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INDIRECT METHODS OF MEASURING SHEAR STRESS IN THE BOTTOM 

OF A SCOUR HOLE 

By

J. Sterling Jones 

INTRODUCTION

Most rational methods for estimating scour in cohesive or consolidated bed materials are 

time dependent and are in terms of excess shear stress or excess stream power. To apply 

the logic of these methodologies to the bridge pier scour problem one would need to 

somehow determine the shear stress or stream power in the scour hole as a function of the 

depth of the scour hole. The challenge, for scour evaluations to link with the technology 

that has evolved from erosion research, is to find a way to track the maximum shear 

stress in the scour hole. 

The magnitude of the approach flow shear stress is amplified several fold at the 

beginning of scour but it decays as the scour hole gets deeper.  Shear stress is a very 

logical concept, but it is very difficult to measure even in a laboratory. Engineers 

typically compute shear stresses based on fully developed normal flow or on an assumed

ideal velocity distribution. The highly complex flow patterns around a bridge pier are 

anything but either of these conditions as illustrated by the flow visualization photo in 

figure 1. Direct measuring devices such as dynamometers designed to measure a drag 

force on a small element of the channel bed and shear stress pads which measure the 

velocity gradient near the bed probably do not capture the effects of the diving currents 

and vortices that are primarily responsible for dislodging the particles that are scoured out 

of the scour hole. Even sophisticated 3-D models, which can generate a shear stress for 

any element in the flow field, probably do not reflect the erodibility effects of the diving 

currents and vortices that dominate of the scour process unless they have been calibrated 

for those kind of secondary currents.
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Figure 1. Photo of Visualized Flow in Front of a Bridge Pier 

When researchers at the FHWA TFHRC Hydraulics laboratory were confronted with the 

problem of finding a practical way of determining shear stresses around bridge piers, a 
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number of alternatives were considered. One was a calibrated shear stress hemisphere  

which was an assortment of small hemispheres that could be placed anywhere along the 

bed. The idea was to keep exchanging hemispheres to find the one that just barely moved 

and that one would be an indirect measure of the shear stress at that point. Dr. Peggy 

Johnson, who was working at the lab at that time, reasoned that we could accomplish 

almost the same thing by using different size sand particles by running experiments long 

enough to reach the point that the sand particles were barely moving. Based on that logic, 

researchers at the lab embarked on an experimental program of long duration scour tests 

to indirectly measure effective shear stresses and stream power in scour holes at different. 

depths. The key word in that endeavor was ”effective” because we were really trying to 

characterize all the forces that act on a particle to dislodge it as a single parameter that 

could be related to the shear stress in the approach flow where the typical assumptions for 

computing shear stress are valid.   

We published a technical paper based on this study in the proceedings of the ASCE 

Water Resources Conference’98 held in Memphis TN.
(1)

 That paper documented the 

technique used to extrapolate shorter duration runs to predict equilibrium scour for a 

much longer duration run, but it did not document the process used to develop shear 

stress ratios that are the key to coupling erosion concepts with scour computations. 

Previous Studies 

Johnson conducted a study using marbles to indirectly measure shear stress at the base of 

piers at various preformed scour depths.
(2)

 Marbles make a convenient particle for 

sediment studies because they have approximately the same specific gravity as granite 

sand and they are very uniform in size. The problem with marbles is they roll by 

themselves unless they are packed against one another.  Johnson concluded that the 

effective shear stress at the base of a pier varied from 2.8 to 1.4  times the shear stress in 

the approach flow depending on the depth of scour. 

Parola conducted a study of riprap sizes necessary to protect bridge piers against scour. 
(3) 

He used gravel particles to indirectly determine the effective velocity at the base of a pier. 

He compared the approach velocity required to move a particle at the base of a pier to the 

velocity that would be required to move the same size particle in unobstructed flow and 

concluded that the effective velocity at the base of a pier must be approximately 1.5 to 

1.7 times the approach velocity. Since shear stress is related to velocity squared, it 

follows that Parola’s effective shear stress was 2.2 to 2.9 times the shear stress in the 

approach.

