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Abstract

In this thesis a numerical approach for the modelling of air transport and

degassing processes within turbulent free-surface flows is developed,

implemented and tested.

Aiming to find an approach to enable the investigation of the near-field

flows at hydraulic structures including air-water intermixing processes, the

applicability of existent mathematical approaches was analysed and evaluated. A

suitable approach has to be able to capture multiple two-phase phenomena,

which occur during simultaneous physical processes. Here the capturing of

processes at various interface scales provides a challenge. The model has to

reproduce the large stretched free surface with sufficient precision, the

interaction between the entrained air bubbles and the surrounding water body as

well as the detrainment process at the free surface. The flow under consideration

is strongly influenced by turbulence. Therefore, a suitable turbulence model to

be coupled with the two-phase approach has to be found. As the above

mentioned requirements cannot be met by any of the existent two-phase models,

a new model was developed.

This new approach extends a mixture model with a new method of

physically modelling the bubble rising process. Three different variants for the

calculation of the bubble rising velocity were implemented into the developed

model. This allows the model to capture the effect of rising bubbles, even if they

are not directly captured by the grid. Since the model is formulated for

incompressible flow, the compression of the air bubbles below the water surface

cannot directly be accounted for. In order to consider the influence of the bubble

size to the bubble rising velocity an extension for “pseudo-compressibility” was

included. With this additional feature the bubble diameter, which is used to

calculate the bubble rising velocity, is adapted according to the surrounding

water pressure.

At large-scale free surfaces the model operates as a volume of fluid

approach. To allow a sharp representation of the interface between the phases,
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which is modelled by a scalar transport equation, higher order discretisation

schemes can be applied. In this study various Total-Variation-Diminishing

schemes were tested regarding stability and accuracy with reference to hydraulic

structure flow simulations. In addition, a flux-corrected transport algorithm was

introduced to ensure the boundedness of the solution. With this method, the

necessity for complex geometrical reconstruction methods or methods with

artificial compression at the interface can be avoided.

The formulation of the model is based on the finite volume method

formulated for arbitrary structured meshes. The C++ library OpenFOAM was

used as framework for the implementation of the model. Relying on the

available structure of the framework the parallelization of the solver is inherent.

Furthermore, the available sets of discretisation schemes and matrix solvers are

directly applicable with the implemented model. The framework also enables

the coupling with a variety of turbulence models. As the common Reynolds-

Averaged-Navier-Stokes (RANS) turbulence models are not specifically adapted

for two-phase flows, the interaction between the bubbles and the velocity

fluctuations of the flow field cannot be captured. As a consequence the transport

capacity of the flow is reduced and the bubbles of the mixture model with

RANS turbulence model rise too fast. To counteract this, the developed mixture

model is extended with an additional term in the transport equation for the

gaseous phase. The term produces additional diffusion in the bubbly zone

dependent on the local turbulent viscosity of the flow. As a consequence bubble

rising in turbulent flow is decelerated.

Simple test cases show that the developed solver meets the defined

demands concerning multiscale two-phase flow. Comparisons of analytical and

experimental results demonstrate the functionality and the accuracy of the

implemented model. Particularly the influence of grid resolution, discretisation

schemes and bubble diameter is tested. Furthermore, the influence of the

pseudo-compressibility dependent on the water depth is presented.

With two application-oriented test cases, the utilisation of the new model

to real-world engineering applications is presented. On the one hand, the

efficiency and the performance of the solver are proven to be suitable for large

parallel computations. On the other hand, examples of applying the theory in
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applications are shown. A comparison with measurement results from a physical

model reviews the comparability with reference to the bubble transport with the

flow. Moreover results from various turbulence models are compared and

evaluated. This comparison illustrates the necessity for the extension of the

transport equation for the gaseous phase with the additional diffusion term when

RANS turbulence models are applied.

With the means of the solver, a vast amount of information of the effect of

entrained air in the nearfield flow of hydraulic structures can be gained. The

output could be used for future structure design and operation optimization.

Particularly in the field of lock design and optimisation the new approach

enables new insights: with the model, the influence of defined air content on the

forces on the ship during the filling process can be tested for a head-filling lock

system.

The test cases also reveal limitations of the model applicability: the air

entrainment process due to a falling water jet cannot be represented by the

model. As this process is relevant for many different questions in hydraulic

engineering, more research is required in this field. Additionally, the modelling

of turbulences is of large importance for many applications. Thus, validation test

cases should test the applicability of the current implementation.
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Kurzfassung

In dieser Arbeit wurde ein numerischer Ansatz für die Modellierung von

Lufteintrags- und Transportprozessen für turbulente Strömungen mit freier

Wasseroberfläche entwickelt, implementiert und getestet.

Mit dem Ziel das Nahfeld von Wasserbauwerken mit freien Wasser-

oberflächen sowie mit Luft-Wasser-Durchmischungsprozessen untersuchen zu

können, wurde die Anwendbarkeit bestehender Ansätze analysiert und bewertet.

Ein geeigneter Ansatz muss mehrere Zweiphasen-Prozesse abbilden können, die

bei den gleichzeitig auftretenden, verschiedenen physikalischen Prozessen

entstehen. Eine Herausforderung stellen dabei vor allem die unterschiedlichen

Größenskalen der Grenzflächen dar. Das Modell muss sowohl die großflächige

freie Wasseroberfläche mit ausreichender Genauigkeit reproduzieren, als auch

die Interaktion der in Form von Blasen eingetragenen Luft mit dem umgebenden

Wasser, sowie das Entgasen der Luft an der freien Wasseroberfläche

berücksichtigen. Die betrachteten Strömungen werden außerdem stark von der

auftretenden Turbulenz beeinflusst. Daher muss ein geeignetes Turbulenzmodell

für die Kopplung mit dem Zweiphasen-Ansatz gefunden werden. Da die

genannten Anforderungen von bestehenden Modellen nicht erfüllt werden,

wurde ein neuer Ansatz entwickelt.

Der neue Ansatz erweitert ein Mixture-Modell mit einem neuen Ansatz

für die physikalische Blasenaufstiegsmodellierung. Im hier entwickelten Ansatz

wurden drei verschiedene Varianten für die Berechnung der Blasen-

aufstiegsgeschwindigkeit implementiert. Das entwickelte Modell ist in der Lage

auch den Effekt von aufsteigenden Luftblasen auf die Strömung zu berück-

sichtigen,  die  nicht  durch  das  Gitter  direkt  abgebildet  werden  können.  Da  das

Modell für inkompressible Phasen formuliert ist, kann die Kompression der

Luftblasen unterhalb der Wasseroberfläche nicht direkt berücksichtigt werden.

Um dennoch den Einfluss der Blasengröße auf die Aufstiegsgeschwindigkeit

untersuchen zu können, wurde das Blasenaufstiegsmodell mit einer „Pseudo-

Kompression“ erweitert. Mit Hilfe dieser Zusatzfunktion wird der Blasen-
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durchmesser, der für die Berechnung der Aufstiegsgeschwindigkeit der Blase

verwendet wird, an den umgebenden Wasserdruck angepasst.

Im Bereich großflächiger freier Wasseroberflächen funktioniert das

Modell wie ein Volume-of-Fluid Ansatz. Damit die freie Wasseroberfläche mit

Hilfe der skalaren Volume-Fraction-Transportgleichung mit möglichst klarer

Grenzfläche zwischen den zwei Phasen abgebildet wird, können

Diskretisierungsschemata höherer Ordnung eingesetzt werden. Im Rahmen

dieser Arbeit wurden verschiedene Total-Variation-Diminishing Schemata auf

ihre Stabilität und Genauigkeit in Bezug auf die Anwendung bei

wasserbaulichen Fragestellungen getestet und evaluiert. Zusätzlich wurde für die

Lösung der skalaren Transportgleichung ein Flux-Corrected-Transport-

Algorithmus eingesetzt, der eine Lösung ermöglicht, die definierte Grenzwerte

nicht unter- oder überschreitet. Dadurch kann die Notwendigkeit von komplexen

geometrischen Rekonstruktionsmethoden oder Methoden mit künstlicher

Kompression für die Schärfung der Oberflächen vermieden werden.

Die Formulierung des Modells basiert auf der Finiten-Volumen-Methode

für unstrukturierte Gitter. Die C++ Bibliothek OpenFOAM diente als

Framework für die Implementierung des Lösers. Dadurch konnten die inhärente

Parallelisierung sowie die vorhandenen Disketisierungsschemata und

Gleichungslöser für die Anwendungen genutzt werden. Auch die Kopplung mit

einer Vielzahl an Turbulenzmodellen wird durch das Framework ermöglicht. Da

die gängigen Reynolds-Averaged-Navier-Stokes-Turbulenzmodelle (RANS-

Turbulenzmodelle) nicht speziell für die Modellierung von Zweiphasen-

strömungen angepasst sind, kann die Interaktion zwischen den Blasen und den

Geschwindigkeitsschwankungen der Strömung nicht abgebildet werden.

Dadurch verringert sich die Transportkapazität der turbulenten Strömung und

die Blasen im Mixture-Modell mit RANS-Turbulenzmodell entweichen zu

schnell. Um dem entgegen zu wirken, wird das Mixture-Modell mit einem

zusätzlichen Term in der Transportgleichung für die Gasphase erweitert. Dieser

sorgt in Abhängigkeit von der lokal berechneten turbulenten Viskosität für

Eintrag von Diffusion und verhindert damit den zu schnellen Aufstieg von

Blasen in turbulenter Strömung.
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Zwei einfache Testfälle zeigen, dass die definierten Anforderungen an den

Zweiphasenlöser erfüllt werden können. Vergleiche mit analytischen und

experimentellen Daten dienen der Überprüfung der Funktionalität sowie der

Genauigkeit des implementierten Modells. Insbesondere wird der Einfluss von

Gitterauflösung, Diskretisierungsschemata und Blasendurchmesser getestet.

Außerdem wird der Einfluss der Pseudo-Kompressibilität in Abhängigkeit von

der Wassertiefe dargestellt.

Die Anwendbarkeit des Lösers für Untersuchungen im Nahbereich von

Bauwerken wird anhand von zwei anwendungsorientierten Fallstudien

untersucht. Zum einen wird die Effizienz und Leistungsstärke des Lösers bei

großen parallelen Rechnungen analysiert, zum anderen zeigen die Fallstudien

mögliche Einsatzbereiche des Lösers für die Beantwortung von aktuellen

Fragestellungen. Der Vergleich mit Messwerten aus einem gegenständlichen

Modell überprüft die Übereinstimmung für den Transport des Luftgehaltes mit

der Strömung. Außerdem werden die Ergebnisse von verschiedenen

Turbulenzmodellen verglichen und evaluiert. Dieser Vergleich verdeutlicht die

Notwendigkeit der Erweiterung der Transportgleichung für die Gasphase mit

dem Diffusionsterm beim Einsatz von RANS-Turbulenzmodellen.

Mit Hilfe des neuen Lösers kann eine Vielzahl von Informationen über

den Einfluss von eingemischter Luft auf die Strömung im Nahbereich von

Wasserbauwerken gewonnen werden. Diese können für die Optimierung von

bestehenden und zukünftigen Bauwerken genutzt werden. Insbesondere im

Bereich der Schleusenplanung und -optimierung ermöglicht der entwickelte

Ansatz neue Erkenntnisse: so kann mit Hilfe des neuen Ansatzes beispielsweise

getestet werden, welchen Einfluss ein definierter Luftgehalt in einem Vor-Kopf-

Füllsystem auf die Schiffskräfte während der Schleusung hat. Anhand der

Fallstudien zeigen sich auch die Grenzen des Modells: der Lufteinmischungs-

prozess durch einen fallenden Wasserstrahl kann mit der entwickelten Methodik

nicht abgebildet werden. Da dieser für die vollständige Modellierung von vielen

Fragestellungen notwendig ist, besteht hier weiterer Forschungsbedarf.

Außerdem ist in vielen Anwendungsfällen die Turbulenzmodellierung von

großer Bedeutung. Daher sollte mit Hilfe von Validierungsfällen überprüft

werden, ob die Implementierung für die Anwendung geeignet ist.





XI

Content

Preface ..................................................................................................I

Abstract ............................................................................................. III

Kurzfassung ......................................................................................VII

Content .............................................................................................. XI

List of Figures ................................................................................ XVII

List of Tables .................................................................................. XXI

Nomenclature .............................................................................. XXIII

1 Introduction ..................................................................................... 1

1.1 Background and Motivation ..................................................................... 1

1.2 Review and Evaluation of Available Analysing Methods ......................... 3

1.2.1 Field Measurements........................................................................ 3

1.2.2 Physical Scale Models .................................................................... 5

1.2.3 Numerical Models .......................................................................... 7

1.3 Previous Related Work in Numerical Multiphase Modelling .................... 8

1.4 Objectives and Present Contributions ..................................................... 11

1.5 Thesis Outline ........................................................................................ 12

2 Physics of Air-Water Flow .............................................................. 15

2.1 Classification of Air-Water Flow ............................................................ 15

2.1.1 General Classification Criteria ...................................................... 15

2.1.2 Free-Surface Flow ........................................................................ 20

2.1.3 Free Falling Water Jet................................................................... 21

2.1.4 Air Entrainment ............................................................................ 22

2.1.5 Bubbly Flow and Air Detrainment ................................................ 25

2.2 Scalability of Air-Water Flows ............................................................... 32

2.2.1 Dimensional Analysis ................................................................... 32

2.2.2 Scale Effects ................................................................................. 35



XII

3 Mathematical Models for Air-Water Flow ...................................... 37

3.1 Modelling of Fluid Flow ........................................................................ 37

3.1.1 Eulerian and Lagrangian Specification of the Flow Field ............. 38

3.1.2 Local Instantaneous Fluid Flow Equations ................................... 39

3.1.3 Applicability of the Local Instantaneous Fluid Flow Equations for

Two-Phase Flow ........................................................................... 41

3.2 Free-Surface Flow Models ..................................................................... 42

3.2.1 The Level Set Method .................................................................. 43

3.2.2 The Volume of Fluid Method ....................................................... 44

3.2.3 Applicability and Limitations of the Free Surface Flow Models ... 48

3.3 Dispersed Flow Models .......................................................................... 49

3.3.1 Two-Fluid Method ....................................................................... 49

3.3.2 Mixture Model.............................................................................. 51

3.3.3 Euler-Lagrangian Approach.......................................................... 59

3.3.4 Applicability and Limitations of the Dispersed Flow Models ....... 60

3.4 Coupled Multiphase Models ................................................................... 62

3.4.1 Coupling of the Interface Tracking and the Two-Fluid Model ...... 62

3.4.2 Interface Sharpening in Simulations with Two-Fluid Model......... 63

3.4.3 Interfacial Area Density Model for Stratified Flows ..................... 64

3.4.4 A Coupled Model for Complex Flow Patterns .............................. 64

3.4.5 Hybrid Multiphase CFD Solver .................................................... 65

3.4.6 The Extended Mixture Model ....................................................... 66

3.5 Turbulence Models ................................................................................. 67

3.5.1 Direct Numerical Simulation ........................................................ 68

3.5.2 Large Eddy Simulation ................................................................. 69

3.5.3 Reynolds Averaged Navier-Stokes Models ................................... 69

3.5.4 Extended Hybrid Models .............................................................. 71

3.5.5 Turbulence Modelling for Two-Phase Flows ................................ 72

3.6 Developed Modelling Concept ............................................................... 73

4 The Application-Oriented Multiscale Two-Phase Model ................. 75

4.1 Mathematical Model............................................................................... 75



XIII

4.1.1 Field Equations ............................................................................. 75

4.1.2 Algebraic Equation for the Relative Velocity ............................... 77

4.1.3 Pseudo-Compressibility of the Bubbles ........................................ 81

4.1.4 Extension of the Primary Phase Fraction Equation for Highly

Turbulent Flows ........................................................................... 82

4.2 Numerical Approximation ...................................................................... 84

4.2.1 The Finite Volume Method for Polyhedral Meshes ...................... 85

4.2.2 Discretization Schemes ................................................................. 95

4.2.3 Solution Techniques for the Linear Equation Systems .................. 99

4.2.4 Bounded Discretizing Procedure for the Mass Conservation

Equation of the Continuous Phase .............................................. 101

4.2.5 Derivation of the Pressure Equation for the Mixture Model ........ 103

4.3 Implementation Details ........................................................................ 108

4.3.1 The OpenFOAM library ............................................................. 108

4.3.2 Mixture Model Fields and Variables ........................................... 110

4.3.3 Summarized Solution Algorithm .................................................111

4.3.4 Solution of the Mass Conservation Equation for the Primary Phase .

     ............................................................................................111

4.3.5 Velocity Predictor Equation ........................................................ 112

4.3.6 Pressure Equation ....................................................................... 112

4.3.7 Time-stepping Procedure ............................................................ 113

4.3.8 Integration of the Turbulence Model .......................................... 115

4.4 Modelling Settings ............................................................................... 115

4.4.1 Boundary Conditions for Hydraulic Applications ....................... 115

4.4.2 Discretization Schemes ............................................................... 121

4.4.3 Linear System Solvers ................................................................ 122

4.4.4 Parallel Processing...................................................................... 122

4.4.5 Scalability of the Solver.............................................................. 123

5 Validation and Verification Examples............................................ 127

5.1 Detrainment of Uniformly Distributed Bubbles in a Tank .................... 127

5.1.1 Model Setup ............................................................................... 127



XIV

5.1.2 Analytical Results ....................................................................... 129

5.1.3 Evaluation of the Mixture Model Simulations ............................ 130

5.1.4 Conclusion from the Test Variations .......................................... 140

5.2 Submerged Free Surface Flow over a Sharp Crested Weir ................... 141

5.2.1 Model Setup ............................................................................... 141

5.2.2 Results from the Physical Model ................................................ 143

5.2.3 Evaluation of the Mixture Model Simulations ............................ 144

5.2.4 Conclusion from the Test Variations .......................................... 147

6 Application to Navigation Lock Systems ....................................... 149

6.1 Air Transport and Detrainment in a Through-The-Gate Filling System 149

6.1.1 Forces on a Ship in a Through-the-Gate Filling System .............. 151

6.1.2 Forces in the System under Investigation .................................... 152

6.1.3 Model Setup ............................................................................... 152

6.1.4 Analysis and Evaluation of the Numerical Model Results .......... 157

6.1.5 Transferability of the Results to the Prototype Structure ............. 164

6.1.6 Applicability to Larger Lift Heights............................................ 165

6.1.7 Uncertainty Factors .................................................................... 173

6.1.8 Conclusions ................................................................................ 174

6.2 Air Transport and Detrainment Processes in a Complex Lock Filling

System  ................................................................................................. 175

6.2.1 Project Background .................................................................... 175

6.2.2 Relevant Air-Water Flow Patterns for the Lock Filling System .. 177

6.2.3 Classification of the Flow in the Lock Filling System under

Investigation ............................................................................... 177

6.2.4 Objectives and Limitations of the Test Case ............................... 178

6.2.5 Physical Model Setup ................................................................. 179

6.2.6 Numerical Model Setup .............................................................. 183

6.2.7 Model Variants ........................................................................... 185

6.2.8 Analysis of the Numerical Model Results ................................... 186

6.2.9 Analysis of the Physical Model Results ...................................... 193

6.2.10Comparison and Evaluation of Both Models .............................. 201



XV

7 Summary, Conclusions and Outlook ............................................. 205

7.1 Summary and Conclusion ..................................................................... 205

7.2 Limitations and Outlook ....................................................................... 208

Appendix .......................................................................................... 211

Breakup Length Calculation for the Falling Jet in the Drop Shaft ...A.1.

 ................................................................................................. 211

Derivation of Equation 3.33 ...................................................... 212A.2.

Derivation of Equation 3.43 ...................................................... 213A.3.

Derivation of Equation 3.48 ...................................................... 214A.4.

Exemplary Calculation of the Inlet Conditions Replacing theA.5.

Falling Jet in the Simulations ..................................................................... 215

Illustrations of the Numerical Results of Chapter 6.1 ................ 216A.6.

Number Values of the Ship Forces of Cases 1-4 ....................... 231A.7.

