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Abstract 

The fluid structure interaction is an important issue that must be taken into account for the 

analysis and design of hydraulic structures. Since the first attempts to calculate the 

hydrodynamic pressures on structures analytically (Westergaard, von Kármán, Mononobe, 

Housner, Chwang, Zangar) the engineers and researchers have the last years a very useful 

tool, the finite and boundary element method, in order to analyze complicated structures 

taking into account different sophisticated phenomena.  However, even nowadays, the 

common praxis is to use the early developed techniques, because of their simplicity and 

capability of implementation in the most finite element codes.  

Introduction 

Since 1933, the hydrodynamic pressures on oscillating structures, which are in contact with 

water, are taken into account with the simplified assumption that the water is incompressible 

and the structure is star using the added mass approaches, first proposed by Westergaard for 

vertical star surfaces and later extended by Zangar for inclined surfaces. Although these 

approaches apply under conditions which hardly are met, they are widely used also nowadays 

because of their simplicity in incorporating them in finite element codes. However, the result 

of analysis with the added mass approach may come out to be very conservative leading to 

wrong decisions. The modeling of the water with finite solid element around the 1980’s gave 

the opportunity for the analyst to take account some phenomena, as the water compressibility 

but raised other numerical problems as such type of modeling of water is suffering many 

times of hourglass  making the analysis instable. The use of acoustic elements seems to be the 

more beneficial, as there are hardly numerical problems, and most of the phenomena, which 

take place for a dynamic fluid structure interaction can be modeled. With acoustic elements 

the analyst can consider the water compressibility, the wave absorption at the infinite end of 

the reservoir and the impedance of wave radiation at the reservoir sediments.  

Hydrodynamic Pressures  

Added mass approaches  

The most well-known added mass approach is the one of Westergaard (1933)[1]. Westergaard 

proposed the following formula for the computation of hydrodynamic pressures as added 

masses under the restrictions that the reservoir is infinite, the upstream surface of the dam is 

vertical and the dam is rigid: 
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where m the added mass, H and y the height and the depth of the reservoir respectevily, γw the 

density of the water, g the gravitational acceleration and A the contributing area around the 

node. 

 

 

 

 

 

 

 

 

 

 

Figure 1: Graphical representation of Westergaard’s and Zangar’s calculation models. 

 

Zangar (1952)[2], using an electric analogue, extended the added mass approach of 

Westergaard for inclined upstream surfaces of the dam, introducing reductive factors 

dependent on the angle of inclination.  
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where Cm a coefficient based on the angle of inclination and the other parameters as 

Westergaard’s formula. 

Fluid Elements 

The fluid elements are solid elements to which the characteristics of the water are applied. 

The incompressibility or the water as well as the null shear resistance are introduced with a 

Poisson number equal with 0,5 or close to this value for the finite element programs.  The 

bulk modulus of the water is K=2,2 GPa. The modeling of the water with solid elements 

causes numerical instabilities because of the introducing of zero energy modes (hourglass 

modes). This effect can be mitigated with the use of hourglass control and by applying the 

free surface boundary condition for the vertical node displacements [9]. Moreover, a 

nonlinear material behavior with tension cut off or a contact interaction which allows only 

compression to be transmitted will avoid unrealistic tension stress of the dam caused by the 

water.  

Acoustic Elements 

The acoustic elements are used to model the fluid behavior of the air. They have no shear and 

tension resistance and they transmit only pressures [10]. With assignment of the water bulk 

modulus they model the water behavior very good. Numerous boundary conditions can be 

assigned to the acoustic elements, which model natural phenomena such as wave absorption 

at the far end of the reservoir, sloshing of the free surface, wave impedance at the reservoir’s 

bottom due to sediments etc. For the acoustic elements no special numerical care has to be 

taken except for assigning the boundary conditions.  

Model aspects 

For this benchmark two models (one with coarse mesh and one with fine mess) are 

investigated. The mesh of the reservoir is the same for both cases. The foundation was 

considered massless, so no further care was taken for wave absorption or deconvolution of the 



seismic motion. Because of the massless foundation with no radiation absorption of the 

seismic waves and due to the lack of further non-linearities of the dam’s material and of the 

contact interfaces, a big enough structural damping is applied. As presented in [6] for a big 

range of frequencies the total Rayleigh damping is between 8 and 10 %. Due to the linear 

finite element analysis a 10% viscous damping is used by [6]. Here, because of the small peak 

ground acceleration of 0,1g a value of 7,5% of structural damping was chosen in order to 

determine the Rayleigh stiffness damping factor a and the Rayleigh mass factor β. 

For the reservoir hydrodynamic pressures, two added mass approaches and one reservoir 

modeling with acoustic elements were investigated. The generalized Westergaard’s [11] and 

the Zangar’s added mass approaches were used. The added masses were given via a user 

subroutine which defines user elements in Abaqus [5].  