Pagan conducted a similar study of riprap protection for bridge abutments and found that 

the effective velocity at the base of abutments must be approximately two times the 

average contracted velocity through the bridge opening; hence his maximum effective 

shear stresses at the base of abutments represented an amplification of approximately four 

times the average shear stress in the contracted section.
(4) 

Both Parola and Pagan were looking at the amplification factor for zero scour depth, but 

Johnson did attempt to determine the decay rate as the scour hole got deeper. 

to reach an equilibrium depth for clear water experiments, the effective shear stress 

in the bottom of the scour hole must have reached critical for that sediment size.
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The experiments were designed to determine how much the approach flow shear stress is 

effectively amplified at the base of a pier as a function of the local scour depth. Each 

experiment provided one point on a shear stress amplification curve where the approach   

flow shear stress (always equal or less than critical for the sediment size) could be 

computed from the velocity and flow depth, the shear stress at the base of the pier could 

be computed as the critical shear stress for the sediment size, from Shields or other 

similar criteria, and the equilibrium scour depth was a measured quantity.  The sediment 

particles themselves were indirectly measuring all the forces acting to cause motion in the 

complicated flow field around the pier. The combined effects of these forces could be 

represented as an effective shear stress that is comparable to the shear stress that is 

associated with one-dimensional flow such as the flow past a sediment sample in the 

Texas A&M erosion function apparatus (EFA).

The primary procedural issue in running these experiments was how long to run each test 

so that the equilibrium scour depth could be estimated with reasonable confidence. 

Theoretically clear water scour never reaches equilibrium but is asymptotic with time, but 

most of the scour occurs in a relatively short time. Scour depths measured from a few 

very long duration experiments, as long as 10 days, were compared with scour depths 

from shorter duration experiments to establish criteria for extrapolating equilibrium scour 

depths from short duration data. Techniques for extrapolating short-duration scour 

measurements was the topic of the 1998 ASCE paper by Bertoldi, et al.
(1)

For the conditions used in these experiments, the following percentages of equilibrium 

scour depths were used to extrapolate short duration scour measurements. 

 Approximately 75% of equilibrium scour occurred in the first 24 hours. 

 Approximately 81% of equilibrium scour occurred in the first 48 hours 

 Approximately 90% of equilibrium scour occurred in the first 72 hours 

 Approximately 100% of equilibrium scour occurred after 8 days. 

Extrapolations from 24-hour measurements are much less reliable than extrapolations 

from 48-hour or longer measurements. Unfortunately most of the experiments in this 

study were 24-hour experiments. 

Computation of Approach Flow Shear Stress  

An underlying consideration in this study was that one could compute and/or measure the 

shear stress in the unobstructed approach flow whereas it is nearly impossible to calculate 

or measure shear stress in the chaotic flow region immediately in front of a pier. The 

notion was that we could use laboratory experiments to determine an amplification factor 

to be applied to the computed approach flow shear stress as an indirect measure of the 

shear stress in the vicinity of a pier. 

Even in the relatively orderly approach flow, there are a number of ways to compute the 

shear stress.

 The average bed shear stress in a segment of flow can be derived from Newton’s first 

law of physics. The simplest derivation is for a segment of closed conduit flow as 

illustrated in figure 2. 
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Figure 2. Free Body Diagram of Forces on a Segment of Closed Conduit Flow

Fx = m ax

 P1 – P2 – Ff + Wt sin  = m ax = Q (V2  - V1)

 p1A1 – p2A2 - WP L +  A2) L sin Q (V2  - V1)

but A1=A2=A and V1= V2

p1 - p2  - WP/A L + L sin

WP ( p/ L sin L

but WP = RH ; L sin Z ;  ( p/ Z) = HLf ; HLf/ L =SF

Substitution and simplifying yields the familiar expression for average boundary shear 

stress

RH SF

where: average boundary shear stress 

   RH = Hydraulic Radius = A/WP = Area / Wetted Perimeter

   SF = friction slope 

Chow used a little more algebraic manipulation to derive the same expression for the 

average boundary shear stress in a segment of gradually varied open channel flow in a 

unit channel width as illustrated in figure 3. 

Figure 3. Free Body Diagram of Forces on a Segment of Gradually Varied Open 

Channel Flow
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Fx = m ax

  P1 – P2 – Ff + Wt sin  = m ax = Q (V2  - V1)

  But,

P1 = ½ (1) y1
2
 ; P2 = ½ (1) y2

2
 ;

Q = AAVG VAVG =

2
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Substitution yields 
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2
-y2

2
) - WP L + ½  (y1 + y2) L Sin  =  [½ (y1 + y2) ½ (V1 + V2)] (V2-V1)
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2
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Then,
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But, L Sin Z = Z1 – Z2

Rearranging and simplifying yields 

L/HRL/Zy
g2

V
Zy

g2

V
R

LfH22

2

1

11

2

1

H

RH SF

The obvious way to measure the approach shear stress would be very precisely 

measure the total energy head at two sections of flow on each side of the point of interest. 

