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1 INTRODUCTION  

When floods occur in river reaches, channel areas are temporally filled with flood water and they are 
gradually released to downstream. Discharge hydrographs of flood flows passing through river channels 
change in shapes through this process and it causes attenuation of peak discharge, delay in propagation 
and difference between arrival times of the peak discharge and the peak water level at river cross sections 
(Takahashi (1971) and Menedez et.al. (1982)). They are known as the storage effects of river channels 
and largely affected by unsteadiness of flood flows and channel geometries such as cross sectional shapes 
or its longitudinal changes (Henderson (1966) & Fukuoka (2003)).  

Understanding of the storage effects of river channels is a great interest of river engineers or research-
ers and many fundamental studies are proposed (e.g. Lighthill and Whitham (1955), Ponce and Simons 
(1977)). However, applications of these studies are limited to the specific problems in rivers because the 
most of studies are proposed under the ideal conditions (e.g. uniform and quasi-steady flow condition or 
linear stability analysis). Now, flood propagations in river channels can be analyzed with high accuracy 
for the development of the observation technique and numerical analysis method (e.g. Fukuoka and 
Watanabe (2004)). How to evaluate the storage effects of river channels during flood events by using the 
numerical analysis results becomes an important problem. Mishra et.al. (1997) adopts the area of the loop 
of the rating curve (discharge - water level curve) in non-dimensional form as the parameter to explain the 
propagation characteristics of flood flows passing through river reaches in their study. However, the rat-
ing curve cannot represent the amount of the deformation of discharge hydrographs in the river channels 
which is the dominant factor to evaluate the storage effects of the river channels quantitatively because it 
represents only the discharge - water level relationship at each river cross section during flood events. 

Figure 1 shows the discharge hydrographs at upstream and downstream ends of a river reach. The dis-
charge hydrograph deforms from the black broken line to the gray solid line in the reach. Areas surround-
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Q = discharge, A = cross sectional area, U= mean velocity, yl and yr = positions of water edges at rive 
cross sections. As the result, second term of the right side of Equation (2) is canceled out and third - fifth 
terms are appeared on the right side of Equation (3). These three terms represent the effects of velocity 
distributions in river cross sections on the rate of change in Q. Equation (3) can be written in the more 
simplified form 
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The rate of change in Q can be represented by only the product of partial derivative ∂U/∂t and flow cross 
sectional area A when we follow the mean motion of a fluid. This indicates that deformation of discharge 
hydrographs in river channels is controlled by temporal changes in mean velocity at river cross sections.  

2.2 Evaluation method of the positive and negative retarding storage volumes 

Rate of storage in a river reach is represented by the difference between inflow and outflow discharge of 
the reach or 
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where S = storage volume in the river reach, L = longitudinal distance of the river reach. Differentiating 
discharge Q (=UA) respect to time, ∂A/∂t on the right side of Equation (6) can be written 
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It can be easily understood with relation to Equation (5) that the second term of the right side of Equation 
(7) (A/U)∂U/∂t represents the rate of storage per unit distance due to the deformation of discharge hydro-
graphs. To assign a meaning of the first term (1/U)∂Q/∂t, we think the case that mean velocity does not 
temporally change throughout river reaches; i.e., discharge hydrographs are unchanged in shape as it 
moves downstream since the right side of Equation (5) A∂U/∂t is 0. In this case, the difference of arrival 
time of the discharge hydrograph between two river cross sections is only the factor causing storage in 
river channels. Then rate of storage per unit distance ∂A/∂t is equal to (1/U)∂Q/∂t since the second term of 
Equation (7) (A/U)∂U/∂t is 0. It allows us that the first term of the right side of Equation (7) (1/U)∂Q/∂t 
can be taken as the rate of storage per unit distance due to the difference of the arrival time of the dis-
charge hydrograph.  

From the above discussions, it can be understood that the positive and negative storage volumes de-
fined as the parts of the storage and release volumes in the river reaches that cause the deformation of the 
discharge hydrographs (hatched areas in Figure 1) are produced by the second term of the right side of 
Equation (7). The rate of the positive and negative retarding storage volumes per unit distance are written 
as 
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Qx-dx/2:Discharge hydrograph at x-dx/2 section, Qx+dx/2:Discharge hydrograph at x+dx/2 section, Q’x+dx/2:Discharge hydrograph at x+dx/2 sec-

tion (unchanged in the shape), TpQ: Arrival time of the peak discharge, Tph: Arrival time of the peak water level 

 
Figure 2. Discharge hydrographs around the flood peak time at river cross sections infinitesimal space dx away from x section 

in upstream and downstream directions. 
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where rsr = positive retarding storage volume per unit distance, rsd = negative retarding storage per unit 
distance, δ1 and δ2 = response functions.  

Figure 2 shows the discharge hydrographs around the flood peak time at river cross sections infinites-
imal space dx away from x section in upstream and downstream directions. The times TpQ and Tph are the 
arrival times of peak discharge and peak water level at x section, respectively. The rate of storage and the 
rate of positive retarding storage in the space dx are represented by ∂A/∂tdx, ∂rsr/∂tdx, respectively. Con-
sidering the right side of Equation (7), the first term is less than 0 (i.e., (1/U)∂Q/∂t < 0) and second term is 
equal to the rate of positive retarding storage (i.e., -(A/U)∂U/∂t = ∂rsr/∂t) from the time TpQ to the time Tph. 
Therefore, the rate of positive retarding storage is larger than the rate of storage (i.e., ∂rsr/∂tdx > ∂A/∂tdx) 
in this time as shown in Figure 2. This indicates that the volume of the positive retarding storage obtained 
by integrating Equation (8) respect to time during the rising period overestimates the volume surrounded 
by the points a, b and c in Figure 2. The overestimated volume can be eliminated by using Equation (10) 
instead of Equation (8). 
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Generally, it can be neglected because the overestimated volume would be considered sufficiently smaller 
than the total volume of the positive retarding storage in river reaches. However, Equation (10) should be 
used to discuss the positive retarding storage around the flood peak time. 

Integrating Equation (8) (or Equation (10)) and Equation (9) respect to the length of river reaches L, 
we obtain the rate of the positive retarding storage and negative retarding storage in the river reaches 
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where Rsr = positive retarding storage volume in river reaches, Rsd = negative retarding storage volume in 
river reaches. 
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