References ........................................................................................ 233

List of Publications ........................................................................... 247





XVII

List of Figures

Figure 2.1: Schematic sketch of a falling water jet inspired by Castillo and Luis

(2006) ................................................................................................. 21

Figure 2.2: Comparison of literature values for the rising velocity for a single air

bubble in water ................................................................................... 28

Figure 3.1: Face gradient criterion adapted from Damian (2013) ..................... 66

Figure 4.1: Owner – neighbour correlation between two polyhedral cells ........ 86

Figure 4.2: Decomposition of the face normal vector into an orthogonal part and

a non-orthogonal part ......................................................................... 90

Figure 4.3: Total variation diminishing diagram............................................... 98

Figure 4.4: Correlation between the number of cells per core and the resulting

execution time .................................................................................. 125

Figure 4.5: Efficiency with various decompositions ....................................... 125

Figure 5.1: Sketch of the mesh and initial water air distribution in the tank.... 128

Figure 5.2: Initial water air distribution in the tank (left) and final water air

distribution (right) ............................................................................ 130

Figure 5.3: Detrainment behaviour with various mesh resolutions ................. 133

Figure 5.4: Simulation results with different discretization schemes .............. 135

Figure 5.5: Detrainment behaviour with various discretization schemes......... 136

Figure 5.6: Detrainment behaviour with various gas contents ........................ 137

Figure 5.7: Detrainment behaviour with various bubble sizes ........................ 138

Figure 5.8: Difference between the detrainment times with and without the

pseudo-compressibility ..................................................................... 140

Figure 5.9: Sketch of the model setup ............................................................ 142

Figure 5.10: Comparison of the physical model tests with the simulation results

 ......................................................................................................... 146

Figure 6.1: Sketch of the front part of the lock of Bolzum .............................. 150

Figure 6.2: Three-dimensional geometry of the Bolzum lock with vessel ....... 153

Figure 6.3: Illustration of the mesh resolution in the front part of the lock on a

vertical section plane ........................................................................ 154



XVIII

Figure 6.4: Sketch of the boundary conditions for the lock filling simulations 155

Figure 6.5: Illustration of the test cases .......................................................... 156

Figure 6.6: Results from the simulations of Case 1 with an inflow discharge of

20 m³/s ............................................................................................. 159

Figure 6.7: Results from the simulations of Case 2 with an inflow discharge of

20 m³/s ............................................................................................. 160

Figure 6.8: Case 1 and Case 2: Forces on the ship dependent on inflow rate and

air content......................................................................................... 163

Figure 6.9: Illustration of the test cases .......................................................... 166

Figure 6.10: Results from the simulations of Case 3 with an inflow discharge of

20 m³/s ............................................................................................. 169

Figure 6.11: Results from the simulations of Case 4 with an inflow discharge of

20 m³/s ............................................................................................. 170

Figure 6.12: Case 3 and Case 4: Forces on the ship dependent on inflow rate and

air content......................................................................................... 172

Figure 6.13: Schematic sketch of the lock filling system under investigation . 176

Figure 6.14: Photographs of the physical scale model with the drop shaft

construction ...................................................................................... 179

Figure 6.15: Radiometric measurement equipment installation at the physical

model ............................................................................................... 183

Figure 6.16: Sketch of the numerical model setup for the lock filling simulation

 ......................................................................................................... 184

Figure 6.17: Velocity and volume fraction distribution of the three lock filling

simulations ....................................................................................... 187

Figure 6.18: Section for the quantitative analysis ........................................... 189

Figure 6.19: Volume fraction distribution in the pressure chamber with different

turbulence modelling approaches ..................................................... 190

Figure 6.20: Time-averaged air content in the pressure chamber in the numerical

model ............................................................................................... 193

Figure 6.21: Photographs of the physical model ............................................. 194

Figure 6.22: Physical model: Photographs of the pressure chamber section for

the three water level variations showing the variety of the instantaneous

bubble distributions .......................................................................... 196



XIX

Figure 6.23: Physical model results: Photographs of the pressure chamber

section for the three water level variations taken with an exposure time

of 15 seconds .................................................................................... 197

Figure 6.24: Numerical model results: Time-averaged volume fraction

distributions in the pressure chamber for the three simulation cases . 197

Figure 6.25: Time-averaged air content in the pressure chamber in the physical

model ............................................................................................... 200

Figure 6.26: Comparison of the physical and the numerical model................. 202





XXI

List of Tables

Table 2.2.1: Governing parameters in hydraulic engineering applications ........ 33

Table 4.3.1: Model fields in the mixture model .............................................. 110

Table 4.4.1: Decomposition setups for the scalability tests ............................. 124

Table 5.1.1: Variants to test the influence of the spatial resolution in the tank

detrainment tests ............................................................................... 132

Table 5.1.2: Cases for testing the compressibility influence ........................... 139

Table 5.2.1: Probing locations for the water level measurements ................... 143

Table 5.2.2: Boundary conditions for the physical model cases ...................... 144

Table 6.1.1: Case setup conditions ................................................................. 156

Table 6.1.2: Case setup conditions ................................................................. 166

Table 6.2.1: Scaling factors between scale model and prototype structure ...... 181

Table 6.2.2: Boundary conditions for the three tests ....................................... 185

Table 6.2.3 Probing locations for the air content measurements in the physical

model for a chamber water level of 0.368 m ..................................... 200





XXIII

Nomenclature

Symbol Description SI Units

{�} square coefficient matrix [-]� area [m²]� turbulence diffusion influence factor [-]� vector describing the difference between the

velocity of the centre of mass and the

velocity of the centre of volume

[m/s]

Δ� influence of surface roughness on the wall [-]� speed of sound [m/s]�2 mass fraction of the dispersed phase [-]�	 drag coefficient [-]�
 dimensionless constant for the wall stress

calculation

[-]

Co Courant number [-]�� roughness coefficient [-]	� bubble diameter [m]�
� vector between two cell centres [m]�� turbulent diffusivity [m²/s]� empirical constant [-]�� bulk modulus of elasticity [Pa]

Eo Eötvös number [-]���� external forces [N]�	��� drag force function [-]

Fr Froude number [-]



XXIV

Symbol Description SI Units

Fri Froude number at the crest of an overflow

structure

[-]

��� surface tension force [N]

g gravity [m/s²]� gravitational acceleration vector [m/s²]ℎ water level [m]ℎ0 initial water level [m]∆ℎ water level difference [m]ℋ [U] matrix of the neighbour coefficients

multiplied by the vector U and the source

term contributions

[-]

� second auxiliary function for approach by

Zheng and Yapa (2000)

[-]

� turbulent intensity [m/s]� identity tensor [-]�� crest conditions [-] velocity of the centre of volume of the

mixture/volumetric flux

[m/s]

! first auxiliary function for approach by

Zheng and Yapa (2000)

[-]

" non-dimensional fit coefficient [-]# non-orthogonal part of the face normal

vector

[m]

$
 turbulent kinetic energy at the cell centre [m²/s²]"� effective roughness height [m]

"�+ non-dimensional roughness height [-]



XXV

Symbol Description SI Units

% length [m]

Ma Mach number [-]&	��� momentum due to drag force [kg∙m/s]&ℎ'�� momentum due to history force [kg∙m/s]&('�� momentum due to lift Force [kg∙m/s]

Mo Morton number [-]&)* momentum due to virtual mass force [kg∙m/s]

p pressure [N/m²]

p��� absolute pressure [N/m²]

p+ local pressure [N/m²], discharge [m³/s],-���� water inflow rate [m³/s],-���� total inflow rate [m³/s]� ratio of successive gradients [-]. source term contributions in the momentum

matrix

[-]

Re Reynolds number [-]

Rep particle Reynolds number [-]� shrinking factor [-]

Sct turbulent Schmidt number [-]

Sf face area vector [m²]� time [s]/0 total variation [-]1 velocity vector [m/s]11 velocity of phase 1 [m/s]12 velocity of phase 2 [m/s]



XXVI

Symbol Description SI Units

1� artificial compression velocity [m/s]1� velocity interpolated to the cell face [m/s]12,2 drift velocity of phase 2 [m/s]1* velocity of the centre of mass of the mixture [m/s]1*,1 diffusion velocity of phase 1 [m/s]1*,2 diffusion velocity of phase 2 [m/s]1� relative velocity between phase 1 and

phase 2

[m/s]

U� terminal velocity [m/s]0 volume [m³]) velocity [m/s])' velocity at the crest of an overflow structure [m/s])� relative velocity between continuous and

dispersed phase

[m/s]

We Weber number [-]

[3] solution vector [m]

4+ dimensionless distance [-]α volume fraction [-]α+ volume fraction of the dispersed phase [-]α+* concentration for maximum packing [-]6 switching criterion by Damian (2013) [-]7 average dissipation rate [m²/s³]8 smallest length scale in turbulent flow [m]9 weighting factor [-]: surface curvature of the interface [1/m]:) Kármán’s constant [-]



XXVII

Symbol Description SI Units


c dynamic viscosity of continuous phase [kg/(m∙s)]
g dynamic viscosity of gaseous phase [kg/(m∙s)]
l dynamic viscosity of liquid phase [kg/(m∙s)]
* dynamic viscosity of the mixture [kg/(m∙s)]
∗ local viscosity [kg/(m∙s)]< kinematic viscosity [m²/s]<� turbulent diffusion [m²/s]= density [kg/m³]=� density of continuous phase [kg/m³]=� density of the gaseous phase [kg/m³]=( density of the liquid phase [kg/m³]> surface tension [N/m]? kinematic viscosity [m²/s]?/$ averaged turbulent stress tensor [Pa]?@ wall shear stress [Pa]A general tensorial quantity [-]B(�) limiter function for total variation

diminishing schemes

[-]

C turbulent eddy frequency [1/s]D interface [-]D$ mass generation of phase k [kg]∆ orthogonal part of the face normal vector [m]





1

1 Introduction

1.1 Background and Motivation

Air entrainment, transport and detrainment processes occur where intermixing of

air and water takes place. Considering the field of hydraulic engineering these

phenomena can be observed at a large variety of natural and artificial structures.

Man-made dams, drop structures or natural barrages at rivers, lakes or canals

cause water to surmount barriers and subsequently free falling water jets evolve.

When the turbulence at the free surface is large enough to overcome

gravitational and surface tension forces, air is entrained into the falling water

body. At the lower end of the barrier the jet plunges into the water reservoir on

the downstream side and thereby air pockets and bubbles can be entrapped. Air

entrainment also occurs due to surface and velocity discontinuities at the toe of

hydraulic jumps and the breaking of waves. Dependent on the velocity and the

turbulence of the flow the entrained air is either directly detrained or transported

with the flow.

The intermixing of the two phases can significantly influence the

characteristics of the flow. Due to buoyancy the entrained air bubbles introduce

vertical momentum to the flow. Moreover, the bulk properties of the mixture like

density and compressibility are changed through the intermixing. As a

consequence, the water depth in free-surface flow can be increased. Local

detrainment of many air bubbles may cause waves or bulging of the water

surface.
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Generally, aeration of the flow can be beneficial at structures, where the

entrainment of air causes counteracts reductions of the pressure and thereby

preventing cavitation damages. This positive effect is used at structures like

valves or spillways. Furthermore, the enrichment of the water flow with more

oxygen can be favourable for environmental reasons at natural rivers, lakes or at

sewage treatment structures. In other cases, the uncontrolled intermixing of air

and water is undesirable. This is the case for closed hydraulic systems, where

unintended air entrainment and subsequent accumulations of the air inside

closed systems can lead to uncontrolled release of the air. The resulting blow-

backs or blow-outs can cause severe damages and risks. Unregulated

entrainment of air can also bias the flow characteristic inside complex hydraulic

structures like navigation locks, where the exact knowledge of the flow

behaviour is essential for an optimal operation. Inflow and outflow processes are

precisely regulated, to minimize the resulting forces acting on the ship hull

inside  the  lock.  At  the  same  time,  the  filling  and  emptying  times  as  well  as

building and maintenance costs should be minimized when designing lock

systems. Although the intermixing of air into those systems can significantly

affect their functionality, the entrainment of air is inevitable for many designs.

As the consequences of air-water intermixing processes inside the structures are

not yet fully understood, a high need for appropriate investigation methods

arises.

Tools like Computational Fluid Dynamics (CFD) in combination with

high-tech measurement techniques on physical scale models provide an

opportunity of investigating details of existing systems and approving new

ideas. Yet, current multiphase models are designed for a specific flow pattern

and a certain scale. Therefore, the simultaneous modelling of bubble transport

and detrainment processes is unfeasible, when a large stretched water surface

has to be captured simultaneously. Therefore, new methods for the investigation

have to be developed, approved and applied.

It  is  the  aim  of  this  work  to  provide  a  contribution  to  improve  the

understanding of two-phase flows and their effect on the flow in the nearfield of

hydraulic structures. Focus is put on the simultaneous capture of a large variety
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of flow patterns with various levels of scales. The patterns considered include

large stretched water surfaces as well as small air bubbles which are transported

with the flow. Aiming for an application-oriented approach the method should

be robust in handling large complex geometries. Parallelisation as well as the

careful choice of stable but accurate discretisation schemes is essential for the

applicability of a new approach.

Currently, the ability to model of bubble transport, detrainment and free-

surface flow simultaneously is of special interest in the field of lock design.

Here, a deeper insight into the effects of entrained air might allow improving

existent systems and optimizing designs for new structures. The application-

oriented test cases in this study therefore concentrate on the applicability of the

new approach to navigation lock modelling.

The next section gives an overview to the state-of-the-art of the available

analysing methods and evaluates their applicability for the investigation of air

entrainment, transport and detrainment processes.

1.2 Review and Evaluation of Available Analysing Methods

For analysing the hydraulic properties of a structure the following principle

methods are available:

∂ field measurements,

∂ physical scale models and

∂ numerical models.

All methods have their advantages and drawbacks, which precludes their

exclusive use. Therefore, the question “Which methods are worth considering?”

must be answered individually for every case. This section reviews and

evaluates the methods generally available for the investigation of flow in the

nearfield of hydraulic structures.

1.2.1 Field Measurements

With field measurements, existent structures are used to gain information

about the properties of interest. For this purpose physical measurement tools are

temporally or permanently installed close to or inside the structure in order to
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record defined parameters of the flow. Subsequently the recorded data can be

analysed and evaluated. Field measurements are very valuable when existing

structures are to be investigated. The in-situ data enables a genuine and straight

insight into the present flow situation, whereby influences of unknown

construction features resulting e.g. from an ageing structure and/or natural

vegetation are directly reproduced in the data. However, due to the complexity

of the data mining, the measurement data is often restricted to a very limited

number of measuring points and series. Additionally external conditions, like the

weather or water level situation or the course of the measuring ship etc. affect

the quality and the reproducibility of the results.

In existent locks problems with air entrainment mostly occur inside the

culverts (as described in e. g. Roux and Wong, 2012 ), where low pressure in

proximity to valves promotes air entrainment and thereby avoids cavitation

erosion. Cavitation occurs in low pressure regions, where water changes from

liquid phase to gaseous phase at ambient temperature. The resulting vapour

bubbles implode downstream when they are exposed to higher pressures. The

implosions form micro water jets, which impinge on the structure surface. In

unaerated flows resulting jet impact pressures are not dampened. In contrast,

aerated flow enables the dampening of the implosion pressures due to the

compressibility of the mixture flow. These phenomena can be investigated by

analysing solely the pressure conditions causing the situation. In the lock, the air

entrainment is not caused by pressure changes, therefore no analogy concerning

field or physical measurement techniques can be drawn. However, similar air

entrainment processes can be regarded at some existent lock systems: in locks

with “through-the-gate” filling systems the water enters through the upstream

gate and directly drops down several metres and a free plunging jet develops and

entrains air into the lock chamber. As this system is only used for lift heights up

to 10 metres, the amount of air entrainment is not directly comparable with the

system under investigation, but still very similar phenomena can be observed.

Measurements from existing locks could be used for validating results of CFD

simulations. To the knowledge of the author, no prototype measurements

analysing air entrainment in ship locks are existent and own measurements
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campaigns in the field are out of the scope of this work but could be considered

as future objective. Evaluating studies about the air entrainment properties of

weir overflows could also provide a good insight into the air entrainment

processes of a plunging jet. Most studies in the named field aim to quantify and

enhance the aeration capacities of weirs. Aeration at weir structures is often

intended to increase the oxygen content of the water for ecological reasons or to

avoid mechanical vibrations at the structures caused e.g. by pressure fluctuations

(see e.g. Chanson, 1995, Gebhardt, 2010). Although the quantification of air

entrainment features of different weir shapes and heights is of interest for many

studies, only very little research has been done on prototype scale. The reason

for  this  lack  of  data  is  the  complexity  of  the  measurement  installation  and  the

mortal  danger  in  proximity  to  the  weir  structure.  Many  more  studies  can  be

found which were conducted with small scale models. Another hydraulic

structure where air entrainment is of relevance for the hydraulic system is a

spillway.  In  particular,  spillways  are  designed  with  the  goal  to  enable  the

controlled release of high waters. In these constructions, the air entrainment

provides protects the structure against cavitation erosion.

Due to the high complexity of the measuring setup, large uncertainties

through natural influences like wind, temperature and due to human influences

like inaccurate steering of measuring boats, very few field measurement studies

have been performed, which investigate air entrainment processes inside or in

the near field of hydraulic structures. A much larger variety of investigations can

be found in the field of physical scale model measurements.

1.2.2 Physical Scale Models

Physical scale models use similarity laws for reconstructing hydraulic

engineering structures at a chosen scale, inferring that geometric, kinematic and

dynamic similitude between prototype and scale model is achieved. Geometric

similitude is reached, when all corresponding geometrical dimensions have the

same ratio in prototype and scale model. When all ratios of corresponding

velocities and accelerations are the same and the flow field has the same shape

in prototype and scale model, kinematic similitude is achieved. Dynamic
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similitude  is  reached,  when  the  ratios  of  all  forces  in  the  prototype  to  all

corresponding forces in the scale model are constant.

With upscaled or downscaled models, physical phenomena can be

reproduced and investigated in detail, en passant producing visual evidence of

the complete flow situation within the model. Compared to field measurement,

uncertainty influences like wind or large temperature variations between the

measuring series can be prevented, therefore the reproducibility of the

measurements is better. Furthermore, data mining can be easier handled than

with field measurements, whereby the extent and the accuracy of the obtained

data depend on the measuring techniques and devices used. Since modifications

of the boundary conditions like inflow, water level or simple shape

optimizations at the structure can be easily applied, scale models are profitable,

when a large series of modifications or boundary conditions are to be tested.

Disadvantageous are the high construction effort and possible scale effects. The

latter arise due to force ratios that are not identical in the model and the real-

world structure and result in discrepancies in the physical behaviour.

In the field of lock design and optimization, physical scale models are a

classical, widely used tool for investigating the hydraulic behaviour of the

structure. From the early days of Germany’s waterway engineering history till

nowadays, scaled models of the planned structures provide valuable data for the

design optimisation of ship locks. Whereas in former days the physical models

served as a database for the prototype design, nowadays scale model data is also

used for validation of numerical models (see e.g. Thorenz and Kemnitz 2006,

Thorenz 2010 and Gobbetti 2013).

For the scale model investigation of a falling water jet plunging into a

water filled pool and thereby entraining air scaling effects are inevitable to

affect the results of any small-scaled model of the prototype (Bollaert, 2010).

This results from the fact, that gravity and viscous forces dominate the system

simultaneously, whereas the scale model can only model one of the forces in the

correct ratio. Therefore, scale models can only be deployed for the calibration

and validation of a numerical model. Quantitative results of the air entrainment

are likely to suffer from scale effects.
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1.2.3 Numerical Models

Numerical models are  based  on  the  solution  of  partial  differential  equations

that describe the physics of the chosen problem. With sufficient computer

resources, suitable model equations and solution methods, detailed information

about the physical behaviour of the flow in the near-field of hydraulic

engineering structures can be attained. The computed data can produce results

for an almost unlimited number of probing points. Numerical simulations can be

advantageous  when  e.g.  the  hydraulic  properties  of  a  structure  are  to  be

investigated in large detail, or when the influence of small modifications at

structures is to be determined. Even very large models at full scale can be

handled with the methods of numerical modelling. However, setup errors as well

as the wrong choice of model equations quickly lead to physically wrong results.