Then one could compute the friction slope and shear stress from the laws of physics. 

However we did not take such precise measurements for these experiments. We recorded 

depth averaged approach velocities and approach flow depths in gradually varied flow.

To compute shear stresses from the recorded average approach velocity we assumed a log 

velocity distribution. 

Annandale proposed an erodibilty index method for estimating scour limits in rock 

formations.
(5)

 He expressed average stream power in one dimensional flow as

VVySqS
FF

SP
Shear stress is related to velocity squared, stream power is related to velocity cubed and it 

follows that shear stress is proportional to stream power raised to the exponent 2/3. 

Annandale later derived stream power decay equations from data provided by the 

TFHRC Hydraulic lab that is represented in this paper. Annandale’s equations were:

66.7
y

y
66.9

y

y
30.3

SP

SP

maxS

S

2

maxS

S

appr

pier for circular piers 

 

144



61.12
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71.22

y

y
64.11

SP

SP

maxS

S

2

maxS

S

appr

pier for rectangular piers 

Where: SPpier = max stream power around the pier at scour depth ys

 SPappr = stream power in the approach flow 

 ys = scour depth 

ys max = maximum scour that would occur in a sand bed channel . Annandale 

suggested using the FHWA HEC-18 pier scour to estimate this term

At zero scour Annandale’s equations indicate that the approach flow stream power is 

amplified around the pier by 7.66 for circular piers and by 12.61 for rectangular piers. 

Assuming that the shear stress is proportional to the stream power raised to the 2/3 

exponent, it follows that the corresponding shear stress amplifications would be 3.9 and 

5.4.

Purpose of this Paper 

Data for this paper is the same as the data provided to Annandale for his analysis. This 

paper will evaluate shear stresses whereas Annandale was interested in stream power for

the erodibility index method. Moreover the data behind the analyses have never been 

published. The data includes some long duration experiments that are not likely to be 

repeated. Part of the purpose of this paper is to make that data and the logic we used in 

presenting the results available for other researchers to use and build upon. 

Experimental Procedure 

Moveable bed experiments were conducted in the six-foot wide by seventy-foot long 

Tilting flume in the FHWA hydraulics lab located in McLean, Virginia. Four different 

sediment sizes and four pier models were used in the experiments. Sediment sizes were 

0.3mm, 1.2mm, 2.4mm and 5mm. Pier models were a 152 mm (6 inch) diameter

cylindrical pier, a 152 mm by 152 mm (6 inch by 6 inch) square pier, a 75mm by 300 mm

(3 inch by12 inch) round nose oblong pier and a 75 mm by 300 mm (3 inch by12 inch) 

rectangular pier. The round nose oblong and rectangular piers were tested at 0
o
, 15

o
, and 

30
o
 skew angles. The approach velocity was varied for each experiment, but it was 

always at or below the critical incipient motion velocity for the sediment

)
K

yx27.12
(Log75.5

U

V

S

0

*

where: V = depth averaged velocity 

 U* = shear velocity = ( / )
1/2

y0 = flow depth 

 Ks = grain roughness, use Ks =  D50 for uniform grain sizes 

x = viscosity correction factor found in figure 2.97 of ASCE Manual  No. 54

We fit several functions to the correction factor graph in figure 2.97 to facilitate T&E 

solution to determine from the above equation on a spreadsheet. 

There are other methods such as Manning-Strickler and Moody to estimate the shear 

stress in the approach flow but we selected the assumed log velocity distribution to 

estimate shear stress from the data we recorded. 
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Computation of Shear Stress at the Pier

The second assumption was that the shear stress at the pier in the bottom of the scour 

hole must be the “effective” incipient motion (critical) shear stress when the scour hole 

reached equilibrium. We could assume critical shear stress at the pier when the scour 

depth reached equilibrium.  All of the experiments were clear water experiments, which 

meant the approach flow shear stress was always less than critical; therefore there was 

always some amplification of the shear stress at the pier. The key word here is “effective” 

because one can argue that there are a lot more forces than boundary shear stresses that 

determine when particles could no longer get washed out of the scour hole. Our rational 

was that we were simply letting the sand particles tell us when all these forces were in 

balance and using a computed shear stress as an indicator of the balance. 

