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ABSTRACT 

Time-to-time interactive features among waves, currents and dynamic 

morphology changes are essential to quantitatively determine the beach erosion 

problems. This study puts special focus on the impact of dynamically changing beach 

profiles on the wave and current properties. We first developed a new set of image­

capturing techniques that enabled us to obtain high-resolution quantitative data sets of 

waves, currents and bottom bed profiles both in time and space domains . In a 2D 

wave flume, multiple high-speed cameras and normal video cameras were installed 

beside the flume to capture the time-varying bottom bed profiles and spatial 

distributions of instantaneous current velocity and surface water fluctuations across 

the entire surf zone. Brightness of the obtained image was transferred to the 

instantaneous suspended sediment concentrations. The obtained data sets successfully 

describe the formation and onshore movement of the bars until they reach to the 

equilibrium state. 

INRTODUCTION 

As the wave shoals on the sloping beach in the surf zone, its profile 

dramatically changes. Initially, waves slow down in the surf zone and starts gaining 

height as they propagate on sloping beach until they reach to a breaking depth where 

waves are forced to break. At this height, wave crest deforms to forward-leaning 

profile and yields surface roller that collapses in front of the wave crest. This 

complicated nonlinear phenomenon of wave breaking generates turbulence which 

plays vital role in transferring wave energy, momentum, and mass fluxes into the 

water body in the surf zone (Huang et aI., 2009). The generated turbulence reaches to 

the bottom and picks up bottom sediments in suspension. Suspended sediments are 

then transported by instantaneous and mean current velocity and cause morphology 

changes which, in turn, affect the nearshore hydrodynamics. This interactive process 

continues until the beach reaches to a state of equilibrium. 

To predict the beach erosion and topography changes along beach with a 

greater accuracy, detailed knowledge of the flow parameters such as spatial-temporal 

surface water elevations, the corresponding internal flow dynamics and particularly 

their interactions with morphology are crucial. Other important parameters, such as 

time averaged currents, turbulence and sediment transport can readily be estimated 

based on obtained spatial instantaneous current velocities. 
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698 SCOUR AND EROSION 

Our understandings of near-surf-physics are usually based on quantitative 

measurements carried out during several laboratory studies. However, most of these 

experimental studies are limited to wave breakings on uniformly sloping fixed bed 

beaches. Traditionally, two types of techniques have often been used to investigate 

changes in water surface profile of waves and its underwater dynamics. The first 

approach is to apply point measurement techniques such as Acoustic Doppler 

Velocimetry, (ADV) or Laser Doppler Velocimetery, (LDV) in combination with 

wave gauges ( e.g. , Elgar et aI. , 2005, Stive, 1980, Nadaoka et aI. , 1989. Ting and 

Kirby, 1996, Cox and Kobayashi , 2000, Shin and Cox, 2006 and Longo, 2009). Over 

equilibrium profile of natural sandy beaches, Hurther, et al. (2007) used ADV and 

optical back scatters (OBS) to study the turbulent energy production and dissipation 

under broken irregular waves. The second approach is full-field measurements by the 

use of the state of art Particle Image Velocimetry (PIV) technique. Recently, studies 

by Govender et. al., (2002), Govender et. al. (2004), Kimmoun and Branger (2007) 

demonstrated the skills of full-field PIV measurements over sloping fixed bed 

beaches in wave flumes. The results are overwhelming and present details about the 

fluctuating velocity components and various features of turbulence kinetic energy 

such as dissipation, production, advection, convection during various wave phases. In 

order to capture the interactive features of changing bed profiles and surrounding 

wave and current fields, it is essential to obtain synchronized high-resolution data sets 

of both current and bottom bed profiles. 

Therefore, the present study aims to develop a new set of image-capturing 

techniques that enable us to obtain synchronized high-resolution quantitative data sets 

of waves, currents and movable bottom bed profiles both in the time and space 

domains across the entire surf zone. High speed video cameras (HSVCs) and normal 

video cameras are utilized to reveal the instantaneous current velocity, surface water 

fluctuation and bottom bed evolution by the use of Boundary Detection Technique 

(BDT) coupled with PIV technique. In our data sets we successfully captured the 

migration of ripples, formation of sand bars from the plane sloping bed and 

interaction of currents and topographic changes. 