Numerical background knowledge and user experience is the prerequisite for the

successful performance of a simulation.

With a combination of numerical one-, two- and three-dimensional

simulations, the most (relevant) hydraulic processes inside a ship lock can be

modelled. In particular, three-dimensional one phase models of single hydraulic

components are used for optimizing their shape and determining head losses.

The head losses are then used in the one-dimensional model to calculate the

filling- and emptying times for various scenarios. Then, a two- or three-

dimensional model of the complete structure can be used to analyse the water

surface  slopes  of  the  chamber  which  are  the  basis  for  the  calculation  of  the

hawser forces (Thorenz, 2009, 2010). For the three-dimensional simulation a

special two-phase model is applied. The model is designed to give accurate

information about the evolution of the water surface in the lock chamber. Yet,

this approach is only suitable for capturing the long-stretched water surface, but

bubbles smaller than the used numerical grid cannot be modelled appropriately.

For investigating the effect of entrainment air on the flow behaviour the

aforementioned chain of numerical methods cannot be applied, since the models

are not able to capture the effects of the phase interaction. Especially in the step,

where the hawser forces are calculated from the water level slopes in the lock

chamber, the influence of air bubbles within the system has to be considered.
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Therefore, alternative numerical methods are necessary to enable the modelling

of the air entrainment, the bubble transport and the free surface simultaneously.

1.3 Previous Related Work in Numerical Multiphase Modelling

Multiphase flows consist of multiple phases connected by a movable interface.

Each phase is marked with a continuous density, viscosity etc. and can occur in

solid, liquid or gaseous state. Between two immiscible phases an interface is

formed, which allows mass and momentum to be exchanged. At the boundary of

the interface all fluid properties are discontinuous. Furthermore, the scale of the

interface varies strongly, dependent on the flow regime. An appropriate

representation of the discontinuity of the fluid properties within the interface as

well as the mass and momentum exchange are the most challenging tasks when

designing numerical multiphase models.

The Navier-Stokes equations allow the mathematical description of the

complete spectrum of turbulent two-phase flows. Theoretically, these can be

solved without any further manipulation with the means of a direct numerical

simulation (DNS) where all time and length scales of the flow are directly

resolved by the temporal and spatial discretization. As the computational effort

increases with growing resolution, DNS is restricted to small, laminar test cases

and not applicable for most engineering applications. To enable numerical

multiphase simulation without the necessity of resolving all scales, multiple

modelling approaches were developed. For two-phase flow with large, stretched

interfaces, Hirt and Nichols (1981) developed the volume of fluid (VoF)

method. In the VoF approach both phases are treated as a mixture, an additional

equation transports the volume fraction with the flow. Mass and momentum

exchange between the intermixing phases is completely neglected. Their method

is widely used for free-surface flows, where the position and the shape of the

interface are most relevant. When multiphase flows with large numbers of

dispersed particles (e.g. bubbly flow) are to be modelled, Euler-Euler

approaches are applied. With these approaches, transport equations for both

phases are solved. Both phases are considered as continuous phases, interfaces

between the phases are not resolved. Mass and momentum exchange at the
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interfaces is modelled via source terms in the balance equations. The

formulation of these source terms is mostly based on physical experiment.

Therefore closure relations must be adapted for each application. As

simplification of the Euler-Euler approach, the mixture model was introduced.

Similar to the VoF approach, it considers the flow as a mixture. To account for

the interfacial exchange, an additional equation for the relative velocity between

the phases is introduced. In a large review about the mixture model Manninen et

al. (1996) concluded that the approach can be sometimes even more reliable

than the Euler-Euler approach due to the uncertainties in the closure relations.

For the application to complex engineering applications, it is useful to

implement the approaches into a performant software framework. The open

source  C++ library  OpenFOAM, initially  developed  at  the  Imperial  College  of

London and currently published under the GNU general public licence by The

OpenFOAM Foundation, provides a good starting point for this: A large variety

of linear equation solvers, turbulence models and discretization schemes which

can be reused for individual implementations, allows the focus on the

formulation of the multiphase model based on partial differential equations. A

large number of previous works in the field of multiphase flow modelling

with OpenFOAM provide valuable contributions for making OpenFOAM a

powerful tool in hydraulic engineering and many other engineering disciplines:

∂ The volume of fluid solver interFoam was developed by Henry Weller

(who published the code, but no citable documentation). The numerical

foundation of the solver was documented and further improved by Ubbink

(1997) and Rusche (2002). More recently Deshpande et  al. (2012) and

Damian (2013) described and evaluated more details of the interFoam

implementation. In the current release of The OpenFOAM Foundation Ltd

further modifications were included into the interFoam code, which are

not yet further specified in any publication. The current solver is able to

capture incompressible homogeneous two-phase flow of with interfaces

larger than the grid size. Mass and momentum exchanges between the

phases are neglected.
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∂ The formulation for the Euler-Euler dispersed flow solver bubbleFoam

was developed and documented by Rusche (2002) and Marschall (2011).

The current version of the solver is renamed to twoPhaseEulerFoam and

contains further improvements. It is able to capture incompressible,

isothermal two-phase flow, where the one phase is mono-dispersed within

the second continuous phase. Phases can exchange mass, momentum and

energy. Multiple drag model formulations allow the adaption to a large

range of dispersed flows.

∂ An extended Euler-Euler solver was developed and documented by

Wardle and Weller (2013). Their multiphaseEulerFoam solver couples the

Euler-Euler approach of the twoPhaseEulerFoam solver  with  the  VoF

approach of the interFoam solver  to  allow  a  sharp  capturing  of  the

interface for selected phase pairs.

∂ Brennan (2001) developed the settlingFoam solver for the OpenFOAM

toolbox. The incompressible solver is designed for simulating a settling

process of a dispersed phase within a continuous phase. The used mixture

model formulation is based on the mixture of volume formulation and

uses the drift velocity between the phases. In the current release the solver

is  renamed  to driftFluxFoam and extended to additionally capture heat

transfer between the phases.

∂ Bohórquez (2008) and Damian (2013) contributed further research in the

field of mixture models in OpenFOAM: Bohórquez designed an

incompressible three-phase solver, which allows the modelling of free-

surface flow including a settling process within the liquid phase; Damian

developed an extended mixture model, which combines the VoF and the

mixture model approach. The switching between the models is based on

the gradient of the volume fraction. Both developments are documented in

detail but the code is currently not available to the public.

The named solvers and the software framework of OpenFOAM build a suitable

base for the developments of this work.
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1.4 Objectives and Present Contributions

It  is  the  aim  of  this  work  to  provide  a  contribution  to  the  necessary  tools  for

analysing air-water flows in the near field of hydraulic structures. Available

methods for multiphase flow simulation are to be improved, extended and

validated to enable the analysis of flow regimes, where the phases share

interfaces with varying length scales. In the current study special focus is put on

air-water mixtures in the nearfield of navigation locks. The developments are

based on the existing CFD toolbox OpenFOAM. Currently, no solver available

is able to simultaneously capture bubble transport and detrainment processes in

combination with free surfaces. Therefore, this study strives to improve the

modelling  capacities  of  the  toolbox  OpenFOAM  in  a  way  that  the  considered

physical processes can be analysed. In particular, the available solvers are

analysed  in  detail  and  their  applicability  is  evaluated.  A  solver  based  on  the

mixture model approach is developed and implemented into the OpenFOAM

framework. Simple test cases prove the functionality of the solver. An extensive

study of the available discretization schemes is performed to find the most

suitable combination for engineering applications.

With two detailed simulations of the lock filling processes, the

applicability of the solver is tested. The first simulation series of an existent

through-the-gate lock filling system, shows how air-water intermixing can

severely change the flow characteristics of a system. Looking at the resulting

forces on a ship lying in the lock chamber, the simulation results allow first

conclusions about critical air entrainment rates and water inflow rates. In second

set of simulations a newly proposed filling system for large lift heights is

investigated, where air-water intermixing within the system is expected. For a

first validation of the new numerical approach, a physical scale model of the

first test case ship lock is build and equipped with advanced measurement

devices. The comparison reveals the advantages and shortcomings of the model.

The following specific contributions have been made in this study:

∂ Detailed analysis and description of the relevant air-water flow patterns

occurring in the nearfield of hydraulic structures.
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∂ Description and evaluation of the literature covering the fields of physics

of two phase flows, mathematical two-phase flow models, and air

entrainment with respect to the applicability to hydraulic engineering

applications.

∂ Research related to multiscale air-water flows:

- Analysis and testing of the available VoF model in OpenFOAM for

flows with free surface and dispersed flow patterns.

- Implementation of a mixture model with a physically based relative

velocity formulation into the OpenFOAM framework.

- Analysis of the different discretization schemes to obtain bounded,

accurate results.

- Validation against a simple test case to prove the basic

functionality.

- Validation against experimental data of a physical scale model to

prove the applicability to engineering test cases.

1.5 Thesis Outline

Subsequent  to  the  explanation  of  objectives  of  the  thesis,  this  section  aims  to

give  a  short  overview  about  the  content  development  of  this  thesis.  The

following content is structured into six further chapters. Chapter 2 introduces

the fundamentals for the physical characterization of fluid flows with focus on

two-phase flows. The collected information is used to subdivide the physical

processes of the in accordance typical flow patterns occurring in the near-field

of hydraulic structures. Available empirical models for the estimation of certain

physical correlations are explained, which are partly fed into the developed

numerical modelling concept. The phenomenological subdivision of the flow

patterns  is  later  used  to  find  models  for  the  mathematical  description  of  the

occurring processes. To show the necessity of a new numerical approach for the

investigation of hydraulic structures with significant air intermixing, the issues

of physical scale models are elucidated with a dimensional analysis of the

system and the description of resulting scale effects. In chapter 3 mathematical

model concepts for air-water flows are introduced. Similar to the
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phenomenological subdivision mentioned before, the mathematical models are

also clustered according to the physical patterns that they are designed to model.

Here, the scale of the interface between the two phases defines the subsections.

In addition to the two-phase models, turbulence models are described, which are

necessary when not all turbulent scales of the flows can be resolved. As close of

the chapter a rudimentary outline of the chosen modelling concept with the

given demanded capabilities is presented. Chapter 4 describes the details of the

developed model. Initially all components of the mathematical model are shown.

Subsequently, the numerical framework used for the implementation is

presented. In particular, all features necessary for the understanding of the

functionality of the developed solver are described. With the test cases of

chapter 5, the general functionality and the accuracy of the implemented solver

is tested. The simple setups are meant to show that the solver produces the

expected results. The real-world applicability of the development is

demonstrated  with  the  examples  of chapter 6. Performance and stability for

large cases are shown. The examples further highlight the extensive potential for

future design and operation optimization in the field of hydraulic structures. The

last chapter 7 presents a summary and conclusions. With its outlook possible

future tasks are proposed and justified.
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2 Physics of Air-Water Flow

The physical phenomena air entrainment, bubble transport and detrainment play

a significant role when regarding the efficiency of hydraulic structures.

Dependent on the function of the structure, air entrainment and the subsequent

interaction of the entrained air with the flowing water can have positive or

negative influence on the functionality and the performance. To understand the

impact of the air-water interaction phenomena on the flow behaviour, the

characteristics of the single phenomena and their collective influence have to be

analysed. In the following, the physical properties of typical flow phenomena

occurring in the near-field of hydraulic structures are described in detail.

2.1 Classification of Air-Water Flow

2.1.1 General Classification Criteria

Most models used in hydraulic engineering regard fluids as a continuum and

neglect the molecular structure of matter. This continuum assumption is valid

when the molecular mean free path of the particles is small compared to the

typical lengths and the mean free time is small compared to the relevant time

scales of the system under consideration. Fluids can then be specified according

to their thermodynamic properties like e.g. density, temperature,

compressibility, internal energy, specific entropy and speed of sound. The flow

of fluids can further be described with kinematic properties like velocity and
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acceleration and the variation of these properties over time and space. Friction

effects are quantified via the viscosity of a fluid. The interaction and possible

intermixing between two fluids is mainly governed by the surface tension and

the solubility of the involved fluids.

Considering the temporal and spatial variation of the flow properties,

further distinctions can be made. Regarding the spatial variation open channel

flow  can  either  be uniform or non-uniform. Uniform flow implies that the

hydraulic parameters of the flow do not vary spatially whereas non-uniform

flow indicates spatial variation. Flow with variations over time is labelled as

transient flow whereas temporally constant flow parameters indicate steady

flow. In turbulent flows, the turbulent structures constantly introduce temporal

varying velocities. Therefore natural flows, like they occur in rivers, canals or

hydraulic structures, never reach a real steady state. However, when the

hydraulic properties of the flow do not significantly change over time, the flow

can be designated as quasi-steady flow. Fluid flows involving more than one

component or phase are termed multiphase or multi-component flows, whereby

a phase refers to solid, liquid or vapour state of matter and a component

specifies a chemical species. For specifying e.g. spatial distribution of the phases

or components in a multiphase or multicomponent system the volume fraction

is introduced. In a control volume (CV) the volume fraction α of a component i

is the volumetric fraction 0  of one phase in relation to the total volume in

consideration:

0'0 = F' (2.1)

Summing up all volume fractions of all components over the considered control

volume unity is obtained: ∑ 0'CV = 1.  A  value  of F = 1 indicates that the

considered phase completely fills the regarded volume. All values between0 ≤ F ≤ 1 imply the presence of multiple phases in the control volume.

However, neither the exact shape nor the exact location of the interface can be

predicted by solely regarding the volume fraction. Multiphase flows can be

classified according to the physical state of the immiscible components or
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phases which exist simultaneously in the flow (Ishii, 1975). With that two-phase

flow can be categorized as gas-solid, gas-liquid, liquid-solid or in the case of

immiscible fluids liquid-liquid flow. Under natural conditions as they occur at

hydraulic structures (atmospheric pressure and atmospheric, isothermal

boundary conditions) air-water flow can consequently be classified as two-

phase gas-liquid flow. Whereas the liquid phase water can definitely be

regarded as incompressible under natural boundary conditions, this cannot

automatically be adopted for the gaseous phase air. A fluid is defined as

incompressible, when the density does not change along a trajectory due to ߩ

pressure change while temperature is constant. Mathematically,

incompressibility can be expressed as substantial derivative of the fluid density= over time �:
�=�� = 0

(2.2)

As solid and liquid phases have a very low compressibility it is decisive if

gaseous phases are involved. Compressibility must be considered, if the

circumstances make a significant compression of the gaseous phases likely to

occur and if the compression is relevant for the evolution of the result. In most

hydraulic engineering applications the compressibility of air is negligible when

modelling free-surface flow. In cases, where the two-phasic air-water flow is

exposed to high pressure variations, the compressibility can get significant and

thus has to be taken into account. Further, compressibility of entrained air

influences the size of bubbles and consequently the bubble behaviour at different

pressure levels. Thus, the relevance of compressibility effects has to be

determined dependent on the application. Most fluids relevant in water

engineering are Newtonian fluids, meaning that the viscous forces are linearly

proportional to the local strain rate. Up to a certain percentage, air can be

dissolved in water. According to Henry’s law the solubility is proportional to

the temperature and the pressure. Considering hydraulic engineering

applications the dissolved air quantity does not significantly influence the

density of the water. Hence, the dissolved air is mostly neglected. Therefore, air
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and water are regarded as immiscible fluids, implying that a sharp interface

forms between the fluids, where a sudden jump of the fluid properties is present.

On the interface surface tension force is  active,  which  results  from  the

cohesive forces between the water molecules. The surface tension force always

acts normal to the surface, for small accumulations of molecules this results in

spherical droplets or bubbles. For the properties of the flow around structures,

surface tension is insignificant. However, for air entrainment, transport and

detrainment processes the surface tension force cannot be neglected. The

influence of the surface tension force in relation to the inertial forces can be

expressed with the dimensionless Weber number. The Weber number is

calculated with:

We =
=)²%> (2.3)

where = is the fluid density, % is the characteristic length. In dispersed flows

typically the bubble or droplet diameter is used as characteristic length. In free-

surface flows the characteristic length refers to hydraulic system and can be

equal to e.g. the water depth. In tube flows without free surface the tube

diameter represents the characteristic length. ) is the flow velocity and >
represents the surface tension. The importance of the surface tension forces in

relation to the body forces can further be described with the Eötvös number:

Eo =
∆=g%2

> (2.4)

where ∆= describes the difference between the densities of the involved phases

and g is the gravitational acceleration. The larger the Eötvös number gets, the

smaller is the influence of surface tension. Multiphase flows can be strongly

influenced by the mass, momentum and energy transfer between the phases.

Driven through discontinuities in the fluid properties at the interfaces, various

flow patterns can evolve (Samstag, 1996). By regarding the distribution of the

phases and the topology of the interface the flow can be described as separated,

dispersed or transitional. In separated flows, the phases share a geometrically

simple, continuous interface. Dispersed flows are characterized through the
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existence of dispersed particles surrounded by a continuous fluid (Brennan,

2001). Through acceleration of the flow, friction or other factors, a transition

from separated to dispersed flow regime can occur. Flows involving both

interface distributions can be classified as transitional or mixed. For air-water

flows the topology of the interface is strongly dependent on the flow patterns,

the topological classification can therefore only be determined for every single

application. Dependent on the water velocity, the flow can further be described

as laminar, transitional or turbulent. In laminar flow, the streamlines of the

flow are parallel and no intermixing between the different velocity layers inside

the liquid takes place. Turbulent flows are characterized through their three

dimensional intermixing between the different velocity layers through the

turbulent eddies. Estimation about the evolving flow regime can be made with

the dimensionless Reynolds number, which describes the ratio of inertial to

viscous forces.

The Reynolds number can be calculated as follows:

Re =
)%< (2.5)

where ) is the flow velocity, % represents the characteristic length and < is the

kinematic viscosity of the regarded fluid. For very low Reynolds numbers () the

inertial forces can be neglected and viscous forces dominate the laminar flow

behaviour. This so-called Stokes or creeping flow occurs e.g. in the field of

micro-biology, where the length scales and velocities are very small compared to

the viscosity of the fluid. In the field of hydraulic engineering inertial forces are

dominating the flow behaviour, resulting in high Reynolds numbers. As soon as

the Reynolds number exceeds a critical value Re ≥ Recrit , smallest disturbances

can cause a transition from laminar to turbulent flow. The critical value for the

transition cannot exactly be defined, but is commonly assumed that it occurs

between Re = 1000 and Re = 10 000. In hydraulic engineering applications

almost all kinds of flows can be assumed to be highly turbulent. Therefore,

modelling of the occurring phenomena due to the turbulence is essential for

reproducing the physical phenomena.
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2.1.2 Free-Surface Flow

When water and air share a large scale, sharp interface the flow can be labelled

as open channel or free-surface flow, meaning that the flow is not completely

surrounded by a rigid boundary, but has an atmospheric boundary, where the

surrounding gas (air) and the liquid (water) share a common interface. At this

free-deformable interface usually no intermixing between the phases takes

place and no normal or parallel shear stresses act on the so-called free surface

(Jain, 2001). Considering isothermal conditions, the flow is driven by gravity

which acts against the inertial forces of the fluid. The ratio of the inertial to the

gravitational forces can be quantified with the dimensionless Froude number:

Fr =
)√�% (2.6)

where ) is the flow velocity, g is  the  gravity  and % is the characteristic length,

which is equal to the flow depth in open channel flows. With Froude numbers

smaller than unity, the flow is called subcritical.  In  subcritical  flows  the  flow

velocity is smaller than the wave celerity; gravitational forces dominate. When

the flow velocity equals the wave celerity the Froude number reaches unity and

the flow is called critical flow. Flows with Froude numbers larger than one are

described as supercritical flows implying that surface waves only propagate

downstream. The highly energetic, shallow, fast flow is then dominated by

inertial forces. In the transition region between sub- and supercritical hydraulic

jumps are likely to occur. Hydraulic jumps or turbulence can cause surface

aeration, meaning that the originally sharp water surface is disturbed and air is

entrained. Effects of surface aeration are described in 2.1.4. The evolution of the

liquid’s surface and consequently the depth of the flow and the discharge can

change with time and space. The water’s surface is subject to atmospheric

pressure and surface tension. As the density difference between water and air is

very large (approximate factor: 1000) the pressure at the interface is considered

as equal to the atmospheric pressure. The surface tension is resulting from the

cohesive forces between the liquid molecules which are stronger than the

attraction forces of the liquid molecules to the gas molecules. However, in large,
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stretched free-surface flows, the surface tension is  of  little  relevance  for  the

flow behaviour. In hydraulic engineering the flow characteristics are mainly

dominated through the shape and the surface properties of the channel

boundaries.