The logistical problem was duration of experiments to reach equilibrium scour for clear 

water experiments. Theoretically clear water scour never reaches equilibrium but we 

found that practical equilibrium was reached in several days and we could use the trends 

from a few long duration tests to extrapolate scour depths from shorter duration 

experiments.

Shields diagram was used to compute the critical shear stress, which we assumed was the 

equilibrium condition in the bottom of the scour hole.  Shields dimensionless shear stress 

is usually taken as a constant for boundary Reynolds numbers greater than 1000. 

 Most of our laboratory experiments however had boundary Reynolds numbers in the 

range from 30 to 330.  To facilitate computations we fit a regression equation to the 

portion of Shields diagram that we used. The equation 

   if 10 < R
1585.0

**
R0215.0 * <700 

 where: * = Shields dimensionless shear stress 

  R* = Shields boundary Reynolds number

fits the Shield’s diagram quite

well for our range of data. 

But,

50S

C

*
D)(

50c

*

D/
R

where:  = unit weight of water = 9.79 N/m
3
 at 20

o
 C ; S= 2.65 

 = mass density of water = 998 Kg/m
3
at 20

o
 C 

dynamic viscosity of water = 1.00 x 10
-6

 at 20
o
 C 

Combining the above three expressions yields the following equation which could be 

solved directly for the critical shear stress: 
086.1

1585.0

50S

c

D)(0215.0
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Shear Stress Decay All Data

y = 5.9704e
-0.6576x
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The Reynolds number, R*, was checked for each line in the spreadsheet to ascertain that 

it was between 10 and 700. 

Results

The ratio of critical shear stress to the approach shear stress, which was always less than 

critical due to the nature of the experiments, was the amplification ratio caused by the 

pier. The next step was to determine the equilibrium scour depth where the critical shear 

stress assumption was valid. A few long duration tests were run for as long as 8 days; for 

those tests the measured scour depth was the equilibrium scour depth. The equilibrium

scour depths for shorter duration tests by extrapolating the measured scour depths as 

described in the 1998 ASCE paper by Bertoldi, et al.
(1)

  We recognized that the 

extrapolations were not so reliable for the 24 hour tests and should have run all 

experiments for at least 48 hours. 

Several parameters were tried for normalizing the scour depths so that the dimensionless

shear stress ratio could be plotted against a dimensionless scour depth parameter. The

normalizing parameter selected for this paper is the pier width so that a plot of c/ Approach

vs. ys/b could represent the shear stress amplification-decay as the scour depth got deeper. 

For skewed piers the projected width of the pier was used instead of the width b. 

Figure 4 is a plot of all the data including round nose and rectangular piers skewed to the 

flow with no consideration for shape effects. It shows that the average amplification at 

zero scour depth is approximately 6.0. The particles tell us that the approach shear stress 

is amplified by a factor of six at zero scour. The amplification reduces to 1.0 at scour 

depths approximately 2.4 times the projected pier width. The scatter in the data can be 

explained in part by the large number of 24-hour tests that were in the data set. 

Figure 4. Shear Stress amplification-Decay Curve for all Data 

Figure 5 is a plot of circular and square piers only. It shows that the amplification is 

distinctly higher for the square piers than it is for circular. Figure 5 includes a single point 
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from exploratory PIV measurements, which are described below.  The PIV point is very 

consistent with the indirect measurements but that came only after much discussion about 

how to interpret the PIV results. 

were “clear water”. 

tress amplification-Decay Curve for Circular and Square Piers

P

article Image Velocimetry (PIV) is a powerful laboratory technique that utilizes laser 

rocesses we observe. We made small-scale exploratory tests to measure velocity fields 

s,

t

he theoretical shear stress at any point in a two dimensional flow field is made up of 

two components- the laminar component and the turbulent component as follows: 

SS Decay Curves Square and Circular Piers

y = 6.2469e
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Square

Circular

PIV measured shear stress ratio  = 6.12 for circular pier at zero scour

Figure 5. Shear S

IV Shear Stress Measurements

P

light sheets to illuminate tracer particles in the water and high-speed digital cameras to 

quantify velocity fields in an experimental set-up. Researchers at the TFHRC hydraulics

lab have been developing this technology as a tool for explaining some of the scour

p

very close to the boundary and compute the theoretical shear stresses as a check for the 

indirect measurements we made with the moveable bed scour tests.  If this method work

we can accelerate the tests considerably and establish a sound theoretical basis for the 

results. The advantage of this method is we could perform fixed bed scour holes and tes

a wide range of approach flow condition to validate an inherent assumption that the ratio

of shear stresses holds for a wide range of approach flow velocities.