The two models with acoustic elements differ only in the wave absorption’s method of the far 

field. The first uses acoustic infinite element whereas the latter impedance boundary 

condition. The impedance condition can be given either as element based or as surface based 

condition.  Moreover a boundary condition is given at the reservoir free surface constraining 

the dynamic acoustic pressures to be zero. The surfaces of the rock and the dam are tied with 

the surfaces of the reservoir.  

 

                 

Figure 2: The model with two different meshes and two reservoir modeling approaches: left 

fine mesh and acoustic elements and right coarse mesh and added mass elements. 

 

 

 

Figure 3: The reservoir with its boundary conditions. 
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Table 1: Material Parameters 

 Rock Water Dam 

Density (kg) 0 1000 2400 

Poisson Ratio 0,2 - 0,167 

Young Modulus (MPa) 25000 - 27000 

Bulk Modulus  (MPa) - 2200 - 

 

Analysis’ methods 

The seismic analyses were carried out using the time history with direct integration and the 

modal time history. From computational time the modal time history is a little bit faster than 

the time history with direct integration. The time histories were gives as nodal acceleration to 

the boundaries of the rock. A baseline correction offered by Abaqus was also applied to them.  

Results 

The results of the analyses are presented at the next tables and diagrams. The first table shows 

the ten first modes for the dam, with empty and with full reservoir modeled by the different 

methods described before. The diagrams show due to lack of space only some of the results 

containing the minimal and maximal vertical, minimum principal and maximum principal 

stresses of the dam for the different reservoir models and for the different dam mesh. The 

results are given for the paths along the height of the dam, for the upstream and the 

downstream sections.  For convenience abbreviations were introduced to the diagrams (e.g. 

“dti” refers to direct time integration, “West” to Westergaard’s added mass, “ac” to acoustic 

element, “imp” to impedance boundary condition for the acoustic elements, “inf” to acoustic 

infinite elements, “modal” to modal dynamic analysis). The results for the fine mesh model 

are given with dashpot line in order to differ easier than the ones of the coarse mesh model.  

The analysis with the infinite elements had more computational cost than the analysis with the 

impedance condition. In order to obtain similar results to the impedance boundary condition 

with the use of infinite acoustic elements, care must be given in the definition of the infinite 

elements’ thickness. There are trivial differences when the analyst uses the improved rather 

than the planar non-reflecting condition offered by Abaqus.  

The results of the fine model with acoustic elements for the reservoir gave too conservative 

results. The author believes that these results for the given meshes of dam and reservoir are 

not correct due to violation of the contact condition, according to which the slave surface 

nodes must be finer than the master surface nodes.  

 

Figure 4: The frequencies for the two models (coarse left, fine right) and for the four reservoir 

models. 

 



Table 2: Ten first modes for the coarse model 

Mode  

Nr. 

Empty Acoustic Westergaard Zangar 

f (Hz) T (sec) 
f  

(Hz) 
T (sec) 

f  

(Hz) 

T  

(sec) 

f  

(Hz) 
T (sec) 

1 
    

f=1,92 T=0,52 f=1,47 T=0,68 f=1,29 T=0,78 f=1,39 T=0,72 

2 
    

f=2,03 T=0,49 f=1,54 T=0,65 f=1,32 T=0,76 f=1,44 T=0,69 

3 
    

f=2,91 T=0,34 f=1,55 T=0,65 f=1,96 T=0,51 f=2,12 T=0,47 

4 
    

f=3,59 T=0,28 f=2,11 T=0,47 f=2,30 T=0,43 f=2,49 T=0,40 

5 
    

f=3,63 T=0,28 f=2,33 T=0,43 f=2,44 T=0,41 f=2,65 T=0,38 

6 
    

f=4,29 T=0,23 f=2,46 T=0,41 f=2,86 T=0,35 f=3,07 T=0,33 

7 
    

f=4,50 T=0,22 f=2,61 T=0,38 f=3,08 T=0,32 f=3,33 T=0,30 

8 
    

f=4,80 T=0,21 f=2,97 T=0,34 f=3,57 T=0,28 f=3,82 T=0,26 

9 
    

f=5,19 T=0,19 f=3,25 T=0,31 f=3,73 T=0,27 f=4,05 T=0,25 

10 
    

f=5,52 T=0,18 f=3,37 T=0,30 f=3,77 T=0,27 f=4,07 T=0,25 



Table 3: Ten first modes for the fine model 

Mode  

Nr. 