2.1.3 Free Falling Water Jet

When water drops over a horizontal crest, a free falling jet develops. The jet is

driven by gravity and follows a parabolic trajectory (Stamm et  al., 2013). The

energy dissipation mechanisms aeration and atomization of the jet continuously

increase the turbulence level of the jet with growing length and finally result in

a complete mixing of the involved fluids. Figure 2.1 schematically illustrates a

falling jet and its breakup.

Figure 2.1: Schematic sketch of a falling water jet inspired by Castillo and Luis

(2006)

Primarily, the breakup is caused by the internal turbulence of the jet, which is

mainly influenced by the flow conditions upstream of the jet (Falvey, 1980).

Secondarily, the interaction with the surrounding air contributes to the breakup

of the jet: due to friction of the water jet with the surrounding air, the surface

gets rough and surface aeration occurs, meaning that small air bubbles are

entrained into the jet. The acceleration decreases and the jet gets wider.

Additionally, small water drops separate from the initially continuous jet which

jet

core

air entrainment
zone

breakup

length
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starts to disintegrate. The turbulence at the free surface of the jet makes a

diffusion zone evolve in which the kinetic energy is partly dissipated (Kraatz,

1989). With growing falling height the disintegration of the jet increases.

Concurrently, the size of the discrete water droplets and air bubbles in the jet

decrease. After a certain length, the so called breakup length of  the  jet  is

reached; no continuous jet core exists (Baylar et al., 2009). Castillo and Luis

(2006) developed an approach to calculate the breakup length for nappe flow.

The approach is based on empirical correlations and was originally developed to

characterize nappe flow conditions at dam outlets. Assuming that the same

conditions apply for the jet such as those evolving e.g. in lock filling systems,

the breakup length for the jet can be calculated. An exemplary calculation of the

breakup length for a lock filling system investigated in chapter 0 is shown in

appendix A.1.

The results show that the breakup length dependents linearly on the

opening width of the rotational gate. At the beginning of the gate opening

process, the falling height is larger than the breakup length. With growing

opening, the breakup length can be reached. The jet is assumed to get very rough

at its surface and could become oscillating and reach the breakup state, which

means that the core of the jet is completely aerated. As a consequence high air

entrainment must be expected in the plunging pool of the drop shaft.

2.1.4 Air Entrainment

Air entrainment in free-surface flow is defined as the intrusion of air pockets

and bubbles below the surface. The process can often be observed at drop

structures like weirs, spillways or bottom outlet structures of dams. It is typically

recognizable from the white coloration of the water surface. At the point where a

water jet plunges into a pool of water at rest air pockets and bubbles may be

entrained into the pool (Chanson and Jaw-Fang, 1997). In the near-field of the

impinging point momentum transfer between the plunging jet and the pool water

evolves and a momentum shear layer develops (Brattberg and Chanson, 1998).

When  air  is  entrained  an  air  bubble  diffusion  layer  forms,  which  may  not

coincide with the momentum shear layer (Cummings and Chanson, 1997).
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Generally, air entrainment of plunging jets is governed by the following local

parameters (Kobus, 1985):

∂ the impact velocity of the plunging jet,

∂ the length of the intersection line between the plunging jet and the pool

surface,

∂ the density, viscosity and surface tension of the fluid and gravity and

∂ the character of the plunging pool surface (turbulent velocity

fluctuations).

For the entrainment process inertial and gravity forces induced by the jet have to

overcome the resisting forces at the pool surface due to viscosity and surface

tension  (Kobus,  1985).  Air  entrainment  occurs  when  the  jet  impact  velocity

exceeds a characteristic value, which is a function of the fluid properties, jet

length and jet core turbulence (Cummings and Chanson, 1999). Cummings and

Chanson (1997) concluded the following relevant findings about air entrainment

features of plunging jets: Dependent on the impact velocity of the jet, two major

air entrainment processes can be identified. With smaller impact velocities,

small individual air pockets are formed where the pool surface is not able to

follow undulations caused by the impinging jet. With higher jet impact

velocities the air entrainment is initiated by a thin air sheet, which enters the

pool at the impact point. At the lower end of the air sheet elongated air pockets

are formed and then carried downstream and broken up subsequently in the

shear flow. The frequency and size of the air pockets depends on the jet

turbulence and the jet velocity.

Resolving all relevant scales of a falling jet is hardly possible in most

engineering applications. As a consequence, several models have to be designed

that account for the effects of the unresolved scales. In the case of air

entrainment, the location and the quantity of the entrained air have to be

determined phenomenologically. The model results must be included in a global

multiphase model used for the fluid flow calculations.

In several publications the research group of Ma et al. (2010, 2011a,

2011b) presented a sub-grid approach for modelling air entrainment with a two-
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fluid model. Their phenomenological model is capable of predicting quantity

and location of air entrainment. It is based on the assumption that turbulence

occurring at rough air-water interfaces produces cavities; Air entrainment takes

place when the velocity of the entrained air cavities is higher than the downward

velocity of the air-water interface. For low jet impact velocities the air

entrainment rate can be defined as function of the jet velocity and the surface

roughness of the jet. When a certain jet velocity is exceeded, the air entrainment

mechanism changes: An air sheet causes the entrainment. The volumetric air

entrainment  is  dependent  on  the  jet  velocity  and  the  mean  thickness  of  the

plunging air sheet. The research group of Ma et al. tested the proposed sub-grid

approach in combination with a RANS-based two-fluid model. The approach is

applicable to various flow types including small scale plunging jets, a hydraulic

jump and the bubbly flow around ships. Various studies of the research group

around Ma proved that the approach shows good agreement with experimental

data. When air entrainment cannot directly be resolved, the sub-grid model

could help to locate and quantify it. If the prediction is applicable to large nappe

flow is unknown.

Souders and Hirt (2004) and Hirt (2003 updated in 2012) published the

only available information about the air entrainment model implemented in the

commercial CFD software FLOW3D®. Their entrainment model is based on the

idea that air is entrained when the intensity of the turbulence is high enough to

overcome the forces that stabilize the surface, namely the gravitational and the

surface tension forces. To describe the surface disturbances, the definition of the

characteristic size of turbulent eddies of the renormalisation group (RNG) k-	ߝ
model is used. FLOW3D® includes two variations of their air entrainment

model. The first is applicable for low air entrainment rates, simply introducing

an additional scalar variable to their VoF model which records the entrained air

volume  fraction  within  the  liquid  phase.  For  higher  volume  fractions  of

entrained air a mixture model formulation is used. The model accounts for

bulking and buoyancy effects of the entrained air bubbles. According to Souders

and Hirt (2004) the model is suitable for most applications. Within their

publications they tested the model for a drop shaft, a hydraulic jump in a
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conduit, a spillway and a plunging jet. They evaluate their results as “quite

reasonable”. However, no direct comparison to measurement data was shown.

All of the described air entrainment models were developed for the integration

into a specific multiphase approach. The transferability to other models is

questionable.

2.1.5 Bubbly Flow and Air Detrainment

Bubbly flow is characterized by the presence of dispersed gaseous particles

within a continuous liquid fluid. By motion of the deformable dispersed

particles, the two phases interact with each other. Generally, the presence of air

bubbles in water can strongly influence the characteristic of the flow. Bulk

properties of the fluid are changed, turbulence structure is affected, and through

the buoyancy force on the entrained air vertical momentum is applied upon the

flow field. In open channels flow depth is increased and intensive oxygen and

nitrogen transfer takes place till saturation is reached. In closed conduits air

entrainment can produce changes in the discharge or pressure distribution of the

flow (Kobus, 1985). When the surrounding water body is stagnant or has only

very small flow velocities, bubbles rise vertically and detrainment takes place at

the free surface. In highly turbulent flows the rising motion of the bubbles is

disturbed by the turbulent motion of the flow. Thus, the detrainment process is

decelerated.

Drag Force on a Bubble

Due to the density difference between air and water, air bubbles in water are

subject to a buoyancy force, which counteracts the weight force. For air bubbles

in water the weight force is smaller than the buoyancy force, the bubble moves

in opposite direction to gravity. A relative velocity between the dispersed

particles and the surrounding fluid evolves. Due to the relative velocity the

bubble experiences a drag force. The drag depends on the shape of the dispersed

particle, the properties of the fluid and the rising speed.
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Generally, the drag force for a single bubble can be expressed as:

�	��� = 0.5=�U�2�	�
(2.7)

with =�  representing the density of the continuous liquid phase, U� = |U1 − U2|

being the relative velocity between the phases, �	 defininig the drag coefficient

and being the reference area, which equals the cross section of the dispersed	ܣ

particle.

The surface tension between the phases make the dispersed gaseous

particles tend to a spherical shape. Through the gaseous character of the bubble

the  actual  shape  can  change  during  the  movement  and  might  differ  from  a

sphere. The shape is a function of the acting hydrodynamic, viscous and

interfacial forces. For a spherical bubble �	  can be calculated from a stationary

balance between the buoyancy and the drag force:

�	 =
4

3

	�g

U�2 (2.8)

where 	�  represents the diameter of the bubble. Since bubbles deform with

growing diameter, equation (2.8) is not valid for all bubbles. Therefore, the drag

coefficient is determined on basis of empirical correlations. One of the most

commonly applied approaches was presented by Schiller and Naumann (1935).

Here, the drag coefficient dependent on the particle Reynolds number is defined

with the following correlations:

�	 =
24

Re+    for Re+ < 1 Stokes’ law region

�	 =
24

Re+ (1 + 0.15 Re+0.687) for 1 < Re+ < 1000 Transition region

�	 = 0,44   for Re+ > 1000 Newton’s law region    (2.9)
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The drag coefficient depends on the Reynolds number of the dispersed

particle Re+:

Re+ =
	�=�U�
� (2.10)

where 
�  represents the dynamic viscosity of the continuous liquid phase. Drag

increases when the shape is non-spherical, only when circulation inside the

bubble occurs drag might be reduced. As soon as drag, buoyancy and weight

forces are in equilibrium, a rising bubble reaches a terminal velocity. Generally,

the terminal velocity of a particle can be determined by setting the frictional

drag on the particle (as described in equation (2.8)) equal to the slip force. This

results in the following general equation for the terminal velocity:

U� = M4

3

	�g(=( − =�)�	 ∙ =( (2.11)

In addition to the dependency on the fluid and gas properties in the system the

terminal velocity of a bubble is dependent on the diameter and the shape of the

bubble. Clift et al. (1987) summarized the correlation between the bubble

diameter and the terminal velocity with the means of experimental data of

Gaudin (1957) in the diagram reproduced in Figure 2.2. Furthermore, the results

of the empirical approach of Zheng and Yapa (2000) and of the experimental

results of Haberman and Morton (1953) are shown.

From the diagram it becomes visible, that three regimes can be identified

for the relation between the bubble diameter and the terminal rising velocity: the

spherical regime, the ellipsoidal regime and the spherical-cap regime. In the first

regime, the small sized bubbles (typically 	� ≤ 0.001 m) are of spherical shape

and the viscous force dominates the bubble behaviour. Inertial and surface

tension effects are negligible.
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The terminal velocity for a single spherical bubble can be directly derived from

the Stokes’ law:

U� =
1

18

	�2 g(=( − =�)
( (2.12)

where 
( is  the  dynamic  viscosity  of  the  liquid  phase.  This  is  valid  in  regions

where Re+ < 1. In the second regime, flow forces on the bubble cannot longer

be fully compensated by the surface tension. Therefore, bubbles tend to flatten

and deform to an ellipsoidal shape. Here the surface tension dominates the

regime, whereas viscous forces are negligible. For bubble diameters ranging

between 0.5 mm and 10 mm the terminal velocity values scatter widely.

Figure 2.2: Comparison of literature values for the rising velocity for a single air

bubble in water

Clift et  al. (1987) concluded from an experimental data analysis that the

variation of the values in the yellow shaded region results from the varying

presence of surfactants. In particular, the upper bound of values corresponds to

experiments performed without surfactants, whereas the values of lower bound
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corresponded to experiments with high surfactant rates. In later studies of

Tomiyama (2002) the reason for the scatter is explained with slightly different

bubble release conditions.

From the comparison of the three data sources it can be concluded that an

exact determination of the terminal rising velocity of a bubble is difficult, as the

results can easily be influenced by surfactants, temperature variations or other

slightly varying boundary conditions. Yet, the data allows determining the

approximate range of the rising velocity. In hydraulic engineering applications

typical bubble diameters range between 0.001 m and 0.01 m. As a result, the

typical rising velocity of the ellipsoidal bubbles is in the range of 0.2 m/s to 0.3

m/s.

Unsteady Forces on a Bubble

In addition to the drag force, the dispersed particles are influenced unsteady

forces: the lateral lift force, the virtual mass force, the Basset force and the

turbulent dispersion force. The lateral lift force results from the shear between

the particle and the non-uniform incident flow of the surrounding phase. It acts

perpendicular to the drag force and causes sideward movements of rising

bubbles. The virtual mass force accounts for the additional inertia of a system,

which develops when the accelerating dispersed particle has to move a part of

the surrounding fluid during the movement. The Basset force accounts for the

lagging boundary layer development when the relative velocity of the particle

changes. The turbulent dispersion force evolves from the turbulent fluctuations

in  the  continuous  phase  which  tend  to  scatter  a  swarm  of  dispersed  particles

(Marschall, 2011). In the current study, drag is assumed to strongly dominate the

motion of the bubbles. Therefore, unsteady forces are neglected in this work.

Bubble Swarms

When multiple bubbles flow simultaneously within a continuous liquid, the

conglomeration of bubbles is called a bubble swarm. Dependent on the outer

geometry and interaction between the bubbles, different flow regimes can be

classified. According to Kolev (2012) bubble flow patterns have to be
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distinguished between pool flow and channel flow. In pool flow, walls of the

outer boundary geometry do not influence the flow. In contrary, channel flow

patterns are influenced by the walls. Following Serizawa and Kataoka (2010)

vertical channel flow can be classified as separated bubble flow, interacting

bubble flow, churn turbulent bubble flow or clustered bubble flow. In separate

bubble  flow  the  small  spherical  bubbles  do  not  interact  with  each  other  and

therefore behave like single bubbles. With larger bubble number density, bubble

interactions occur and bubbles start to collide and coalesce to form larger

bubbles. A further increase in bubble number density leads to the formation of

large cap bubbles. This flow pattern is referred to as turbulent churn flow. When

large bubbles occur clustered, the pattern is called clustered bubble flow

(Serizawa and Kataoka, 2010). The transition between the different regimes is

dependent on the void fraction and the turbulence. For equal sized, spherical

particles which do not oscillate while rising, a maximum gaseous volume

fraction of approximately F� > 0.74 is possible for separated bubble flows. In

turbulent flows, where the particles tend to oscillating movements, maximum

volume fractions of F� > 0.25 to 0.3 were observed (Kolev, 2012). With volume

fractions higher than the mentioned limits a transition to more turbulent flow

patterns with larger interacting bubbles occur. With experiments (Kobus, 1985)

found that air bubble swarms induce a substantial velocity in the surrounding

fluid. The resulting rising velocities exceed the single bubble rising velocities by

a  factor  of  two  to  three.  A  horizontal  velocity  component  in  the  flow,  which

laterally displaces the bubbles during the rising, influences the bubble induced

velocity.  To account for  the effect  of  the swarm on the terminal  rising velocity

Richardson and Zaki (1997) defined the following correlation:

U� = U�,∞(1 − F�)P
(2.13)

where U�,∞ is the terminal rising velocity of a single bubble in infinite liquid, F�
is the air volume fraction and P is an adaptable exponent, accounting for the

influence  of  the  swarm  on  the  velocity.  Through  the  rising  within  a  swarm,

bubbles with nearly spherical shape hinder the rising of each other. Hence, the
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drag of the single bubble increases within the swarm. For those kind of swarms

regimes, the rising velocity decreases with increasing gas volume fraction.

Therefore, the exponent ݊ is larger than unity. For larger, distorted bubbles the

wakes in swarms influence each other such that the terminal rising velocity is

increased. In these cases, the exponent P is larger than unity (Wörner, 2003).

In addition to the adapted terminal rising velocity of bubbles in swarms,

multiple researchers (e.g. Ishii and Zuber, 1979, Rahman and Brebbia, 2012)

suggest the following adaption of the mixture viscosity 
*:


* = 
� Q1 − F+F+*R−2.5F+*
∗
(2.14)

where F+ represents the volume fraction of the particles and F+*  is the

concentration for the maximum packing of the dispersed particles. The local

viscosity 
∗ is defined dependent on the viscosity of the dispersed phase 
+ and

the viscosity of the continuous phase 
�:


∗ =

+ + 0.4
�
+ + 
� (2.15)

This formulation is based on the fact, that a moving particle applies a motion

induced deformation on the surrounding fluid. Dispersed particles in proximity

to the moving particle are also subject to the motion induced deformation. Due

to the Laplace pressure, which describes the pressure difference between the

inside and the outside of a curved surface, the dispersed particles show higher

resistance to deformation than the surrounding continuous fluid. This leads to a

higher local viscosity acting on the moving particle (Rahman and Brebbia,

2012).

Bubble Transport and Detrainment

The  bubble  transport  of  a  flow  is  measured  with  the  transport  capacity,  which

defines the distance over which the entrained air is transported with the flow

(Kobus, 1985). The general bubble transport capacity of the flow is dependent

on the ratio of flow velocity to the bubble rise velocity (Kobus, 1985). In
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quiescent water, the transport capacity is zero meaning that rising bubbles are

not disturbed. With small flow velocities, which are approximately equal to the

rising velocity of the bubbles, the bubbles are displaced while rising. Through

the movement of the bubble within the continuous liquid body the flow field is

influenced. For flows with velocities much larger than the bubble rising velocity,

the transport capacity increases with growing flow velocity and growing

turbulence intensity. Turbulent fluctuations in the flow counteract the rising of

the bubbles and thereby increase the transport capacity of the flow (Kobus,

1985). When the transport capacity is exceeded, detrainment will evolve.

2.2 Scalability of Air-Water Flows

In many cases entrained air has significant impact on the behaviour and

performance of hydraulic structures. To investigate the influence, models are

used, which represent the relevant physical features. For both, physical and

numerical models it is essential to know, which parameters influence the flow

regime. A dimensional analysis can be used to define those parameters. The

following section follows the explanations of Chanson (2004).

2.2.1 Dimensional Analysis

A dimensional analysis helps to capture the relationship between the physical

quantities that govern the process under investigation. In particular,

dimensionless parameters are determined which influence the physical process.

It is assumed that all relevant physical laws can be formulated independent from

the chosen scale. The parameters influencing a hydraulic system consist of:

∂ fluid properties of both phases,

∂ geometrical properties and

∂ dynamic flow properties.
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Considering a general hydraulic engineering application, the following basic

parameters govern the processes:

�1(=, 
, >, �, ��, %, ), ∆+) = 0
(2.16)

The dimensions of the eight parameters can be expressed as functions of the
three basis reference units length (L), mass (M) and time (T).