T
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xy
vu

vu

where:The first term on the right side is the laminar component and the second 

term is the turbulent component

fluctuations

it

eemed eason ulated from a PIV flow field. The 

pixels

ier. Figure 7 is the zoomed view of the velocity field and resulting shear stress 

u and v are point velocities in the x and y directions respectively 

u’ and v’ are the turbulent

Since PIV can measure all of these quantities at discrete pixels in the flow field,

s r able that the shear stresses could be calc

partial derivatives are evaluated by computing the incremental changes at adjacent

Figure 6 is the PIV velocity field measured in front of a very small model of a bridge 

p

distribution immediately upstream of the pier where vorticity seemed strongest. 

PIER

Figure 6. PIV velocity field upstream of a bridge pier model 
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Figure 7. Zoomed Velocity Field and Shear Stress Distribution Near the Bed 

The laminar shear stresses at the bed dominate in the approach flow and the turbulent 

shear stresses dominate in front of the pier as indicated in table 1. The problem we had 

was where to form the ratio because the turbulent shear stress must go to zero at a no slip 

boundary. If we compared shear stresses right at the bed , it would appear that the ratio 

was less than1.0 even at zero scour. If we compared shear stresses at the first measured

pixel,which was 1.125 mm above the bed it would appear that the amplification was 

approximately 95. But if we extrapolated the shear stresses to a close proximity to the 

bed, 0.33 mm, equal to the diameter of the smallest particles used in the scour tests, then 

the ratio was a reasonable value of 6.15. That value was plotted on figure 5.

PIV shows promise but we need more experience to apply it to this problem. Perhaps 

better lens and larger scale tests will eliminate skepticism, but without the indirect 

measurements from the scour tests as a gage, we may never have reached a reasonable 

conclusion from these PIV results. 

Table1. PIV Shear Stress Results 

Approach Flow 

xi yi u v 'v'u
x

v

y

u
TOT

[m/s] [m/s] [N/m
2
] [N/m

2
] [N/m

2
]

xi yi + 0 0 0 0 .254 0.254

xi yi + 0.3 .562 0 -.0115 .21411 0.22561

xi yi + 1.125 .213 0 -.0277 .0322 0.0599

xi yi + 1.583 .234 0 -.019 .0389 0.0579

xi yi + 2.245 .265 0 -.0076 .0424 0.05

In Front of Pier 
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xi yi u v 'v'u
x

v

y

u
TOT

[m/s] [m/s] [N/m
2
] [N/m

2
] [N/m

2
]

xi yi + 0 0 0 0 .1366 0.1366

xi yi + 0.3 -.024 .0114 -1.297 .0907 1.3877

xi yi + 1.125 -.078 .0376 -5.098 .0168 5.1148

xi yi + 1.583 -.0624 .0516 -6.606 .0296 6.6356

xi yi + 2.245 -.0338 .0727 -8.446 .0480 8.494

Conclusions

Shear stress is a key to estimating scour at bridge piers especially in cohesive bed 

materials, but shear stresses are very difficult to quantify in the chaotic flow field in front 

of bridge piers. 

This paper presents a simple but tedious technique for quantifying shear stresses by using 

sand particles as an indirect measure.

PIV shows promise as a more theoretical technique for quantifying shear stresses but we 

need further development and experience. 

The indirect measure described in this paper will serve as a gage for more the 

interpretation of numerical and physical model results that may have a more theoretical 

basis.
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Appendix Summary of Data 

Run # 

Run

Time

(hrs)

Description 

Skew 

Angle

(degrees)

bproj

(mm)

D50

(mm)

Flow

Depth

ya

(m)

Approach

Velocity

Va

(m/s)

Measured

Scour

Depth

ys

(m)

Estimated

Equilibrium

Scour 

Depth 

yequil

(m)

Einstein 

Barborosa

Approach 

Shear 

Stress

a

(N/m
2
)

c

(N/m
2
)

c/ a yS/bProj

45 24 Square Pier 0 152 1.2 0.267 0.520 0.274 0.366 0.657 0.723 1.10 2.41 

30 72 152mm x 152mm 0 152 1.2 0.267 0.443 0.315 0.350 0.470 0.723 1.54 2.30 

56R 41   0 152 1.2 0.267 0.344 0.166 0.208 0.275 0.723 2.63 1.37 

31 72   0 152 1.2 0.267 0.337 0.201 0.223 0.264 0.723 2.74 1.47 

46 24   0 152 1.2 0.267 0.301 0.108 0.144 0.209 0.723 3.46 0.95 

6 23.3   0 152 1.2 0.267 0.272 0.079 0.106 0.169 0.723 4.27 0.70 

136 24   0 152 1.2 0.305 0.204 0.030 0.040 0.092 0.723 7.88 0.26 

5 1 Incipient scour at pier 0 152 1.2 0.267 0.189 0.000 0.000 0.081 0.723 8.94 0.00 