EXPE~ENTALSETUPSANDPROCEDURES 

The laboratory experiments were performed in a 30m long, 0.6m wide, and 

0.8m deep 2D wave flume at the University of Tokyo. Progressive waves were 

generated by piston-type wave maker located at one end of the flume. A schematic 

diagram of wave flume and apparatus is shown in figure 1. Three HSVCs and two 

normal video cameras were mounted near the glass waIl as shown in figure 1. HSVCs 

were used to determine spatial distributions of instantaneous current velocity field on 

a 1110 sloping movable sandy bed of uniform sand grains (Dso=0.24mm), while 

normal video camera were mounted to obtain surface water elevations and bottom bed 

profile. HSVCs employed in experiments were Casio EX-FH20 that captures images 

with frame rates of 120 fps and resolutions of 640x480 pixels. A laser sheet was also 

introduced from the top to illuminate the suspended sand particles and no special 

seeding particles were utilized. Laser sheet was set 2 cm away and parallel to the 

glass wall to avoid the side wall effects if any. 
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The spatial size of field of views (FOYs) by each HSYCs was 190x1SOmm, 

whereas the spatial sizes of nonnal video camera I (outside of the surf zone) and 

video camera 2 (swash zone) were kept as 430x2S0mm and 230x 130mm respectively. 

Spatial bench marks were also marked inside FOYs of each camera to rectify the 

image results during the analysis. FOYs recorded by 3 HSYCs, were later used to 

determine velocity field distribution over the entire surf zone while surface water 

elevations and bottom bed profile were computed from images of all five cameras 

based on BDT. 
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Figure I: Schematic diagram of wave flume showing apparatus setup and connection 

details. (All dimensions are in 'em ' ) 

Five wave gauges (one at offshore (WG I), one just outside the surf zone 

(WG2), two inside the surf zone (WG3 & WG4) and the other one in the swash zone 

(WGS) were installed for the purpose of validation of BDT. In addition, ADY was 

also installed outside the breaking point to calibrate the present PIV. 

Monochromatic incident waves with heights of 3.31cm and period of Isec 

were generated where the water depth was 30cm. The surf similarity parameter of the 

incident wave conditions correspond to a plunging type breaker. PIV-based 

measurements were carried out for about seven minutes and covered 0.S7 meters 

around the breaking point where a bar was fonned and moved onshore-ward. To 

synchronize image data in all these cameras, a high intensity flash was popped up at 

the end of recordings that was readily detected in each FOY. 

DATA ANALYSIS 

Calibration and Validation of PI V 
Since accurate velocity estimation skills using PIV essentially rely on the 

detenninations of window sizes, within which best-fit pixel patterns are searched 

based on correlations of two successive images, the optimum window size was first 

calibrated through the comparisons with measured velocities by ADY. Since the 

installation of ADY probe affected the images for PIV, we perfonned separate 
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experiments respectively for measurements by PIV and ADV after the beach profiles 

reached to the equilibrium state. In these calibration experiments, both ADV and PlY 

recorded 20 waves exactly at the same location . 

A PlY algorithm, based on enhanced Minimum Quadratic Different (MQD) 

method (Ahmed & Sato, 200 I), was applied for various combinations of interrogation 

and searching window sizes. The best match conditions (interrogation window size 

of 69x69 pixels and searching window size of 49x49 pixels) were adopted and 

comparison of results after removal of high frequency noise based on Fast Fourier 

Transform (fft) are shown in figure 2. Figure 2 compares both horizontal and vertical 

velocity components measured and estimated by ADV and PlY, respectively. 
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Figure 2: Comparison of PlY computation with ADV measurement for horizontal 

velocity u, and vertical velocity w. 

The PlY shows excellent agreement for both horizontal and vertical velocities. 

Relatively high noises found in vertical velocity were due to mismatching of PlY 

correlation under small velocities of particles and high near bed suspension of 

sediment. Root-mean-square errors of measured and estimated velocity components 

in horizontal and vertical directions are 2.6 and 3.2 cm/sec respectively. 