Table 2.2.1: Governing parameters in hydraulic engineering applications

Parameter Unit Dimension Name

= kg/m³ ML−3 density


 N s/m² ML−1T−1 dynamic viscosity

> N/m MT−2 surface tension

g m/s² LT−2 gravity

�� Pa ML−1T−2  bulk modulus of

elasticity

% m L  characteristic length

) m/s LT−1 velocity

∆p Pa ML−1T−2 pressure differences

Applying the Buckingham theorem five (number of parameters – number of

dimensions = number of dimensionless parameters = 8-3=5) dimensionless

parameters can be derived:

�2 SFr =
)√�% , Re =

)%< , We =
)2=%> , Eu =

∆+=)2
, Ma =

)√�� =⁄ U
= 0

(2.17)

To achieve a proper dynamic similarity all dimensionless parameters have to be

equal in model and prototype. For most hydraulic engineering applications the
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Mach number (Ma),  which  defines  the  ratio  of  inertial  force  to  the  elasticity

force, has only very small influence and can be ignored. Only in the case of a

large  amount  of  air  inside  the  water  body,  the  compressibility  of  the  fluid

mixture can become relevant. The Euler number (Eu), which expresses the ratio

of pressure to inertial forces, can be treated as dependent parameter. This is

appropriate, when the pressure differences are controlled (Chanson, 2004). Thus,

the dynamic similarity in most hydraulic models is subjected to:

∆+=)²
= �3 S )√�% ,

)%< ,
)²=%> U (2.18)

This can also be written in the following form:

Eu = �3(Fr, Re, We)
(2.19)

The remaining three dimensionless parameters of the right hand side can be
combined in one dimensionless number, called the Morton number (Mo):

Mo =
We³

Fr² Re4
=

�<4=³>³ (2.20)

The Morton number is only dependent on physical properties of the fluid.

Dependency on the length scales is eliminated. For air-water flows, the Morton

number is constant: Mo = 3.89 × 10−11 for a temperature of 15°C. To ensure

dynamic similarity the mentioned dimensionless parameters have to be equal in

a scaled model to those in the prototype. A completely similar model can only

be achieved, if all mentioned similarities are satisfied simultaneously. In

practice, this is not realizable. This can be shown by exemplarily the scaling of

the velocity: to meet the requirements of the Froude-similarity, the velocity

should be scaled with √L;  for  the  Reynolds-similarity  a  scaling  with ) = 1/L

would be appropriate; the Weber-similarity would be fulfilled with ) = 1/√L .

For most models in hydraulic engineering the same fluids are usually used for

the scale model and the prototype and the gravity cannot be adapted. Thus, only

one force ratio can be equal between model and prototype.
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2.2.2 Scale Effects

In hydraulic engineering most models including a free surface are scaled

according to the Froude similarity, regarding the relation between the inertial

and the gravitational forces as most relevant. On the contrary, surface tension

forces dominate processes like the entrainment of air, bubble coalescence and

breakup. Turbulent processes are mainly driven by viscous forces. With Froude

similarity, the internal turbulence, represented by the Reynolds number, is

underestimated and the surface tension, represented by the Weber number, is

overestimated (Heller, 2011). Therefore, small scale Froude models

characteristically underestimate air entrainment and transport. In particular, the

primary disintegration of the coherent jet surface is similar in model and

prototype but the further breakup of the water clusters cannot be properly

represented by a scale model. This is due to the fact that the drops in the scale

model are too large compared to the occurring drops at the prototype. In the

plunging  jet  region  the  size  of  the  entrained  bubbles  in  the  scale  models  is

overestimated. The larger bubbles reduce are subject to higher buoyancy forces

and therefore air detrainment is overestimated.

Using the same fluids in the scale model as in the prototype and applying

Froude similarity the given relation in equation (2.1) can be rearranged as:

Mo Fr ² =
We³

Re4 (2.21)

meaning that the relation between the Weber number and the Reynolds number

should be identical in prototype and scale model to limit scale effects. To

achieve a reasonable approximation of the air entrainment the model scale

should be limited to a maximum of 10:1 and minimum values of the Weber and

the Reynolds number should be respected (Pfister and Chanson, 2014). The

necessary minimum depends on the application; for the modelling of air

entrainment at hydraulic jumps, aerated stepped spillways and chute aerators the

following limitations: We0.5 > 140  or Re > 2 to 3 × 105 were published (as

summarized in Pfister and Chanson 2012). For parameters like bubble size and

turbulent scales scale effects can hardly be avoided even in relatively large size
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(1:3 to 1:2) models (Pfister and Chanson, 2014). Only full-scale tests can

provide credible results for these parameters.
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3 Mathematical Models for Air-
Water Flow

The following chapter aims to give an overview of the available mathematical

models for two-phase flows, which could be considered for modelling air-water

flows in the near-field of hydraulic structures such as flows inside lock filling

systems or at weirs. The general functionality of the individual approaches as

well as their applicability to the specific problems is illustrated.

3.1 Modelling of Fluid Flow

For the computational modelling of fluid flow suitable mathematical concepts

have to be found, which are able to describe all relevant flow features. The

necessary partial differential equations can be derived from defining a balance of

the forces acting on the fluid within a pre-defined control volume. Thereby,

conservation laws for mass, momentum and energy are applied. Although the

gaseous or liquid phases representing the fluid actually consist of a finite

number of individual molecules, a continuous fluid is assumed. Since the

integration over all individual molecules is not feasible for macroscopic

considerations as those used in hydraulic engineering, the approach of

continuum mechanics is applied. Therewith the fluid is considered as a

continuum, where the properties are averaged over a large number of molecules.

Within this mathematical description, a fluid particle is defined as an
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infinitesimal small region of fluid, which is still large in comparison to the mean

spacing between the fluid molecules.

3.1.1 Eulerian and Lagrangian Specification of the Flow Field

The conservation equations for two-phase flows can either be written with

Eulerian or with Lagrangian notation. The approaches use different reference

frames for the specification of the flow field. The suitability of the notation

depends on the desired information. Eulerian approaches generally describe the

flow equations referring to a fixed spatial coordinate system. Hence, the flow

variables are functions depending on the position	ݔ and time	ݐ. With an Eulerian

frame of reference the velocity of the flow can therefore be described as 1(�, �).
By regarding the “Eulerian velocities” for a specific point in time, streamlines

can be received by drawing a line that is tangential to all velocity vectors of the

flow field. Streamlines can never cross each other, since the flow can only have

one specific velocity at a time. In the Lagrangian specification the individual

fluid particles are followed through space. Every fluid particle carries its own

fluid properties like e.g. density, velocity, pressure etc. which are functions of

time. The “Lagrangian velocity” describes the velocity of a single fluid particleܲ dependent on time :ݐ	 1P(t).  By  tracking  the  velocity  over  time  fluid

trajectories or pathlines are obtained. Pathlines may cross each other, since

different fluid particles can occupy the same space at different times.

When describing  multiphase  flow,  the  flow field  of  continuous  phases  is

usually described in Eulerian notation. Dependent on the occurring flow pattern

and the desired information, the second phase can either be described with an

Eulerian or a Lagrangian reference framework. When the second phase is

dispersed and the motion of the single dispersed particle is of interest, the

Lagrangian approach is advantageous. However, tracking every single particle is

very expensive regarding computational costs. Therefore, the application of

Lagrangian methods is restricted to small dispersed volume fractions. An

Eulerian description for the dispersed phase is usually applied when the

movement  of  the  single  dispersed  particle  is  less  relevant  and  the  interest  is

focused on the effects of the phase interactions.
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3.1.2 Local Instantaneous Fluid Flow Equations

Although  there  is  a  huge  range  of  different  flow  regimes  encountered  in  two-

phase flows, the same basic set of conservation laws for mass and momentum

applies for all of them. Dependent on the available scales, turbulence, phase

intermixing and further necessary information, the basic set of equations can be

extended with further models. This section describes the basic set of local

instantaneous conservation equations for fluid flow which form the basis for all

later described models.

The mass conservation equation also referred to as continuity equation

states that mass can neither be created nor destroyed within a fixed volume,

when sinks or sources are absent. The momentum conservation equation is

based on the second law of Newton, stating that the change of momentum over

time equals the external forces acting on a body. Applying this to a continuous

fluid, the momentum conservation equation is received. The conservation laws

for any Newtonian fluid can be described in Eulerian specification as:

Mass conservation equation

V=V� + W ∙ (=1) = 0
(3.1)

Momentum conservation equation

The depicted equations are written in differential form describing how

velocity 1, pressure p, density =, viscous stress tensor Y  and further external

forces ���� are related within a moving fluid. The first term in the momentum

equation (3.2) describes the temporal variation. The second term accounts for

the convective transport. On the right hand side of the momentum equation, the

influence of pressure, viscous forces and further external forces are taken into

account.

V=1V� + W ∙ (=11) = −Wp + W ∙ Z + ���� (3.2)
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The viscous stress tensor is given by:

Y = 
[W1 + (W1T)\ − 2

3

�(W ∙ 1)

(3.3)

where 
 is the dynamic viscosity and � refers  to the identity tensor.  The second

term is mostly very small and can therefore be neglected. Assuming

incompressibility of the flow, both equations can further be simplified by

deploying constant density. Thereby the incompressible set of equations results

in:

Incompressible mass conservation equation

W ∙ (1) = 0   with �=�� = 0
(3.4)

Incompressible momentum conservation equation

V1V� + W ∙ (11) = − 1= Wp + W ∙ W1]ߥ[ + (W1T)\^ +
ߩ���� (3.5)

With the assumption of constant density the velocity field is divergence free.

The resulting set of equations is also referred to as incompressible Navier-Stokes

equations. It is a coupled system of second order, non-linear partial differential

equations. Analytically, the equation system is hardly solvable for practical

applications. Therefore, the solution is usually approximated with the means of

numerical methods. Suitable methods for hydraulic engineering applications are

described in chapter 4.2.

The described Navier-Stokes equations are generally valid for a large

variety of fluid flow types, including highly turbulent two-phase flow.

Dependent on the characteristic of the flow, the application size and complexity,

the standard set of equations has to be adapted and extended. For that turbulence

models and multiphase model approaches are available. A selection of relevant

modelling approaches for hydraulic engineering applications is exemplified

below.
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3.1.3 Applicability  of  the  Local  Instantaneous  Fluid  Flow  Equations  for

Two-Phase Flow

Two-phase flow describes the simultaneous flow of two immiscible phases,

separated by an explicit interface. At the interface there is a discontinuous jump

of fluid properties. Mass, momentum and energy transfer can be exchanged

between the phases via the interface. The mathematical description of two-phase

flows is very complex, since they occur with various flow regimes. Regimes

mainly differ by the topology of their interfaces. Main difficulty of two-phase

models is the suitable capturing of the interfaces and the corresponding transfer

mechanisms between the phases.

Theoretically, a two-fluid system consists of a finite number of local

single phase regions bounded by moving interfaces. For the regions single phase

balance equations can be formulated for local instantaneous variables.

Considering a spatially fixed volume of arbitrary shape, which contains both

fluids, the local instantaneous bulk conservation equations for two-phase flows

can be derived. For the closure of these equations local instantaneous jump

conditions have to be formulated. A detailed description of the derivation can be

found e.g. in Marschall (2011). The resulting generic equations for two phase

flows can be applied directly. However, a direct numerical simulation (DNS) on

the microscopic level is computationally expensive. Therefore, the application

of the instantaneous bulk conservation equations for two-phase flow is not

feasible for most engineering investigations. Commonly, details of the local

instantaneous formulation are eliminated by using a macroscopic description for

two-phase systems (Ishii and Mishima, 1984). For this purpose time-, volume-

or ensemble-averaging techniques may be used.

If one component is dominating the nature of the flow and all further

components can be neglected, multiphase flows can sometimes be simplified as

single phase flows and the conservation equations as shown before can be

directly applied. In all other cases, where the multiphasic character significantly

influences the fluid dynamics, special modelling approaches for multiphase

flows have to be applied. Due to the high complexity of multiphase phenomena

no general applicable model exists. It is the task of the engineer to analyse the
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relevant physical phenomena and find a suitable model which can capture those.

Regarding the models from an engineering perspective, the available approaches

are divided according to their main application fields. At first, methods

originally designed for free-surface flows with large stretched interfaces are

described. Then, approaches developed for dispersed flows are introduced in the

following section.

3.2 Free-Surface Flow Models

The following section describes two-phase flow models, which are designed for

modelling free-surface flows. Their use is not explicitly restricted to free-surface

flow, but it is advantageous when the interface is much larger than the grid size.

This also allows e.g. the modelling of bubbles rising in a plume, when the

bubbles are resolved with many cells, meaning that the cells intersect only with

a small part of the interface of the bubble. With free surface flow models the

location of the interface between the two fluids is assumed to be known initially.

The evolution of the interface for later points in time is part of the solution. Two

boundary conditions can be defined for the free surface: the kinematic boundary

condition and the dynamic boundary conditions. The former states that the

interface is a sharp boundary between the phases. No flow through the interface

is allowed. The latter implies that the forces acting on the interface should be

balanced, meaning that momentum is conserved at the free surface (Ferziger and

Peric, 1997).

For free-surface models, mass and momentum transfer between the phases

at the interface is neglected. The two-phase flow is considered as homogeneous

mixture, consisting of two immiscible, incompressible fluids with constant

viscosities (Rusche, 2002). The dynamics of the fluid mixture is described by

the incompressible Navier-Stokes equations, using spatially averaged densities

and viscosities. For determining the distribution of the phases an additional

advection equation is introduced which allows the determination of the interface

location.

One of the main difficulties is the proper representation of the sharp

discontinuous jump of the fluid properties at the interface, when modelling free
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surface flows with a large stretched interface between two fluids. For tackling

this difficult task two main method classes exist: the interface tracking method

and the interface capturing method. The first method directly tracks the

interface, the second uses a function which implicitly captures the interface.

Generally, the interface tracking method is regarded as being more accurate but

not applicable to complex flows with large topological changes at the interface

or to complex geometries. With the interface capturing methods, the phases

are treated as mixture and the actually sharp interface is not explicitly

resolved. Instead, a colour function or marker particles are introduced, which

determine the presence of one phase in the computational cells. With this the

interface can be implicitly located. As numerical diffusion occurs at the

discontinuity between the phases, the interface is smeared in orthogonal

direction. However, due to their simple implementation and their suitability to a

wide range of applications, interface capturing methods are most commonly

used for free surface flows. The most common methods for free surface

modelling are described in the following section.

3.2.1 The Level Set Method

With the level set method introduced by Osher and Sethian (1988) the interface

is implicitly represented by the zeroth level set of a smooth and at least Lipschitz

continuous scalar function _(�, �), which is defined throughout the whole

domain. During the simulation this level set function is advected with the flow

field. The advection of the function values of _, called levels, can be formulated

as follows:

V_V� + 1 ∙ W_ = 0
(3.6)

with the initial condition

_(� = D , � = 0) = 0
(3.7)
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1 represents the local velocity field transporting the interface D (�). The interface

encloses a region Ω occupied by one phase. Inside the region Ω the level set

function is positive, outside the region, it gets negative values:

_(�, �) > 0 for � ∈ Ω
_(�, �) < 0 for � ∉ Ω
_(�, �) = 0  for � ∈ VΩ = D (�)

(3.8)

The change of the sign in the level set function implies an instantaneous jump of

the fluid properties at the interface. Since this abrupt jump often leads to

problems in viscous flow simulations, an interface layer of finite thickness is

introduced where a rapid but smooth transition of the properties is artificially

enforced (Ferziger and Peric, 1997). The magnitude of the level set function

represents the shortest distance of the considered point to the interface. Since the

level set equation does not represent any physical conservation law, mass

conservation cannot be guaranteed (Salih and Moulic, 2009). For counteracting

this major drawback of the level set method, various researchers developed

improvements and extensions to the original methodology. With the latest

improvements and extensions of the original methodology level set methods are

robust, accurate and efficient for modelling complex free surface flows where

severe topological changes are to be captured (see e.g. Croce et  al., 2004). A

successful application of the level set method to three-dimensional hydraulic

engineering problems was shown by Strybny et al. (2006).

3.2.2 The Volume of Fluid Method

Another important approach for modelling free surface flows was published in

1981 by Hirt and Nichols. Their volume of fluid (VoF) method introduces an

additional equation which transports the phase volume fraction, making a

statement about the spatial distribution of the phases. Mathematically the VoF

method can be described with the following equations:
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Transport equation for the volume fraction

VFV� + W ∙ (F1) = 0
(3.9)

with the volume fraction function the local density and viscosity can be

determined:

= = F=1 + =2(1 − F)


 = F
1 + 
2(1 − F) (3.10)

Index 1 refers to the first phase, which is usually the phase with larger density;

index 2 refers to the second phase. The first equation describes the advective

transport of the volume fraction F of the first phase. F is physically bounded

between 0 and 1.  When F = 1, only the first phase is present in the considered

control volume, with F = 0, the control volume is completely filled with the

second phase. Volume fraction values between 0 and 1 imply that the interface

is present. However, the actually sharp discontinuity between the phases is not

explicitly tracked but only captured implicitly through the volume fraction

function.

Mass conservation equation for the mixture

V=V� + W ∙ (=1) = 0
(3.11)

Momentum conservation equation for the mixture

V=1V� + W ∙ (=11) = −Wp + W ∙ 
]W1 + W1T^ + =� + ��� (3.12)

The second equation (3.11) defines the mass conservation. The third equation

(3.12) accounts for the momentum conservation for the locally density-averaged

phase mixture. Since the phases share a common velocity and pressure field, no

mass or momentum transfer between the phases can be considered. The VoF

method is mass conservative and can be applied to complex simulations with

severe topological changes. For taking into account surface tension between the
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two phases, the additional source term Fst	is added on the right hand side of the

momentum equation. In reality surface tension only acts as a normal and

tangential force directly on the interface of the fluid. With the continuous

surface tension model of Brackbill et al. (1992), the interface is assumed to have

a finite thickness and the surface tension force is applied as continuous force

across the interfacial region. With the VoF method, the interfacial region is

located where the volume fraction has values between 0 < α < 1.  In this region

the surface tension force can be defined as:

��� = d >:WF0 	0
(3.13)

The surface tension is a thermodynamic property of the fluid and can be ߪ

handled as a constant, when isothermal conditions are assumed. The curvature

of the interface κ can be calculated as divergence of the interface normal unit

vector. As the vector Wα points in the direction of the interface normal, the

curvature can be computed as:

: = −W ∙ Q WF
|WF|R (3.14)

The surface tension force disappears in regions completely filled with one phase

since the gradient of α is zero. A huge drawback of the continuous surface force

(CSF) model is the occasional occurrence of unphysical parasitic currents which

can severely disturb the real flow field. Those non-physical velocities can either

result from the inaccurate approximation of the interface curvature or the

inconsistent discretization of the curvature and/or the pressure term (Meland et

al., 2007). Various remedies are described exemplarily in Jamet et al. (2002).

A huge challenge when using the VoF method is the handling of the

numerical diffusion, which occurs when the advection equation for the

volume fraction is solved. At the interface, where the function of the volume

fraction has a step profile, numerical diffusion causes a smearing of the

originally sharp interface.
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In order to counteract this problem various approaches were developed, which

can mainly be categorized into three groups:

∂ geometrical reconstruction methods,

∂ compression methods and

∂ higher order differencing schemes.

Geometrical reconstruction methods approximate the only implicitly known

interface between the two phases with geometrical methods. Youngs (1982)

introduced the Piecewise Linear Interface Calculation (PLIC) method where the

interface in a three-dimensional simulation is represented by a plane which is

perpendicular to the normal vector. More recent developments are e.g. the

methods published by (López et al., 2004) based on a spline reconstruction

method or the least square procedure by (Pilliod and Puckett, 2004). The usage

of geometrical reconstruction methods increases the accuracy of the flux

calculation across the interface. Since the interface is reconstructed with planes,

smearing of the interface is completely banned. Due to the reconstruction

algorithms the geometrical reconstruction methods are mostly limited to

structured grids with simple cell shapes. Additionally, the necessary number of

numerical operations for the interface reconstruction requires substantial

computational effort.

Independent of the grid structure the smearing of the interface can be

counteracted by introducing an artificial compression term into the volume

fraction equation (as described in Rusche 2002). The added term creates a

velocity normal to the interface and thereby compresses it. Mathematically the

transport equation for the volume fraction with artificial compression term can

be described as follows:

VFV� + W ∙ (F1) + W ∙ [1cF(1 − F)] = 0
(3.15)

The third term introduces an artificial velocity 1c acting normal to the surface.

Through the multiplication with α(1 − α) it is only influencing the interfacial

area. With the artificial compression method the smearing of the interface is

reduced but not completely avoided. The sharpness of the interface depends on
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the definition of the artificial velocity term and the discretization schemes used.