15 24 Circular Pier 0 152 1.2 0.267 0.541 0.200 0.267 0.713 0.723 1.01 1.75 

47 24 152mm x 152mm 0 152 1.2 0.267 0.442 0.208 0.277 0.465 0.723 1.56 1.82 

52R 24   0 152 1.2 0.267 0.434 0.194 0.258 0.449 0.723 1.61 1.70 

134 72   0 152 1.2 0.267 0.422 0.219 0.244 0.422 0.723 1.71 1.60 

49 24   0 152 1.2 0.267 0.352 0.126 0.167 0.289 0.723 2.50 1.10 

57R 144   0 152 1.2 0.267 0.340 0.174 0.174 0.270 0.723 2.68 1.15 

50 70   0 152 1.2 0.267 0.310 0.108 0.120 0.221 0.723 3.27 0.79 

10 23.3   0 152 1.2 0.267 0.270 0.037 0.050 0.167 0.723 4.32 0.33 

135 6   0 152 1.2 0.267 0.230 0.020 0.027 0.121 0.723 5.98 0.18 

48 1 Incipientscour at pier 0 152 1.2 0.267 0.185     0.077 0.723 9.34 0.00 

41 24 Round Nose Pier 0 75 1.2 0.267 0.526 0.097 0.129 0.671 0.723 1.08 1.72 

42 24 75mm x 300mm 0 75 1.2 0.267 0.446 0.117 0.156 0.475 0.723 1.52 2.08 

54R 24   0 75 1.2 0.267 0.435 0.117 0.156 0.451 0.723 1.60 2.08 

40 67   0 75 1.2 0.267 0.352 0.090 0.101 0.290 0.723 2.49 1.35 

     44 70   0 75 1.2 0.267 0.303 0.059 0.066 0.212 0.723 3.42 0.88 

20 23.3   0 75 1.2 0.267 0.258 0.023 0.030 0.152 0.723 4.75 0.40 

16 1 Incipient 0 75 1.2 0.267 0.238     0.129 0.723 5.60 0.00 

43 24 Round Nose Pier 15 150.09 1.2 0.267 0.524 0.183 0.244 0.667 0.723 1.08 1.62 

29 48 75mm x 300mm 15 150.09 1.2 0.267 0.419 0.192 0.229 0.417 0.723 1.73 1.52 

28 24   15 150.09 1.2 0.267 0.273 0.041 0.055 0.170 0.723 4.25 0.37 

137 6   15 150.09 1.2 0.267 0.263 0.041 0.054 0.159 0.723 4.55 0.36 

23 1 Incipient scour at pier 15 150.09 1.2 0.267 0.249     0.141 0.723 5.12 0.00 

53R 24 Round Nose Pier 30 214.95 1.2 0.267 0.544 0.188 0.250 0.720 0.723 1.00 1.16 

38 24 75mm x 300mm 30 214.95 1.2 0.267 0.505 0.219 0.293 0.616 0.723 1.17 1.36 

39 24   30 214.95 1.2 0.267 0.413 0.228 0.304 0.403 0.723 1.79 1.41 
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35 24   30 214.95 1.2 0.267 0.348 0.168 0.224 0.283 0.723 2.56 1.04 