Boundary Detection Technique 
This study also developed a Boundary Detection Technique (BDT) , which 

captured the temporal and spatial high resolution data of surface water elevations and 

bottom bed profiles over the entire surf zone. In BDT, RGB information of each 

image is utilized to obtain threshold values at water-air and water-sand boundaries, 

respectively. The logic behind the detection of the boundary is to identify the position 

of pixel where the representative value (say C) equals the threshold value (Clh) . The 

following figure 3(a) shows typical image recorded by HSVC, while 3(b) shows the 

detected boundaries of surface water and bed bottom in solid lines and the 

instantaneous velocity fields obtained by PlY in vectors. 
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Figure 3: (a).Typical image recorded by HSVC. (b). Water-air and water-sand 

boundaries detected by BDT (in solid lines) and instantaneous velocity vectors 

estimated by PIV algorithm. 

For validation of BDT, temporal data of surface water elevations from four wave 

gauges (WG2, WG3, WG4, and WG5) mounted at various positions are compared 

with BDT results (see figure 4). 
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Figure 4: Comparison of water surface elevation, 7J extracted from images using BDT 

and those recorded by wave gauges at four different locations around the surf zone. 

The comparison shows robustness of BDT for measurements of the surface 

water elevations compared with the one recorded by each wave gauges. Since BDT is 

sensitive to the local brightness of pixel, therefore air bubbles that develop at the 

water surface as a result of wave breaking may cause some fluctuations as observed in 

the comparison of WG5 data. Later, a similar procedure is readily adopted for 

detection of water-sand boundary and to extracted high resolution bottom bed profiles 

in temporal and spatial domains. 
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DYNAMIC CHANGES OF MEASURED BED PROFILES AND VELOCITIES 
Developed image-capturing techniques were applied for the experimental case 

respectively at 1, 2, 3, 4, 5 and 6 minutes after the initiation of waves. During the first 

five minutes, bottom bed profiles and waves were dynamically changed and nearly 

reached to the equilibrium conditions. At each time (every minute), images of ten 

waves were used for estimations of detailed velocity components. 

Dynamic Changes of Bottom Bed Profiles 
To obtain the bottom bed profile, BDT was applied to the images captured by 

all the cameras. Based on the known spatial locations at bench marks inside FOVs, 

obtained boundaries in each image were combined to yield single lines of the bed 

profiles across the entire surf zone at every time. Figure 5 shows morphology change 

at I , 2, 3, 4, 5 and 6 minutes after the initiation of the wave generation. 
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Figure 5: Spatial and temporal variation of bottom bed profile extracted using BDT 

from the image data recorded with three HSVCs. 

As seen in figure 5, BDT successfully captured the bar formation and its 

onshore migration. It is interesting to observe that the bar was formed quickly within 

the first two minutes while the onshore movement of the bar was relatively slow but 

continued until six minutes after the initiation of the wave generation (see region 

recorded by HSVC 2). Meanwhile, ripples generated outside of the surf zone, seen in 

HSVCl, show continuous onshore migrations. Further, in the area observed in 

HSVC3, rapid erosion in near-shore region was observed during the first four minutes. 

After four minutes, bed profile in the area of HSVC 3 was stabilized while the bar in 

HSVC 2 sti ll showed onshore migrations. 
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Characteristics of Current Velocities and Suspended Sediments over the Bar 
In order to investigate the characteristics of the current and suspended 

sediment concentrations on the changing movable beds around the bar, six points, we 

applied PIV at PI , P2, P3, P4, P5 and P6, shown in figure 5, at times, I min, when the 

bar was being developed, 4min, when the bar was fully developed, and 5 & 6 min 

when the bar was moving shore-ward. The elevation of the observation point was kept 

constant at 30 pixels (I cm) above the movable bed whose elevation changes at 

different time. At each point, horizontal current velocities, u and image brightness, C, 

which represents the suspended sediment concentrations, were extracted. According 

to Liu (2005), image brightness and the suspended sediment concentrations have 

nearly linear relationships under the uniform lighting conditions without the use of 

additional seeding particles except bottom sand grains for PIV. Figure 6 shows the 

averaged time profiles of u and C at different time and locations. 
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Figure 6: Averaged time profile of horizontal current velocity u (bold lines) and 

corresponding image brightness, C (dash lines) at PI, P2, P3, P4, P5 and P6 (placed 

horizontally from left to right) after 1, 4, 5 and 6 minutes (placed vertically from top 

to bottom). 