Although the resulting interface is never as accurate as the interface

reconstructed with a geometrical reconstruction scheme, the artificial

compression method is often preferable for engineering applications. This is due

to the fact, that the implementation is much simpler and the calculation is much

faster in most cases (Gopala and van Wachem, 2008)

Alternatively or additionally to the artificial compression higher order

differencing schemes like the Compressive Interface Capturing Scheme for

Arbitrary Meshes (CICSAM, as described by Ubbink and Issa 1999) or the High

Resolution Interface Capturing (HRIC) scheme (as described by Muzaferija et

al. 1998)  can  be  used  for  discretizing  the  VoF  equation.  The  schemes  use  a

blended discretization. By the blending between a stable but diffusive scheme

and a more accurate scheme which tends to instability, the numerical diffusion is

minimized. A more detailed description of blended schemes is presented in

section 4.2.2.

3.2.3 Applicability and Limitations of the Free Surface Flow Models

The application of interface capturing methods is limited to cases where the

interface is much larger than the control volume size. Structures being smaller

than the containing control volume cannot be modelled. Considering the lock

filling system, the interface capturing methods like the VoF method are most

suitable for modelling the free surface in the lock chamber. However, neither the

air  entrainment  nor  the  bubble  transport  in  the  drop  shaft  and  the  pressure

chamber can be modelled in a realistic way, if the single bubble is not resolved

via the computational grid. A suitable resolution, which captures the complete

spectrum  of  scales  including  bubbles  in  the  range  of  some  millimetres  in

diameter resolved by at least 3³ cells in a complete lock chamber with a volume

of several thousand cubic metres, is not feasible with reasonable temporal and

computational expenses. For the air entrainment, bubble transport and air

detrainment processes alternative methods have to be found.
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3.3 Dispersed Flow Models

Dispersed flow models focus on the representation of the interaction between

the dispersed and the continuous phase, whereas the detailed representation of

the interface is neglected. In contrast to free surface models, where the phases

are assumed to share one velocity field, dispersed flow models account for

different velocities between the phases. Additionally, the interfacial mass and

momentum transfer can be considered. The main difficulty in the dispersed flow

models consists in the definition of closure terms, which account for the

interfacial transfer between the phases.

3.3.1 Two-Fluid Method

The two-fluid method assumes the flow system to consist of a continuous and a

dispersed phase, which interact and interpenetrate mutually. Mathematically

both phases are treated as continua, where the description of both phases refers

to the same spatially fixed coordinate system. Due to this Eulerian reference

frame for both phases, the method is also referred to as Euler-Euler method. It is

generally applicable to all kind of flow regimes, since the topology of the flow is

not predefined (Rusche, 2002). However, its application is most suitable where

the interface between the dispersed and the continuous phase is much smaller

than the chosen grid size (Yan and Che, 2010). The interface between the phases

is not explicitly resolved but the interfacial processes are taken into account. For

every phase one set of averaged conservation equations is solved. Through the

averaging process the phase fraction variable is introduced into the equation	௞ߙ

system. The phase fraction can be interpreted as the probability, that a certain

phase is present at a certain location in time and space (Hill, 1998). For the two-

fluid model the following local time-averaged equations have to be solved for

the first phase $ = 1 and the second phase $ = 2:

Mass conservation equation for phase $
VV� (F$ =$) + W ∙ (F$ =$U$) = D$ (3.16)
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Momentum conservation equation for phase $
VV� (F$ =$1$) + W ∙ (F$ =$1$1$)

= −F$ Wp + W ∙ [F$ (Y$ + Y/$)\ + F$ =$�
+ &$ (3.17)

where =$ is the average material density. D$ accounts for the mass generation of

the phase ݇  at the interface, e.g. for boiling or condensation. 1k is the phase

velocity field. pk is the phase pressure. Y$ represents the average viscous stress

tensor and Y/$ is the averaged turbulent stress tensor. The source term &$
results from the averaging process and accounts the momentum exchange

between the phases. For the interfacial transfer terms D$ and &$ balance laws at

the interface can be formulated. Using an average of the local jump conditions

the following interfacial transfer conditions are obtained:

g D$P=2$=1
= 0

(3.18)

and

g &$P=2$=1
= 0

(3.19)

Due to averaging, information about the interaction between the two phases is

lost. This must be compensated by defining constitutive equations for D$ and&$ based on experiments. Referring to the various physical aspects contributing

to interfacial momentum transfer, the momentum transfer term &$ can be

decomposed into several components (Porombka and Höhne, 2015):

&$ = &$,	��� + &$,('�� + &$,)* + &$,ℎ'�� + ⋯
(3.20)

&$,	��� describes the momentum transfer resulting from the drag force per unit

volume, &$,('�� accounts for the lift force acting on a dispersed particle, &$,)*
represents the virtual mass which is necessary to accelerate the surrounding fluid
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and &$,ℎ'��  is the history force related to the particle boundary layer

development. To find appropriate models for the inter-phase momentum transfer

terms is the most challenging part of the two-fluid model, because no generally

applicable formulations exist.

3.3.2 Mixture Model

The mixture model is a multiphase model, which treats the phases as a

continuous mixture instead of considering each phase separately. However, it

still accounts for the interaction between the phases. Hence, it can be regarded

as simplification of the two-fluid model. Similarly, it is applicable to two-phase

flows with intermixing phases, where the influence of the dispersed phase on the

fluid dynamic behaviour cannot completely be ignored (Manninen et al., 1996).

Other than the two-fluid model, the mixture model assumes that a local

equilibrium between the phase velocities is reached within short length scales,

meaning e.g. that bubbles quickly reach their terminal rising velocity. With this

assumption the inter-phase momentum transfer terms are eliminated, producing

a more robust system which requires less computational resources and less

closure assumptions than the two-fluid model (Brennan, 2001). In many

practical applications the mixture model provides a sufficiently accurate solution

for modelling two-phase flows (Manninen et al., 1996). It can almost be

regarded as equally accurate as the two-fluid model, when considering the

amount of uncertainties in the closure resulting from empirical correlations.

With the mixture model, the set of equations can be significantly reduced to one

mass and one momentum conservation equation for the mixture of both phases.

One additional equation per dispersed phase accounts for the dispersed phase

continuity. For the closure, the dynamic interaction between the phases has to be

replaced by constitutive laws. The fluid is assumed to consist of a two-phase

liquid-gaseous mixture, where the gaseous phase is dispersed within the liquid

phase. “phase 1” is the continuous liquid phase with higher density, “phase 2”

represents the dispersed gaseous phase. In the case of bubbly flow, the main

source of slip between the phases results from the rising of the dispersed phase.

Therefore, some approaches use experimentally determined rising velocities for
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the closure. In the following two variants of the mixture model are shown,

which  use  different  reference  systems  for  the  description  of  the  mixture.  The

derivations follow Manninen et al. (1996), Brennan (2001) and Damian (2013).

Diffusion Model

In  the  diffusion  model  the  equations  for  the  mixture  are  formulated  with  a

density-averaged velocity field referring to the centre of mass of the mixture.

Starting from the continuity equation for each phase k,

VV� (F$=$) + W ∙ (F$=$1$) = D$ (3.21)

The continuity equation for the mixture can be derived by summing over P
phases:

VV� g (F$=$)
P$=1

+ W ∙ g (F$=$1$)
P$=1

= g D$P$=1 (3.22)

As the total mass within the system must be conserved the rate of mass

generation D$ summed  over  all  phases  equals  zero.  Thus,  the  right  hand  side

vanishes. The mass conservation equation for the mixture results in:

V=*V� + W ∙ (=*1*) = 0
(3.23)

Here, averaged variables for describing the mixture are used. i* represents the

density-averaged velocity of the mixture. It is defined as:

1* =
1=* g F$=$1$P$=1 (3.24)

=* describes the mixture density, which is defined as:

=* = g F$=$P$=1 (3.25)
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The resulting conservation equation for the continuity of the mixture [equation

(3.23)] resembles the single-phase continuity equation. However, there is one

relevant difference: even if the mixture is assumed to be incompressible, the

velocity of the centre of mass is not divergence-free. The momentum equation

for the mixture can also be derived by summing the momentum equations of all

phases:

VV� g F$ =$1$P$=1
+ W ∙ g F$ =$1$1$P$=1

= − g F$ Wp$P$=1

+ W ∙ g F$ [
$]W1$ + W1$/ ^\P$=1
+ g F$ =$�P$=1

+ g &$P$=1

(3.26)

Then, the diffusion velocity :m,k is introduced܃

1*,$ = 1$ − 1*
(3.27)

The diffusion velocity describes the velocity of a phase 1$ in reference to the

velocity  of  the  centre  of  mass  of  the  mixture 1*.  Using  this  in  addition  to  the

definitions for the averaged variables [equations (3.24) and (3.25)] the second

term of the momentum equation (3.26) can be redefined as:

W ∙ g F$ =$1$1$P$=1
= W ∙ [F1=11111 + F2=21212\

= W ∙ j=*1*1* + g F$ =$1*,$1*,$P$=1 k (3.28)

The resulting momentum equation for the mixture reads:

V=*1*V� + W ∙ (=*1*1*) = −Wp* + W ∙ [
*]W1* + W1*/ ^\
− W ∙ g F$ =$1*,$1*,$P$=1

+ =*� + &* (3.29)

The included pressure gradient of the mixture is defined as:

Wp* = g F$ Wp$P$=1 (3.30)

For most applications, the pressure gradients of the two phases are assumed to

be equal. The source term &* accounts for the surface tension forces on the
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mixture. Compared to the single fluid flow equations, the diffusion stress tensor∑ F$ =$1*,$1*,$n
k=1

and the source term &* resulting from surface tension are

added to the momentum equation in the mixture model. The additional terms

account for the phase interactions in the two-phase flow.

In addition to the mass and momentum equation for the mixture one mass

conservation equation for the dispersed phase is necessary. By using the

formulation for the diffusion velocity [Eqn. (3.27)], the following phase

continuity equation is received:

VV� (F2=2) + W ∙ (F2=21*) = −W ∙ ]F$=$1*,2^
(3.31)

Since the term in the mass conservation equation for the dispersed phase appears

similar to the diffusion coefficient in a single-phase two-component system, this

mixture model formulation is also referred to as diffusion model (Wörner,

2003).

With seven unknowns, namely F1, F2, 1*, 1*,1, 1*,2, p*, &* and three

equations [(3.23), (3.29), (3.31)] the resulting set of equation is unclosed in the

given form. The source term for inter-phase momentum transfer &* has to be

determined empirically. For simplicity, it is assumed to be zero for all further

derivations. F1 can be related to F2 with the identity F1 = 1 − F2. With that the

number of unknowns reduces to five, but the system remains under-determined.

For the closure of the system the diffusion velocities 1*,1 and 1*,2 have to be

determined with the means of a constitutive equation or an algebraic correlation.

The diffusion velocities of the phases 1*,1 and 1*,2 do not have a direct

physical meaning. Additionally, they are difficult to determine empirically or

with an algebraic relation, but they can be related to the relative velocity

between the phases.
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When only two phases are present the relative velocity of the gaseous phase 1�
with respect to the liquid phase is defined as difference between the velocity of

the dispersed phase 12 and the velocity of the continuous phase 11:

1� = 12 − 11 (3.32)

Inserting this definition into the definition for the diffusion velocity [equation

(3.27)] and using equations (3.23) and (3.24) for the description for the mixture

velocity the relation between the relative velocity and the diffusion velocity of

the dispersed phase can be described with:

1*,2 = Q1 − F2=2=* R 1� = (1 − �2)1� (3.33)

The introduced mass fraction �2 is defined as:

�2 =
F2=2=* (3.34)

The derivation of the correlation described in equation (3.33) can be found in the

appendix A.2. With this correlation the complete set of equations for the mixture

can be re-written in the following form:

V=*V� + W ∙ (=*1*) = 0
(3.35)

V=*1*V� + W ∙ (=*1*1*)

=  − Wp*  + =*� + W ∙ [
*]W1* + 1*/ ^\
− W ∙ [=*�2(1 − �2)1�1�\

(3.36)

VF2V� + W ∙ (*21ߙ) = −W ∙ (1 − �2)1� (3.37)

Assuming that the relative velocity 1r  is calculated with an algebraic approach a

system of the three partial differential equations with three unknown variables
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remains to be solved. The unknowns in the system are: the velocity of the

mixture 1*, the pressure p* and the volume fraction of the dispersed phase α2.

A  closer  look  at  the  system  reveals,  that  the  system  is  of  second  order,  the

equations are coupled and an evolution equation for the pressure is lacking. The

lack of the pressure evolution equation can either be compensated by

introducing an equation of state, defining a relation between the density and the

pressure (see Zeidan and Slaouti 2009 and Zeidan 2011). Or, in analogy with

other incompressible systems, fractional step methods can be applied for solving

the  equation  system.  Contrary  to  the  VoF  Method,  the  boundedness  of  the

dispersed phase volume fraction is not a direct consequence of the mass

conservation equation for the dispersed phase (3.37) but rather of the whole

system (Gastaldo et  al., 2011). Additionally, the mixture velocity is not

divergence free. For receiving a system which is divergence free and where the

boundedness of the dispersed phase directly results from the dispersed phase

mass continuity equation, the velocity of the centre of volume can be used. As

the relative velocity between the phases cannot simply be determined, an

algebraic relation has to be found.

Drift-Flux Model

Alternatively to formulating the velocity of the mixture with reference to centre

of mass, it can be formulated referring to the centre of volume:

 = g F$1$P$=1 (3.38)

where   represents the velocity of the volume centre of the mixture. With this

divergence free velocity, the continuity equation for the mixture can be

simplified. The derivation of the drift-flux model has the same starting point as

the diffusion model.
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It starts with a summation of the mass conservation equation over all phases as

presented in equation (3.22) which is recalled in the following equation (3.39):

VV� g (F$=$)
P$=1

+ W ∙ g (F$=$1$)
P$=1

= g D$P$=1 (3.39)

When the density of the phases are assumed to be constant, equation (3.39) can

be rewritten as:

VV� g (F$)
P$=1

+ W ∙ g (F$1$)
P$=1

= g D$ߩ$
P$=1 (3.40)

Due to mass continuity within the system the total rate of mass generation is

zero. The continuity equation for the mixture results in:

W ∙ g (F$1$)
P$=1

= 0
(3.41)

Using  the  definition  of  the  velocity  of  the  centre  of  volume  as  presented  in

equation (3.38), the mass conservation equation for the mixture can be

formulated as follows:

W ∙  = 0
(3.42)

The divergence-free velocity field of the centre of volume   is also referred to as

volumetric flux. It describes the volumetric flow rate V̇ = ∂V ∂t⁄  per cross-

sectional area resulting in a vector field with the dimensions of a velocity field ܣ

(Nabizadeh, 1977). Calling the relative velocity drift velocity the resulting

model is also called drift-flux model.
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Following (Damian, 2013) the mixture momentum equation (3.36) can be

re-written in terms of the continuous phase fraction F1 by using the following

expression for the diffusion stress tensor:

=*�2(1 − �2)1�1� = F1(1 − F1)
=1=2=* 1−�1−�

(3.43)

with 1� = −1−� (3.44)

The derivation of the correlation described in equation (3.43) can be found in the

appendix A.2.

Inserting this in the momentum equation for the mixture, we receive the

momentum conservation equation for the mixture

V=*1*V� + W ∙ (=*1*1*) = −Wp* + W ∙ [
*]W1* + W1*/ ^\
+=*� + W ∙ oF1(1 − F1)

=1=2=* 1−�1−�p (3.45)

The additional mass conservation equation is also re-written for the continuous

phase. For that the following relation between the volumetric flux and the

velocity of the continuous phase is used:

11 =  + (1 − F1)1� (3.46)

Inserting this relation into the known mass conservation equation for the

continuous phase, the following equation is received.

VF1V� + W ∙ (F1 ) + W ∙ [F1(1 − F1)1�\ = 0
(3.47)

The set of equations consisting of the mass and the momentum conservation

equation for the mixture and the mass conservation equation for the continuous

phase contains five unknowns, namely the volume fraction of the continuous

phase F1, the velocity of the mixture referring to the centre of volume 1*, the
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volumetric flux  , the relative velocity between the phases 1� and the pressure p.

One additional relation between two of the remaining four unknowns is

necessary to get a solvable system. For that a relation between the volumetric

flux and the velocity of the mixture of the centre of volume can be used:

1* =  + F1(1 − F1)
=1 − =2=* 1−�

(3.48)

The derivation of the described correlation shown in equation (3.48) can be

found in the appendix A.4. The given correlation is not directly used to replace

the mixture velocity. Instead, the given relation is used in the solving algorithm.

With the divergence-free formulation of the mass conservation equation the

system resembles the VoF model. Similarly, the divergence free velocity of the

centre of volume, used in the continuity equation, can be used to formulate the

pressure equation. To obtain a segregated pressure-velocity algorithm the given

relation in equation (3.48) is used to connect the continuity equation, which uses

the  velocity  of  the  centre  of  mass,  with  the  momentum  equation,  which  is

formulated in terms of the velocity of the centre of volume. Details of the

algorithm are described in section 4.2.5.

3.3.3 Euler-Lagrangian Approach

For multiphase flows with one continuous and one dispersed phase, an Euler-

Lagrange approach can be applied. With this approach, which can also be

referred to as discrete particle model, the conservation laws of the phases are

solved on two different reference systems: the transport of the continuous phase

is modelled on a fixed coordinate system (Eulerian specification), whereas the

dispersed phase is modelled on a coordinate system, that moves with the

particles (Lagrangian specification). The general equation of motion for the

particle can be derived from the forces �  acting on the particle (Matysiak,

2007). These are: the weight force, the drag force, the buoyancy force, the

pressure gradient and the contact forces.
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The equation for the particle motion description can be formulated as:

=+ 	1+	� = g �
(3.49)

where =+ represents the dispersed phase density, 1+ is  the  velocity  of  the

dispersed phase particle. The Euler-Lagrange approach is very accurate for

predictions of the bubble dynamics and their transport. However, since each

bubble is tracked individually, the calculation effort increases significantly with

growing bubble numbers.

The fluid flow equation and the particle motion equation can be coupled

in multiple ways. The simplest form of coupling is the one-way coupling. With

this approach, solely the hydrodynamic forces resulting from the fluid flow are

considered via drag and turbulence for the calculation of the particle motion.

Forces from the particles on the fluid are neglected. This is reasonable, when the

particle have insignificant influence on the flow e.g. due to small particle size or

small volume fraction. With two-way coupling, the exchange of mass,

momentum and energy can be taken into account: the influence of the particles

on the fluid flow is included via source terms in the fluid flow equations. If the

interaction between the particles has to be included, four-way coupling is used.

For this purpose additional collision models which model the contact forces

resulting from the particle-particle and the particle-wall collisions are used.

3.3.4 Applicability and Limitations of the Dispersed Flow Models

Applicability and Limitations of the Two-Fluid Model

Theoretically, the two-fluid model is applicable to model all types of flow

regimes. However in practice, the reliability of the model is dependent on the

formulation of the model closures. In particular suitable definitions for the

interfacial momentum transfer as well as the turbulence closure have to be found

for each flow regime. For a large variety of bubbly flows, appropriate closure

formulations already exist. Yet, a possibility to model the transition from a

continuous to a dispersed phase state is not available, which is necessary when
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air entrainment or detrainment is to be modelled. Several coupled models (as

described in section 3.4) allow the combination of the two-fluid approach with

free surface models. The evaluation of their applicability is described below.