36 24   30 214.95 1.2 0.267 0.287 0.096 0.128 0.190 0.723 3.81 0.60 

37 24   30 214.95 1.2 0.267 0.266 0.065 0.086 0.161 0.723 4.48 0.40 

138 24   30 214.95 1.2 0.267 0.256 0.045 0.059 0.150 0.723 4.83 0.28 

34 1 Incipient scour at pier 30 214.95 1.2 0.267 0.220     0.110 0.723 6.57 0.00 

58 192 Circular Pier 0 152.00 0.3 0.267 0.289 0.165 0.165 0.154 0.126 0.82 1.09 

62 24 Square Pier 0 152.00 2.4 0.267 0.645 0.307 0.409 1.271 1.729 1.36 2.69 

133 24 152mm x 152mm 0 152.00 2.4 0.267 0.480 0.266 0.296 0.694 1.729 2.49 1.95 

85 24   0 152.00 2.4 0.267 0.485 0.195 0.260 0.711 1.729 2.43 1.71 

59 24   0 152.00 2.4 0.267 0.479 0.182 0.242 0.693 1.729 2.49 1.59 

60 24   0 152.00 2.4 0.267 0.387 0.080 0.106 0.447 1.729 3.87 0.70 

61 72   0 152.00 2.4 0.267 0.352 0.062 0.068 0.369 1.729 4.69 0.45 

130 6   0 152.00 2.4 0.267 0.257 0.018 0.020 0.194 1.729 8.93 0.13 

84 1 Incipient scour at pier 0 152.00 2.4 0.267 0.259     0.197 1.729 8.79 0.00 

67 24 Circular Pier 0 152.00 2.4 0.267 0.618 0.189 0.252 1.163 1.729 1.49 1.66 

127 24   0 152.00 2.4 0.267 0.583 0.174 0.232 1.035 1.729 1.67 1.53 

128 144   0 152.00 2.4 0.267 0.544 0.200 0.200 0.897 1.729 1.93 1.32 

65 72 152mm x 152mm 0 152.00 2.4 0.267 0.488 0.143 0.159 0.720 1.729 2.40 1.05 

      87* 24   0 152.00 2.4 0.267 0.442 0.156 0.208 0.587 1.729 2.94 1.37 

129 24   0 152.00 2.4 0.267 0.443 0.119 0.159 0.589 1.729 2.94 1.05 

86 72   0 152.00 2.4 0.267 0.429 0.110 0.122 0.553 1.729 3.13 0.80 

74 144   0 152.00 2.4 0.267 0.427 0.119 0.119 0.546 1.729 3.16 0.78 

64 24   0 152.00 2.4 0.267 0.383 0.043 0.057 0.437 1.729 3.96 0.37 

63 24   0 152.00 2.4 0.267 0.357 0.024 0.033 0.379 1.729 4.57 0.21 

66 1 Incipient scour at pier 0 152.00 2.4 0.267 0.308     0.279 1.729 6.20 0.00 

70 24 Round Nose 0 75.00 2.4 0.267 0.618 0.110 0.146 1.163 1.729 1.49 1.95 

132 24   0 75.00 2.4 0.267 0.490 0.076 0.102 0.724 1.729 2.39 1.35 

71R 72 75mm x 300mm 0 75.00 2.4 0.267 0.490 0.081 0.090 0.724 1.729 2.39 1.20 

69 24   0 75.00 2.4 0.267 0.477 0.055 0.073 0.686 1.729 2.52 0.98 

72 24   0 75.00 2.4 0.267 0.368 0.019 0.025 0.404 1.729 4.28 0.34 

131 6   0 75.00 2.4 0.267 0.346 0.009 0.012 0.356 1.729 4.86 0.16 

68 1 Incipient scour at pier 0 75.00 2.4 0.267 0.355     0.375 1.729 4.61 0.00 

73 24 Round Nose 15 150.09 2.4 0.267 0.647 0.166 0.222 1.278 1.729 1.35 1.48 

75 24   15 150.09 2.4 0.267 0.479 0.088 0.117 0.694 1.729 2.49 0.78 

76 24   15 150.09 2.4 0.267 0.393 0.044 0.059 0.462 1.729 3.75 0.39 
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78 24   15 150.09 2.4 0.267 0.337 0.025 0.033 0.337 1.729 5.13 0.22 