When the absolute values of the horizontal velocity components are relatively 

small especially seen during the offshore flow , the present PIV appears to yield 

unreliable velocity estimations due to pixel resolutions of the present setups. However, 

the points across the sand bar i.e., from PI to P3, yielded somewhat reliable velocity 

profiles . Figure 7 shows the estimated mean current velocity and mean suspended 

sediment concentrations at PI, P2 and P3. 
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Figure 7: Time averaged undertow velocities (solid line) and suspended sediment 

concentration (dash line) in terms of brightness at PI, P2 and P3 (placed horizontally 

from left to right) after 1,4, 5 and 6 minutes (placed vertically from top to bottom). 

Suspended Sediment transport over the Bar 

Net suspended sediment transport rate is quantified by time-averaging the 

depth-integrated product of u and C, i.e._ 

q, = 'JuCdZ (I) 
o 

with z, upward elevation from the bottom. Note that integration range was limited up 

to the wave trough level, h" under the assumption that there is nearly no suspended 

sediments above the trough level. The net q, may then be decomposed into two parts_ 
Itl '11_ 11/----::;; 

JuCdz = JuCdz + JuCdz = q" + q" (2) 
o 0 0 

with ~ & C , the time-averaged components of u and C, and u & C , time-fluctuations 

of u and C around their time-averaged components, i.e_, u = U + u and C = C + C . 
Figure 8 shows the estimated components of suspended sediment transport 

rates, qs, qs/ and qs2 at different locations and times. The figure 8 also shows the 

changing local bottom slopes estimated from the extracted bed profiles. Here the 

bottom slope is expressed in positive value when the water depth is increasing in the 

shoreward and the horizontal distance used for estimation of the bottom slope was 

represented by the excursion amplitude of the bottom orbital velocity. 

As seen in the figure 8, qs/, i.e., the depth-integrated product of u & C , 

dominate qs2, the time-averaged product of u & C under all conditions. The net 

sediment transport, qs, at all three points are shoreward and the magnitude of qs at P2 

was greater than the others, PI and P3 from t=I min to 2 min. As a result of this 

unbalance, bottom bed was eroded between P2 and P3 and accumulated between PI 
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and P2. After t=3min, in contrast, net transport at all three locations seems 

approximately uniform suggesting a temporary equilibrium similar to that observed 

during morphology changes of bottom bed at corresponding time. At t=4 min, 

furthermore, the higher offshore ward transport at P3 relative to P2 caused initiation 

of shoreward sand bar movement. 

The depth-integrated product of mean components, qs/, shows strong 

correlation with the location relative to the bar crest. At P2, for instance, the seaward 

qs/ dramatically increases as the sand bar moves shoreward and the relative location 

of P2 approached to the bar crest. While qs/ shows clear correlation with the relative 

location to the sand bar, qs2, the component of fluctuating suspended sediment 

transport rates appear to show correlation with the local bottom slope especially 

during the first four minutes. Until four minutes, increase or decrease of qs2 surely 

correspond to the increase or decrease of the bottom slope. It is however interesting to 

point out that this correlation breaks after five minutes when the movement of the 

sand bar became predominant. 
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Figure 8: Temporal Variation of uC (fig.9a), u.C (fig. 9b) and u' C' (fig9c) at PI and 

P2 and P3. Fig.9d shows the corresponding local bed slope computed across 

horizontal excursion amplitude of water particle. (Note: A positive value of slope 

represents downwards slope and vice versa.) 

CONCLUSION 

This study developed a new set of image-capturing techniques that successfully 

obtained the high-resolution quantitative data sets of waves, currents and bottom bed 

profiles both in the time and space domains. Boundary Detection Technique 

successfully captured the phenomenon of bar formation and its onshore migration 

along with ripple migrations. 

Change of the time-profiles of current velocity as well as suspended sediment 

concentrations were estimated and, based on these profiles, the time-averaged 
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components of net suspended sediment transport rates were computed and compared. 

The total net suspended sediment transport rates reasonably explained the 

morphology change around the sand bar. The net suspended sediment transport rates 

were decomposed into two parts, mean-component, qsl , and the fluctuation 

components, qs2. The mean components dominantly determined the total net 

suspended sediment transport rates and their magnitudes show clear correlations with 

the relative locations to the sand bar crest. While the magnitude was relatively small, 

the fluctuating component showed clear correlations with the local bottom slopes 

especially before the shoreward movement of the developed sand bar. Further 

improvements of the image-capturing system and investigations of obtained high­

resolution data sets of current, suspended sediments and corresponding bottom 

topography should be achieved in the future research. 
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