Empty Acoustic Westergaard Zangar 

f (Hz) T (sec) 
f  

(Hz) 
T (sec) 

f  

(Hz) 

T  

(sec) 

f  

(Hz) 
T (sec) 

1 
    

f=1,91 T=0,52 f=1,47 T=0,68 f=1,30 T=0,77 f=1,41 T=0,71 

2 
    

f=2,03 T=0,49 f=1,54 T=0,65 f=1,33 T=0,75 f=1,45 T=0,69 

3 
    

f=2,90 T=0,35 f=1,54 T=0,65 f=1,98 T=0,50 f=2,14 T=0,47 

4 
    

f=3,57 T=0,28 f=2,00 T=0,50 f=2,32 T=0,43 f=2,50 T=0,40 

5 
    

f=3,62 T=0,28 f=2,29 T=0,44 f=2,48 T=0,40 f=2,68 T=0,37 

6 
    

f=4,27 T=0,23 f=2,46 T=0,41 f=2,91 T=0,34 f=3,11 T=0,32 

7 
    

f=4,48 T=0,22 f=2,53 T=0,40 f=3,12 T=0,32 f=3,37 T=0,30 

8 
    

4,78 T=0,21 f=2,96 T=0,34 f=3,62 T=0,28 f=3,85 T=0,26 

9 
    

f=5,17 T=0,19 f=3,13 T=0,32 f=3,81 T=0,26 f=4,12 T=0,24 

10 
    

f=5,49 T=0,18 f=3,27 T=0,31 f=3,86 T=0,26 f=4,13 T=0,24 



 

The next diagrams give some representative comparisons between results for the different 

reservoir models and analysis’ methods. 

 

 

Figure 6: The vertical stresses for the different reservoir models at the downstream main 

section. 

 

 

Figure 7: The vertical stresses for the different reservoir models at the upstream main 

section. 

 

 

Figure 8: Comparison between the coarse and fine model for the vertical stresses. 

 



 

Figure 9: The hoop stresses for the different reservoir models at the downstream main section. 

 

 

Figure 10: The hoop stresses for the different reservoir models at the upstream main section. 

 

 

Figure 11: The radial deformations for the different reservoir models at the main section. 

 



 
Figure 12: Comparison between the modal dynamic analysis and the direct time integration 

for the coarse model with the Zangar’s approach at the downstream (left) and upstream (right) 

main section. 

Conclusion 

The earthquake analysis of an arch dam-reservoir-foundation system was performed with 

different modeling aspects according to the formulators’ directions. The results show very 

near values for the two added mass approaches, with the one of Zangar to be a little bit more 

favorable than the one of Westergaard. The acoustic elements models with the two non-

reflecting approaches give identical results. The coarse and fine models differ only in the base 

stresses due to the coarser mess of the coarse model and some deviations are noticed at the 

added mass models. Although the modal dynamic analysis is much faster than the direct time 

integration, delivers conservative results.  

  

Acknowledgements 

This paper consists a part of the research project „Earthquake Analysis and Design of 

Hydraulic Structures“, which is funded by the Federal Waterways and Research Institute of 

Germany in cooperation with the Institute of Concrete Structures of the Karlsruhe Institute for 

Technology. The contribution of both participated Institutes and persons involved is highly 

acknowledged.  

 

References 

[1] Westergaard, H. M. (1933). Water pressures on dams during earthquakes. Transactions of 

the American Society of Civil Engineers, American Society of Civil Engineers, New 

York, New York, Paper 1835, 1933. 

[2] Zangar, C. N. (1952). Hydrodynamic Pressures on dams due to horizontal earthquake 

effects. U.S. Departmant of Interior, Bureaus of Reclamation, Engineering Monographs 

No.11 

[3] Chwang, A.T., Housner, G.W. (1978). Hydrodynamic pressures on sloping dams during 

earthquakes. Part 1. Momentum Method. Journal of Fluid Mechanics, vol. 2, part 2, pp. 

335-341 

[4] Chwang, A.T. (1978). Hydrodynamic pressures on sloping dams during earthquakes. Part 

2. Exact Theory. Journal of Fluid Mechanics, vol. 2, part 2, pp. 343-348 



[5] ABAQUS (2011),User’s manual, Version 6.11. Dassault Systèmes Simulia Corporation, 

Providence RI, USA. 

[6] US Bureau of Reclamation (2006), State-of-Practice for the NonlinearAnalysis of 

Concrete Dams at the Bureau of Reclamation, USBR Report, Colorado, USA. 

[7] United States Society on Dams (2008). Numerical models for seismic evaluation of 

concrete dams. Review, evaluation and interpretation of results. USSD, Denver, USA. 

[8] Zienkiewicz, O. C., Bettess, P. (1978). Fluid-Structure dynamic interaction and wave 

forces. An introduction to numerical treatment. International Journal For Numerical 

Methods In Engineering, Vol. 13, 1-16. 

[9] Wilson, E.D., Khalvati,M. (1983). Finite elements for the dynamic analysis of fluid-solid 

systems. International Journal For Numerical Methods In Engineering, Vol. 19, 1657-

1668. 

[10] Matthew Muto, Nicolas von Gersdorff, Zee Duron, Mike Knarr (2012). Effective 

Modeling of Dam-Reservoir Interaction Effects Using Acoustic Finite Elements, in 

Proceedings of Innovative Dam and Levee Design and Construction for Sustainable 

Water Management, 32nd Annual USSD Conference, New Orleans, Louisiana, April 23-

27, 2012, Pages 1161-1168. 

[11] Kuo, James Shaw-Han, (1982). Fluid-structure interactions: added mass computations for 

incompressible fluid. UCB/EERC-82/09, Earthquake Engineering Research Center, 

University of California, Berkeley, 1982-08. 