Applicability and Limitations of the Mixture Model

The mixture model is applicable for flows consisting of interpenetrating,

strongly coupled, incompressible phases. It accounts for different velocities of

the phases using the concept of slip velocities, which are calculated by an

algebraic relation. The mixture can consist of one continuous and multiple

dispersed phases. Based on the assumption of short particle relaxation times, the

model derivation is based on a local equilibrium between the phases. This means

that the dispersed particles are always assumed to travel with their terminal

velocity. Acceleration or deceleration of the phases is neglected. Furthermore,

interactions between dispersed particles are not modelled. To allow a simplified

drag calculation within the given algebraic correlation for the relative velocity,

the dispersed phase is assumed to consist of spherical particles only. Non-drag

forces on the particles are completely neglected. Moreover, the influence of the

dispersed phase on the turbulence field of the continuous phase is not accounted

for. With the given simplifications, the mixture model is not capable of handling

flows, with large non-spherical bubbles, where the deformations of the bubble,

the non-drag forces as well as the bubble induced turbulence influence the flow

significantly. It is rather designed to model dispersed flows, where local

equilibrium establishes over a short length scale and where the spatial

distribution of the dispersed particles is homogeneous. This is not the case, when

the dispersed particles form clusters, which leads to a decreasing effective drag

coefficient and an increasing relaxation time (Manninen et al., 1996). Otherwise,

the mixture model has a large potential in the field of dispersed flow modelling

with various bubble size and velocity ranges. Compared to the Euler-Euler

approach it is less computationally expensive and yet suitably accurate for many

engineering applications. Up to now, it was applied in various one-dimensional

studies (see e.g. Hibiki and Ishii, 2003, Lima and Rosa, 2009). Applications to

three-dimensional, turbulent flow are rarely published (e.g. Shang et al. 2014).
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Applicability and Limitations of the Euler-Lagrangian Approach

With the possibility to store properties of the dispersed phase (like e.g. size,

shape) separately for each dispersed particle, the distribution of those properties

and the cross-correlation between them can be predicted accurately with the

Euler-Lagrangian approach (Rusche, 2002).

As the computational effort increases significantly with growing dispersed

phase fractions, the method is preferably used for bubbly flow with low phase

fractions. Transitions between the continuous and the dispersed phase cannot be

appropriately modelled with this method. Consequently, air entrainment by a

plunging jet into a pool is not possible with the Euler-Lagrangian approach. If

the location and quantity of the entrained air would be known, an Euler-

Lagrangian approach could be used for the bubble transport simulation.

3.4 Coupled Multiphase Models

In order to overcome the limited applicability to certain scales of the

aforementioned two-phase modelling approaches several researchers

implemented coupled multiphase models. In most cases the models aim to

enable the simultaneous modelling of resolved and unresolved interface length

scales. In the following section the most important developments in the field of

coupled multiphase models are presented in chronological order.

3.4.1 Coupling of the Interface Tracking and the Two-Fluid Model

Cerne et  al. (1999, 2000, 2001) developed an approach for coupling the

incompressible two-fluid model with a VoF-based interface tracking method:

within two-phasic regions where the grid is fine interface tracking is used, for

areas where the flow is too dispersed to be described with the interface tracking

method the time and space averaged two-fluid model is applied. Coupling

between the model is reached via the volume fraction of one of the fluids, which

is  a  variable  used  in  both  models.  The  switching  point  between  the  models  is

based on the dispersion of the mixture. A dispersion function is defined for this

purpose. The function compares the position of the phases with the

reconstructed linear interface. When the fluids are clearly separated by the
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interface the dispersion is zero 6 = 0. It gets larger than zero, when a part of the

fluid is located on “the wrong side” of the interface. For switching between the

VoF and the two-fluid model a maximum dispersion value is defined as

switching parameter 60. Regions with dispersion values below the chosen value

(6',2 < 60) are handled with the VoF model. For all regions with values higher

than the maximum dispersion value (6',2 > 60)  are  solved  with  the  two-fluid

model. The value for 60 has to be determined empirically, e.g. by analysing

maximum dispersion in the model. The larger 60 is  defined,  the  more  the  VoF

method is used. In their tests, Cerne et al. (2000) used values between 60 = 0.4

and 60 = 0.6.

The coupling approach of Cerne et al. (2000) seems promising for the

simulation of the lock filling process, as it is able to capture the free surface as

well as the unresolved bubbles. However, the switching criterion is not

physically based and therefore difficult to determine. Wardle and Weller (2013)

consider the approach as “self-fulfilling prophecy” as the interface compression

is applied when the interface is already sharp.

3.4.2 Interface Sharpening in Simulations with Two-Fluid Model

For  modelling multiphase flows with multiple scales Štrubelj and Tiselj (2009)

developed an interface sharpening extension for the two-fluid model. Their

model uses the two-fluid model to capture the general flow field. For the long

scale interfaces a conservative level set method for sharpening the interface is

applied. For sharpening a high resolution scheme is used for the solution of the

volume fraction equation. Moreover, artificial compression is introduced into the

volume fraction equation to counteract the numerical smearing in the interfacial

zone. An additional sub-model accounts for the surface tension, which is

calculated with the approach of Brackbill et al. (1992) and split according to the

volume fractions between the two momentum equations. For switching between

the dispersed and the stratified areas the criterion by Cerne et al. (2001) was

used.  With that  the model  entails  comparable difficulties  with switching as the

criterion is arbitrary and not based on any physical context. Unlike Cerne et al.
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(2001) their model overcomes the difficulty of various numbers of equations

within one domain by the two-fluid model to the complete domain.

3.4.3 Interfacial Area Density Model for Stratified Flows

For modelling stratified two-phase flows within horizontal pipes Höhne and

Vallée (2010) extended the two-fluid Euler-Euler model with the algebraic

interfacial area density (AIAD) model as first proposed by Egorov et al. (2004).

The AIAD model detects the local flow pattern which is used to define the

momentum exchange coefficients for the two-fluid model closure. The model

differentiates between bubbly flow, droplet flow and free-surface flow.

Dependent on the flow pattern appropriate models for the local drag coefficient,

the interfacial area density and the local characteristic length scale are chosen.

For the switching volume fraction limits and blending functions are defined.

The model seems to perform acceptable in the field of stratified flows.

First results documented in the publication show qualitatively good results,

quantitative derivations need further studies. If the model is applicable to more

complex flow situations than pipe flows cannot be concluded from the

publication.

3.4.4 A Coupled Model for Complex Flow Patterns

Another modelling approach for the simulation of multiscale two-phase flows

was developed by Yan and Che (2010). To account for the different scales, the

two-fluid model and a VoF model with piecewise linear interface reconstruction

(PLIC) are coupled. In contrary to Cerne et al. (2000) their approach accounts

for the characteristics of the flow and both models are included within a uniform

framework. In particular, the model classifies three phases distinguished

according to the physical state and the length-scale of the interface: the large-

length-scale-interface (LSI) phase, the small-length-scale-interface (SSI) phase

and the continuous fluid phase. In the LSI phase the interface is much larger

than the grid whereas in the SSI phase the interface is equivalent or smaller than

the grid size. When the fluid and the LSI phase occupy a cell, interface tracking

is applied. For cells including fluid and SSI phase, the two-fluid model is used.
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In the unified framework of the new model, the governing equations are written

in the form of the two-fluid model. For tracking the interface, the velocity fields

are assumed to be equal for both phases, and so the two-fluid model reduces to

the VoF formulation. In cells, where all three phases are present, a special

“volume fraction redistribution” method is used for the solution.

Generally, the coupling concept within the uniform solution framework of

Yan and Che seems very promising. First results show the good agreement with

experimental data. Unfortunately, the approach does not guarantee mass

conservation for all phases, which is a significant drawback.

3.4.5 Hybrid Multiphase CFD Solver

Similar to Štrubelj and Tiselj (2009) the multiphaseEulerFoam solver

implemented in the OpenFOAM framework by Wardle and Weller (2013)

combines a multiphase fluid model with an interface capturing approach. For

coupling the surface tension is included within the governing two-fluid

equations. Also the volume fraction equation is extended with an interfacial

compression term, which is a mass conservative form in contrary to the PLIC

reconstruction method used by Štrubelj and Tiselj. In analogy to Cerne and

Tiselj (1999) the normalized magnitude of the gradient of the volume fraction is

used as switching criterion between the models:

6 =
|WF|*��	(|WF|) (3.50)

A user-defined maximum value has to be chosen to define which model is used

in  which  region.  As  the  model  allows  for  more  than  two  phases,  a  switching

parameter between all phase pairs can be defined. In the presented three-phase

liquid-liquid-air tests, Wardle and Weller fixed the model choice for each phase

pair: interface capturing is only turned on for the air-liquid interface but off for

the liquid-liquid interface. This makes the capturing of air entrainment

impossible. This assumption is acceptable for the presented examples, but

disadvantageous for the lock filling system under investigation in this work.
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3.4.6 The Extended Mixture Model

Damian (2013) coupled the VoF model with the algebraic slip mixture (ASM)

model to account for the unresolved scales in two-phase flows. Formulating the

governing equations of both models in a similar form, a unified framework was

designed to model multiphase flows with short and long scale interfaces. The so

called extended mixture model uses the VoF model, where the interface is larger

than the cell and switches to the mixture model where interfaces cannot be

resolved by the grid. The switching between the models Damian is controlled

with the so-called face gradient criterion.

For this criterion the face gradients are weighted proportional to the mesh size

by multiplying the gradient of the volume fraction WF�  with the face’s

neighbouring centre-to-centre vector �
� :

6 = qWF� ∙ �
� q
(3.51)

The face gradient describes the gradient of a variable at a cell face. It is

calculated by first calculating the gradients in the cell centres and interpolating

the values then to the cell faces. In regions with large face gradients in the

volume fraction function the VoF model is chosen, since large gradients are

assumed to indicate a large scale interface. For regions with small gradients, the

ASM model is applied.

Figure 3.1: Face gradient criterion adapted from Damian (2013)

۾ ۼ
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For the switching a limiting threshold value for the switching face gradient 60

has to be chosen. Below the threshold value, the mixture model is used. Above

the threshold and for cells completely filled with one phase, the VoF model is

applied. In his experiments Damian used a threshold value of 60 = 0.33. With

the chosen value for the threshold and further assumptions (like e.g. a fixed

relative velocity) his test cases show good agreement with experimental data.

Damian’s concept of formulating the mixture model in analogy to the VoF

model within the OpenFOAM framework is the basis of the developments made

in this thesis. However, the switching point between the two models is based on

an arbitrary, user-defined value, which is unknown. A connection to a physical

correlation is necessary.

3.5 Turbulence Models

In hydraulic engineering all relevant flows are highly turbulent, meaning that

instantaneous, non-predictable chaotic changes characterize the flow regime.

Turbulent motions increase the mixing within the fluid. Consequently mass, heat

and momentum are exchanged throughout the fluid. The evolving three-

dimensional transient turbulent structures have a rotational character. Those so-

called turbulent eddies significantly influence the characteristics of the flow.

Through interaction with the mean flow and the breakup of larger eddies into

smaller eddies the kinetic energy is extracted from the mean flow and handed

down from the largest to the smallest turbulent structures. This energy passing

process through all scales is known as turbulent energy cascade. At the end of

the cascade, the inertial forces equal the viscous forces. The kinetic energy in the

smallest eddies is converted into internal energy through the viscous shear stress

in the fluid. Through the dissipation, energy losses in turbulent flows are higher

than in laminar flows (Versteeg and Malalasekera, 2007). The largest eddies

contain the most energy. Hence, large eddies are most responsible for the energy

transfer and the increased diffusivity in the flow. The maximal size of eddies in

water flow is limited by the natural bounds. For example, a turbulent eddy inside

the flow of a canal is limited by the canal geometry.
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Also the shape and extension of the largest eddies is strongly influenced by the
geometry. On the other hand smaller eddies are more homogeneous and have an
isotropic character. The minimum vortex scale is limited by the point where
viscous forces dominate over inertial forces. Following Kolmogorov’s theory of
1941 the smallest turbulent length scale is dependent on the turbulent dissipation
and the turbulent viscosity. He defined the smallest length scale in turbulent
flow with:

ߟ = ቆߝ³ߥ ቇ (3.52)

where is the average dissipation rate of turbulent kinetic energy per unit mass ߝ

and	ߥ represents the kinematic viscosity of the fluid. With growing Reynolds

number the Kolmogorov length decreases.

The incompressible Navier-Stokes equations, as described above, model

the complete range of turbulent scales. So, if the temporal and the spatial

resolution are high enough and the numerical scheme is excellent, turbulence

can be directly reproduced. However, this requires very high computational

effort. Therefore, a direct numerical simulation is often not feasible for many

engineering applications. Alternatively, the turbulent fluctuations can be

modelled partly or completely. With the large eddy approach, only the larger

turbulent structures are directly resolved whereas the smaller structures are

modelled. Scale separation is done via spatial filtering. Compared to the direct

numerical simulation, computational effort is significantly reduced. Even less

expensive is the Reynolds-Averaged-Navier-Stokes approach, where the Navier-

Stokes equations are time-averaged and the complete turbulence is captured by

an additional model.

3.5.1 Direct Numerical Simulation

A proper direct numerical simulation (DNS) is the most precise way of

simulating turbulent flow, without applying approximation or averaging to the

Navier-Stokes equations. All evolving motions in the flow are directly resolved

via the numerical grid. The spatial discretization must capture the largest eddies

which  are  relevant  for  the  system  under  investigation  as  well  as  the  smallest
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eddies in the range of the Kolmogorov length scale. Stating that the Kolmogorov

length underestimates the dissipative scale size Pope (2000) recommends using

a maximum spatial resolution of Δ� ≅ 2.18 and  a  minimum  domain  size  of

integral length scale. Since the motion of the smallest eddies has to be captured

by  the  temporal  resolution,  the  time-step  has  to  be  balanced  to  the  spatial

resolution. Those spatial and temporal resolution requirements for DNS make

those calculations very costly in terms of computing resources. Therefore, DNS

is rarely feasible for real-world engineering applications. Instead, DNS is mostly

applied to theoretical research cases.

3.5.2 Large Eddy Simulation

The large eddy approach for modelling turbulence is based on the assumption,

that the large eddies, which carry most energy and dominate the turbulent

mixing should be directly resolved, whereas the smaller eddies can be modelled.

For that, a spatial filter is applied, which separates the different turbulent length

scales. Various filtering methods can be used, more detailed information about

the filtering can be found e.g. in Pope (2000). In practice, the filter width is

often computed from the grid spacing and the filtering is applied to the velocity

field. All turbulent structures smaller than the grid spacing are modelled. For the

modelling of the unresolved eddies, various different methods are available.

Explanations of those can exemplarily be found in Pope (2000). A large eddy

simulation (LES) is always grid dependent, meaning that the accuracy can be

improved, when the grid is refined. As the cell size reaches the Kolmogorov

length, LES transforms into a DNS. With growing computer resources LES got

more and more popular in recent years. With feasible computational effort LES

achieves a good approximation of the turbulent structures.

3.5.3 Reynolds Averaged Navier-Stokes Models

The Reynolds-Averaged Navier-Stokes (RANS) equations are based on the idea,

that every instantaneous flow quantity can be decomposed with a Reynolds

decomposition into a time-averaged component and an additional fluctuation

component.  With  that,  the  Navier-Stokes  Equations  can  be  written  in  terms  of
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the decomposed quantities. As a consequence of the averaging process, the

resulting set of equations contains an additional non-linear term, which is called

the  Reynolds-Stress-Tensor  (RST).  The  additional  term  is  a  symmetric  tensor

which  consists  of  six  normal  and  three  shear  stress  terms.  It  accounts  for  the

additional momentum transport introduced by the turbulent fluctuations and can

be interpreted as additional viscosity in analogy to the stress term resulting from

the molecular viscosity of the fluid. In most turbulent flows the turbulent

viscosity is much larger than those resulting from molecular viscosity of the

fluid. To find a closure for the underdetermined set of equations, several model

approaches have been developed. The RANS models can be divided into Eddy

Viscosity models (EVM) and Reynolds-Stress models (RSM). With the RSM all

six independent Reynolds stresses are represented with six additional transport

equations. Through this, the method is very accurate in predicting complex

flows, including rotation, swirl, separation or high strain rates. As the method is

relatively expensive concerning computational costs it is only used in very few

cases. More common is the application of the EVM. Those models are based on

the Boussinesq assumption (1897) stating that the turbulent stresses are directly

proportional to the mean flow field. Those models are of first order and can be

classified by the number of additional equations, which have to be solved to find

the eddy viscosity. For engineering applications two-equation models are state-

of-the-art. Those models introduce two additional transport equations, which

represent the turbulent properties of the flow. In particular, the	݇-	ߝ model, the	݇-	߱ model and the 	݇-	߱-SST model are mostly applied. For the	݇-	ߝ model

(Launder and Sharma, 1974) one transport equation for the turbulent kinetic

energy ݇ and a second for the turbulent dissipation is solved. The model is ߝ

relatively simple to implement and converges easily. It is applicable for a large

range of flow patterns. However, the model gives unsatisfying results in close

proximity to walls. When the near-wall regions are relevant, the ݇-	߱ model

(Wilcox, 1988) can be used instead. This model replaces the turbulent

dissipation with the turbulence eddy frequency ߱. To combine the advantages of

both aforementioned models Menter (1993) introduced the ݇-	߱ shear stress

transport (SST) model. The model uses a blending function, which activates the
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approach for the inner flow field and the ߝ	-݇ ݇-߱ model in close proximity to

walls. Through this combination, the ݇-	߱-SST model is suitable for a large

variety of engineering flows.

3.5.4 Extended Hybrid Models

To find a compromise between the computationally expensive large eddy

simulation and the more inaccurate RANS approach, several hybrid models

were developed. These try to combine the averages of both models.

The detached eddy simulation (DES) as first published by Spalart et al.

(1997) is a modified RANS turbulence modelling approach using LES as a sub-

grid model. It was designed for modelling the turbulence in high-Reynolds

number flows with massive separation: the LES approach is applied in the

separated flow regions but for the thin boundary layers less expensive RANS

model is used. The switching between RANS and LES is dependent on grid

resolution  and  wall  distance.  In  regions  where  the  grid  is  larger  than  the

turbulent length scale, LES is used. For the boundary layers and all other areas,

where the turbulent length scale is less than the grid spacing, the RANS model is

applied. Since the DES model behaves incorrectly in some cases an improved

version of the DES model Spalart et al. defined the new delayed detached eddy

simulation (DDES) model in 2006. The DDES model uses a modified switching

approach similar to the SST approach of Menter and Kuntz (2004). In contrary

to the DES approach, the DDES assigns the boundary layer to the RANS model

even if the wall-parallel spacing would activate the LES model.

An alternative hybrid RANS-LES modelling approach was presented by

Piomelli and Balaras (2002). Their wall-modelling in LES (WMLES) approach

uses LES in the complete flow domain except  for  a  very thin near wall  region,

where the wall distance is much smaller than the boundary layer thickness. As

shown in various tests the model works reasonable for simple channel flows, but

is not applicable for cases with more complex geometries (Shur et al., 2008).

With the improved delayed detached eddy simulation (IDDES) model

Travin et  al. (2006) presented a further hybrid modelling approach which

combines the ideas of the DES and the WMLES model. The IDDES model aims
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to include the LES wall-modelling within the DDES approach, where the

simulation does have turbulent inflow content. The addition of VLES to the

DDES model cures the known shortcomings as grid induced separation or the

log-layer mismatch (Shur et al., 2008).

3.5.5 Turbulence Modelling for Two-Phase Flows

In dispersed two-phase flows, the turbulence is additionally influenced by the

motion of the dispersed particles. In particular, the presence of dispersed

particles can affect the production, the transport and the dissipation of

turbulence. The influence of the dispersed particles is dependent on the volume

fraction (Brennan, 2001): with dispersed volume fractions of F < 10−6 the

influence of the dispersed particles on the flow of the surrounding continuous

phase can be neglected. For dilute suspensions with volume fractions in the

range of 10−6 < F < 10−3 the momentum transfer from the dispersed particles

to the continuous phase flow field significantly influences the turbulence

structure. A decreasing particle relaxation time leads to increasing dissipation

rates. For dense suspension with volume fractions F < 10−3 the turbulent flow

characteristic is not only influenced by the momentum transfer between the

phases, but particle-particle interactions additionally affect the turbulent flow

field.

To include the alteration of the turbulent flow structure, several researchers

developed adapted turbulence models for multiphase flows. Most approaches are

based on the Boussinesq hypothesis, modelling the turbulent momentum transfer

with an eddy viscosity. Basically three approaches are suggested in literature

(Yam, 2012): in the first approach, the common single-phase RANS approach is

extended with additional terms in the turbulence transport equations. These

account for the influence of the dispersed phase on the turbulence. This so-

called mixture turbulence model is applicable, when the phases are well mixed

and  when  the  density  ratio  is  close  to  unity.  The  second  approach  uses  RANS

equations for the turbulence of the continuous phase. The turbulence transport

equations are extended with terms for the interphase momentum transfer. An

additional algebraic equation accounts for the dispersed phase turbulence. This
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approach is suitable for dilute suspensions, where the particle motion influences

the primary phase turbulence. The most sophisticated solution consists of the

dispersed RANS model, which solves the turbulence transport equations for

each phase. This model is applicable to any kind of multiphase flows. However,

the additional equations produce additional complexity and computational effort.

