
processors for free surface numerical models, 2015,

processing of Unstructured Grids (PUG),
2015, http://www.oliviergourgue.net/pug.

ect Oriented and Distributed Integration Platform For
Scientific Codes, 2015, http://sourceforge.net/projects/fudaa.
C. Crook, QGIS Vector Field Renderer plugin, 2013,
https://github.com/ccrook/QGIS-VectorFieldRenderer-Plugin.

vcz18385
Typewritten Text
90