77 1 Incipient scour at pier 15 150.09 2.4 0.267 0.304     0.271 1.729 6.37 0.00 

80 24 Round Nose 30 214.95 2.4 0.267 0.634 0.233 0.310 1.224 1.729 1.41 1.44 

81 72 75mm x 300mm 30 214.95 2.4 0.267 0.481 0.173 0.192 0.700 1.729 2.47 0.89 

82 24   30 214.95 2.4 0.267 0.387 0.068 0.091 0.448 1.729 3.86 0.42 

83 24   30 214.95 2.4 0.267 0.344 0.035 0.046 0.352 1.729 4.91 0.22 

79 1 Incipient scour at pier 30 214.95 2.4 0.267 0.313     0.289 1.729 5.98 0.00 

123 24 Square Pier 0 152.00 5 0.267 0.833 0.312 0.416 2.644 4.354 1.65 2.74 

99 24 152mm x 152mm 0 152.00 5 0.267 0.773 0.338 0.450 2.275 4.354 1.91 2.96 

98 72   0 152.00 5 0.267 0.644 0.305 0.339 1.581 4.354 2.75 2.23 

124 72   0 152.00 5 0.267 0.592 0.254 0.282 1.336 4.354 3.26 1.85 

100 24   0 152.00 5 0.267 0.550 0.146 0.195 1.152 4.354 3.78 1.28 

90 24   0 152.00 5 0.267 0.491 0.112 0.149 0.917 4.354 4.75 0.98 

89 24   0 152.00 5 0.267 0.457 0.099 0.132 0.794 4.354 5.48 0.87 

122 6   0 152.00 5 0.267 0.359 0.034 0.046 0.491 4.354 8.86 0.30 

88 1 Incipient scour at pier 0 152.00 5 0.267 0.316     0.378 4.354 11.51 0.00 

96 24 Circular Pier 0 152.00 5 0.267 0.847 0.218 0.290 2.733 4.354 1.59 1.91 

121 24 152mm x 152mm 0 152.00 5 0.267 0.813 0.225 0.300 2.516 4.354 1.73 1.97 

125 144   0 152.00 5 0.267 0.784 0.229 0.229 2.337 4.354 1.86 1.51 

97 24   0 152.00 5 0.267 0.740 0.233 0.311 2.084 4.354 2.09 2.05 

126 144   0 152.00 5 0.267 0.713 0.264 0.264 1.937 4.354 2.25 1.74 

95 28   0 152.00 5 0.267 0.658 0.170 0.224 1.648 4.354 2.64 1.47 

109 144   0 152.00 5 0.267 0.590 0.129 0.129 1.325 4.354 3.29 0.85 

120 72   0 152.00 5 0.267 0.535 0.088 0.098 1.091 4.354 3.99 0.64 

94 72   0 152.00 5 0.267 0.539 0.095 0.106 1.105 4.354 3.94 0.70 

93 24   0 152.00 5 0.267 0.532 0.073 0.097 1.079 4.354 4.04 0.64 

110 6   0 152.00 5 0.267 0.476 0.026 0.034 0.863 4.354 5.04 0.22 

92 24   0 152.00 5 0.267 0.464 0.030 0.041 0.818 4.354 5.32 0.27 

111 6   0 152.00 5 0.267 0.406 0.008 0.011 0.626 4.354 6.95 0.07 

91 1 Incipient scour at pier 0 152.00 5 0.267 0.375     0.534 4.354 8.15 0.00 

104 24 Round Nose 0 75.00 5 0.267 0.800 0.127 0.169 2.436 4.354 1.79 2.25 

103 72 75mm x 300mm 0 75.00 5 0.267 0.635 0.074 0.082 1.534 4.354 2.84 1.09 

119 24   0 75.00 5 0.267 0.571 0.020 0.022 1.240 4.354 3.51 0.30 

102 24   0 75.00 5 0.267 0.526 0.009 0.012 1.054 4.354 4.13 0.16 

101 1 Incipient 0 75.00 5 0.267 0.419     0.667 4.354 6.53 0.00 
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107 24 Round Nose 15 150.09 5 0.267 0.797 0.230 0.306 2.418 4.354 1.80 2.04 

108 72 75mm x 300mm 15 150.09 5 0.267 0.654 0.120 0.133 1.628 4.354 2.67 0.89 

106 24   15 150.09 5 0.267 0.524 0.049 0.066 1.044 4.354 4.17 0.44 

118 6   15 150.09 5 0.267 0.434 0.020 0.026 0.717 4.354 6.07 0.17 

105 1 Incipient scour at pier 15 150.09 5 0.267 0.341     0.442 4.354 9.85 0.00 

114 24 Round Nose 30 214.95 5 0.267 0.817 0.361 0.481 2.539 4.354 1.71 2.24 

115 72 75mm x 300mm 30 214.95 5 0.267 0.668 0.281 0.312 1.699 4.354 2.56 1.45 

117 24   30 214.95 5 0.267 0.665 0.246 0.328 1.684 4.354 2.59 1.53 

112 24   30 214.95 5 0.267 0.550 0.107 0.142 1.151 4.354 3.78 0.66 

116 6   30 214.95 5 0.267 0.443 0.012 0.015 0.746 4.354 5.84 0.07 

113 1 Incipient scour at pier 30 214.95 5 0.267 0.326     0.403 4.354 10.81 0.00 
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