Therefore, multiphase turbulence models are rarely applied.

3.6 Developed Modelling Concept

Modelling the proposed lock filling system requires a multiphase approach

which is able to capture multiphase flow phenomena with strongly varying

length scales. On the one hand the large stretched interfaces at the lock chamber

water surface have to be reproduced; on the other hand air bubbles entrained by

the plunging jet in the drop shaft have to be accounted for. With a direct

numerical simulation a free-surface method like e.g. the VoF method would be

able to capture the physics of the given system. However, the direct numerical

simulation is not feasible with reasonable computational effort due to the very

small turbulent and interface structures. When applying the VoF method without

resolving all scales, the fluid behaviour in the bubbly regions becomes

unphysical: unresolved air bubbles within the continuous water phase result into

fluid chunks, which have the properties of the mixture. Rising of the chunks

solely results from the gradient in the volume fraction. Bubble specific forces as

for example the drag are completely neglected for all unresolved bubbles.

Therefore, the physical process of bubble transport and detrainment cannot

properly be modelled since the necessary physics are not included.

For modelling the described system a new modelling concept was

developed. The solver is based on the VoF method and the mixture model as

described by Damian (2013). Multiple extensions, which are described below,

adapt the solver for hydraulic engineering purposes.

Instead  of  resolving  all  scales,  several  parts  of  the  physical  phenomena

have to be modelled. In particular, the turbulent and the interfacial structures

which are smaller than the grid used for the spatial discretization of the domain,

are not directly captured. Only their effect on the flow is introduced through
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models. To overcome the lack of the VoF method in the unresolved regions, the

model is extended to the mixture model, which additionally accounts for the

dispersed flow behaviour. Similar to the VoF model with artificial compression,

the relative velocity term in the mixture model acts only in regions, where both

phases are present. However, the separation of the phases (e.g. the degassing of

unresolved bubbles) is based on the physical description of rising bubbles. In

particular, the model approach formulated with the volumetric flux (cf. 3.3.2) is

applied. The formulation presented by Damian (2013) is extended with an new

approach for the calculation of relative velocity. With the means of an algebraic

relation based on physical correlations between bubble size and bubble rising

velocity the relative velocity between the phases is calculated. Furthermore, the

bubble diameter is predicated on the local pressure, to account for their

compressibility (which is neglected in the incompressible mixture model

formulation). To ensure the best possible description of the free surface in the

lock chamber region, high resolution schemes are used for the discretization of

the convection terms. With that, numerical diffusion is reduced. Additionally, a

special algorithm to guarantee the boundedness of the solution of the volume

fraction equation is applied. Moreover a turbulence model is coupled with the

mixture model, which accounts for the unresolved turbulent scales in the flow.

The interface for the turbulence model is universally applicable with a large

variety of available models from the OpenFOAM library. With the turbulence

models, the turbulent fluctuations are partly or completely removed from the

flow field and replaced by a turbulent diffusion. Thus, the effect of the turbulent

flow field on the rising of the bubbles cannot be considered. To account for the

interaction of the turbulent fluctuations of the surrounding flow field with the

transported bubbles, an additional diffusion term was added to the phase fraction

equation. The added term is proportional to the turbulent diffusion. A user-

defined factor which is multiplied with the diffusion term controls the size of its

influence. With this addition, it is assumed that increasing turbulence in the flow

field leads to additional diffusion of the bubbles. As a consequence, bubble

detrainment lengths increase with growing turbulence.
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4 The Application-Oriented
Multiscale Two-Phase Model

The following chapter gives a detailed description of the application-oriented

approach,  assorted  for  the  simulation  of  flows  in  the  near  field  of  hydraulic

engineering structures that contain air-water intermixing zones. An overview of

the mathematical formulation of all necessary components is presented. For the

comprehension of the implementation, the software framework and its numerical

capabilities are explained. Additionally, important implementation details for the

new model are emphasized.

4.1 Mathematical Model

4.1.1 Field Equations

The application-oriented multiscale multiphase (AOMM) model is based on the

partial differential equations of the mixture model using the volumetric flux

formulation as presented in section 3.3.2 and recalled in the following. The

formulation is adapted with a modified pressure formulation, which is taken

from  the  current  formulation  of  the  VoF  solver  interFoam  of  the  OpenFOAM

library.
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The modified pressure p��ℎ is received by subtracting the hydrostatic pressure

from the total pressure p:

where 3 represents the spatial position vector. The usage of the modified

pressure in the momentum equation has the advantage to counteract decoupling

problems in a cell-centred segregated formulation (Jasak, 2006a). In contrary to

the total pressure, which varies even for a free surface flow at rest due to the

density differences, the modified pressure formulation is constant for a fluid at

rest. With the modified formulation the pressure gradient results in:

The  last  term  on  the  right  hand  side  cancels  out  with  the  gravity  term  of  the

standard momentum equation formulation (cf. equation (3.36). The first two

terms of the right hand side are used for the new formulation. Thus, the resulting

model consists of the following three equations:

Mass conservation equation for the mixture

W ∙  = 0
(4.3)

Momentum conservation equation for the mixture

V=*1*V� + W ∙ (=*1*1*) = −Wp��ℎ + W ∙ [
*]W1* + W1*/ ^\
+�=* ∙ 3 + W ∙ oF1(1 − F1)

=1=2=* 1−�1−�p (4.4)

Mass conservation equation for the primary phase

V1ߙV� + W ∙ (F1 ) + W ∙ [F1(1 − F1)1−�\ = 0
(4.5)

p��ℎ = p − =*� ∙ 3
(4.1)

−Wp = −Wp��ℎ − � ∙ 3W=* − =*�
(4.2)
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The equation system is of second order, as it contains the second derivative of

the mixture velocity 1*. The momentum equation is non-linear due to the non-

linearity of the convection term. With the given formulation a dependency

between the mass and the momentum conservation equation is not directly

visible, although it exists.

The  resulting  set  of  equations  of  the  AOMM  model  resembles  the  VoF

model and can be treated similarly. An additional algebraic equation for the

relative velocity 1� and a correlation between the velocity of the centre of

volume 1* and the velocity of the centre of mass   reduces the number of

unknowns from five to three. To solve for the remaining unknown variables F1,1* and +��ℎ an equation for the pressure can be derived from the momentum

equation. When pursuing a segregated solution strategy for the solution of the

system of equations, a segregated pressure-velocity coupling algorithm can be

applied. To obtain credible results it is essential to ensure overall mass

conservation and a bounded solution for the primary phase fraction. For the

applicability to most hydraulic engineering cases the spatial discretization must

be flexible to allow the complex geometry to be capturing of. Numerical

stability as well as calculation effort should be optimized to enable reasonable

computation times.

4.1.2 Algebraic Equation for the Relative Velocity

To get a coupling relation between the equations, the mixture velocity of the

centre of volume ܒ and the mixture velocity of the centre of mass 1* are related

with as follows:

 = 1* − F1(1 − F1)
=1 − =2=* 1−�

(4.6)
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The relative velocity for bubbly flow 1−�  can be approximated by the

magnitude of the terminal rising velocity U� of the bubbles multiplied with a

unit vector pointing in opposite direction to the gravitation vector:

1−� = U� ∙ o−�
|�|p (4.7)

To determine the rising velocity of the bubbles, various approaches exist. Below

the approaches implemented in the mixture model are presented.

Approach with Fixed Relative Velocity

The simplest approach is the assumption of a constant bubble rising velocity

resulting in a fixed relative velocity for the mixture model. Especially for

bubbles in the ellipsoidal regime (cf. Figure 2.2), where the rising velocity is

hardly dependent on the bubble size and the exact value is difficult to determine,

this approach can be most efficient.

Approach Based on Particle Relaxation Time

Several  commercial  CFD  codes  (e.g.  ANSYS  Fluent  or  Phoenics)  apply  an

approach developed by Manninen et  al. (1996). For this approach the terminal

velocity is calculated as product of the particle relaxation time ߬, the fluid

properties and the secondary acceleration � (Manninen et al. 1996):

U� = ? (=1 − =*)=1

�
(4.8)

The particle relaxation time for a particle can be generally calculated with:

? =
4

3

=2(	�)²
1�	Re+ (4.9)
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For the implementation the general formulation for the particle relaxation time is

reformulated as:

? =
=2(	�)²

18
1 �	��� (4.10)

The drag function ௗ݂௥௔௚ accounts for the different bubble regimes:

�	��� =
1

24
]�	Re+^

= ⎩⎪⎨
⎪⎧ 1 �w� Re+ < 1]1 + 0.15 Re+0.687^ �w� 1 ≤ Re+ ≤ 1000

0.0183 Re+ �w� Re+ > 1000

(4.11)

In the intermediate and the Newton regime the drag function is dependent on the

particle Reynolds number Re+:

Re+ =
=2	2|U�|
1 (4.12)

and therefore also dependent on the absolute value of the relative velocity |U�|.
The relative velocity is approximated with the Stokes’ law:

U� =
1

18

	�2 (=( − =�)
( g
(4.13)

Manninen’s approach seems most suitable for small spherical bubbles, where

Stokes’  law  can  be  applied.  For  larger  bubbles,  which  tend  to  ellipsoidal  or

spherical cap shape, the calculated terminal velocities diverge in comparison

with experimental data. Comparing the results of the given formulae with

experimental results (e.g. Clift et al., 1987) large deviations are visible.

Approach Based on Bubble Regimes

Zheng and Yapa (2000) derived a more sophisticated approach for the

calculation of the terminal bubble rising velocity.
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For the spherical regime they calculate the terminal rising velocity with:

U� =
Re+
(=(	� (4.14)

The terminal velocity in the ellipsoidal regime is received with:

U� =

(=(	� &−0.149(! − 0.857)

(4.15)

Hereby, the following auxiliary functions are applied:

! = 0.94�0.757 for 2 < � ≤ 59.3 (4.16)

! = 3.42�0.441 for � > 59.3 (4.17)

�  is defined as:

� =
4

3
EoM−0.149 Q 
(
@R−0.14

(4.18)

where 
@ is  the  viscosity  of  water.  The  shown  correlations  are  valid  for

M < 103 and Eo > 40. For the spherical-cap regime the following correlation of

Davies and Taylor (1950) is used:

U� = 0.711√	�g
(4.19)

The approach of Zheng and Yapa (2000) shows high accordance with

experimental data with various kinds of fluids and gases. Therefore, it is applied

in the case studies below.

Influence of Free-stream Turbulence on the Bubble Rising Velocity

In turbulent flow bubbles experience changing drag forces due to the velocity

fluctuations. For small bubbles, where the relaxation time is small compared to

the velocity oscillation period, the fluid particles follow the flow. Therefore, the
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influence  of  turbulence  on  the  drag  of  small  bubbles  can  be  neglected.  For

particles with diameters larger than the turbulent fluctuations the drag forces are

affected by free-stream turbulence. However, an exact correlation between the

free-stream turbulent intensity and the change of the bubble rising velocity is

difficult  to  define.  In  this  study,  the  influence  of  the  free-stream turbulence  on

the bubble rising velocity is neglected. This is considered as acceptable

simplification, since the uncertainty in the bubble rising velocities are assumed

to be higher than the potential turbulent influence.

Influence of Bubble-Bubble Interaction on the Bubble Rising Velocity

As described in section 2.1.5 the rising velocity of a bubble is affected by the

presence of further bubbles. Dependent on the bubble size regime, the

interaction between the bubbles can increase or decrease the terminal rising

velocity. Following Ishii (1977) the velocity of the dispersed phase with respect

to the volume centre of the mixture can be calculated with:

U� = U� ∙ (1 − F�)1.75

(4.20)

when the condition 
( ≫ 
�  is applicable. This correlation is valid for the

ellipsoidal regime, where surface tension effects are more relevant than viscous

forces. Here, the terminal velocity for the single bubble U� is calculated with:

U� = √2 ∙ og>∆==�² p0.25

(4.21)

In this formulation the terminal velocity of a single bubble is independent from

the bubble size and can be considered as constant for air bubbles in water. With

increasing gas content, the terminal rising velocity of the swarm decreases.

4.1.3 Pseudo-Compressibility of the Bubbles

To account for the compressibility of the bubbles, which cannot be considered

with the incompressible mixture model, the approach is adapted. Particularly the

bubble diameter is adjusted according to the water depth. For that, the user
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defined bubble diameter is multiplied by a shrinking factor modelling the

volume decrease due to pressure increase. Assuming that the defined diameter is

valid for bubbles close to the surface, the local shrinking factor for the cell is ݏ

defined with:

� =
p���

p��� + p
 (4.22)

where p��� is the absolute pressure and p
  is the local pressure in the cell under

consideration. Looking at the correlation between the bubble volume and the

bubble diameter (V = 	³y 6⁄ ) it becomes visible that volume scales with the cube

of the diameter. To obtain the adapted local diameter of a bubble, the diameter is

multiplied with the third root of the shrinking factor �.

In the approach used the factor is used only to shrink the bubble size, not

to adjust the volume fraction in a cell. Hence, it only influences the bubble rising

velocity, which is directly calculated from the bubble diameter. The influence of

the pseudo-compressibility grows with increasing water depths.

4.1.4 Extension of the Primary Phase Fraction Equation for Highly

Turbulent Flows

In highly turbulent flows, the bubble transport is significantly influenced by the

turbulent fluctuations of the flow. Due to the arbitrary velocity fluctuations of

the surrounding water the rising motion of the bubbles is randomly disturbed. As

a result, the bubble transport capacity of the flow is increased meaning that

bubbles are transported further with the flow. The current two-phase model is

coupled with turbulence models which only account for the effect of one-phase

turbulence. Velocity fluctuations are partly or completely removed from the

flow and replaced by a calculated additional turbulent diffusion. Therefore, the

disturbance of the rising process through turbulent motions of the flow cannot be

seen when using the current model. To allow the modelling of highly turbulent

flows with larger bubble contents, the numerical model has to be extended. In

particular, the influence of the turbulence of the phase fraction transport must be
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integrated. For that the primary phase fraction equation is extended with a

diffusion term:

VFV� + W ∙ (F ) + W ∙ [F(1 − F)1−�\ = W ∙ (��WF)
(4.23)

Inspired  by  the  transport  of  a  passive  scalar  quantity,  it  is  assumed  that  the

transport process of the primary phase consists of a convective and a diffusive

part. The convective terms describe the transport of the quantity α with the flow

field  and  due  to  the  density  difference  of  the  phases.  The  additional  diffusion

term accounts for the diffusion of αin regions of high turbulence. To create a

connection between the diffusion term in the primary phase equation and the

turbulence of the flow, the dimensionless turbulent Schmidt number is

introduced (Bates et al., 2005):

Sc� =
<��� (4.24)

The turbulent Schmidt number Sc� defines the ratio of the turbulent diffusion ௧ߥ
and the turbulent diffusivity ��.  In  analogy  to  the  turbulent  Prandtl  number

which represents the same ratio for heat transfer processes, the turbulent

Schmidt number is assumed to be close to unity for resolved substances

(Malcherek, 2005). Setting Sc� = 1 the diffusion coefficient necessary for the

solution of the primary phase transport equation equals the turbulent diffusion:

�� = <�
(4.25)

For the current model the turbulent diffusion is calculated by the turbulence

model  and  can  be  used.  To  allow  the  scaling  of  the  influence  of  the  turbulent

diffusion term, the term is multiplied by a factor �:

VαV� + W ∙ (α ) + W ∙ [α(1 − α)1−�\ = �[W ∙ (��WF)\ (4.26)

The turbulence diffusion influence factor � can be defined by the user. By setting

it to zero, the influence on the phase fraction transport of the turbulence is
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neglected. For � = 1 the diffusion coefficient becomes equal to the turbulent

diffusion.

4.2 Numerical Approximation

Since  the  governing  partial  differential  equations  (PDEs)  are  not  solvable  with

analytical methods, the solution for the chosen mathematical model has to be

approximated with numerical methods. Three classical methods available for

this purpose: the finite difference method, the finite volume method and the

finite element method. All methods aim to approximate the values of the

continuous mathematical functions on a set of discrete points. To achieve this,

the domain is discretized with a grid, whereby the structure of the grid is

dependent on the method used. For the finite difference method (FDM) the

domain is usually discretized with a uniform grid, meaning that grid point has

the same amount of neighbours. The method approximates the integral form of

the PDEs with the means of finite differences based on the application of local

Taylor series expansions. With all methods the truncation of the series

determines the accuracy and the complexity of the solution. The FDM is best

suitable for modelling regular shaped geometries which can be discretized with

regular, structured grids. For those cases the method is simple to implement. In

order to enable the handling of more complex geometries very sophisticated

techniques have to be included. The finite element method (FEM) is capable

of handling uniform and non-uniform grids consisting of a finite number of

elements. The method is based on the assumption, that every continuous

quantity can be approximated by piecewise continuous functions. It interpolates

the solution over the elements using a method of weighted residuals. The FEM

is capable of handling a large variety of different applications including fluid

dynamics. However, in most popular fluid dynamic frameworks the finite

volume method (FVM) is used. In this method the domain can be discretized

with uniform or non-uniform grids consisting of an arbitrary number of

volumes, bounded by flat non-overlapping faces. The transformation of the

integral form of the governing PDEs into a solvable set of algebraic equation is

performed through integration over a volume. Within the volumes a piecewise



4.2 NUMERICAL APPROXIMATION

85

linear variation of dependent variables is assumed. The variables can be stored

in the cell-centres or in the face-midpoints, depending on the approach chosen.

For the transformation of  every single operator  of  the integral  equation into an

algebraic counterpart, various schemes exist. To find the most suitable

representation of the partial differential operators is a field where a lot of

research still takes place. More details about these discretization schemes will be

given in the next section (4.2.1). In this study, the FVM is applied. To allow

greatest possible flexibility, the method is formulated for arbitrary polyhedral

meshes.

4.2.1 The Finite Volume Method for Polyhedral Meshes

For  the  solution  of  fluid  dynamic  problems  with  the  means  of  the  FVM,  the

partial differential with the means of algebraic equations referring to discrete

variables. The transformation from a PDE to a set of algebraic equations is

called discretization and usually consists of:

∂ the spatial discretization and

∂ the temporal discretization.

For the spatial  discretization the continuous domain,  in which the flow is  to be

modelled, is divided into a finite number of volumes. In the later calculation one

value per variable can be determined for each cell. The temporal discretization

divides the simulation time into discrete time-steps. The discretization

transforms  the  PDEs  into  a  set  of  algebraic  equations  based  on  the  before

defined spatial grid and time-steps. The smaller the volume size and time-step is

chosen, the better the accuracy in the solution is achieved. However, the

computational effort also grows with decreasing cell and time-step size.

Properties of the Polyhedral Mesh

As most hydraulic structures have a complex shape, which cannot be suitably

modelled with a structured grid, a method for discretizing the necessary

equations with polyhedral meshes is advantageous. In the following, a very

widely applicable variation of the finite volume discretization method is
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presented, which is implemented in the Open Source toolbox OpenFOAM. The

approach claims to be applicable on all kinds of meshes which fulfil the

following restrictions:

∂ the complete domain has to be filled with computational cells, which are

bounded by the domains boundaries and do not overlap each other,

∂ the cell faces should be flat and have a positive area and

∂ every cell-face must belong to exactly two cells, except if it is a boundary

cell-face.

Geometrically a single control volume can be described with the following

parameters: cell centre 
  (located in �
  ); vector connecting centroids of

neighbour cells �
� = 
�z = �� − �
 ; face area vector {�  starting at the

midpoint of the face pointing perpendicular from the owner to the neighbour

cell, the vector size corresponds to the face area. The parameters are visualized

in Figure 4.1.

In the OpenFOAM approach for polyhedral meshes, the complete discretization

concept is based on direct neighbours of the cells. Next neighbours of the cells

are not used and therefore also do not have to be explicitly defined. With this

concept the complete mesh can be stored with five lists: points, faces, owner,

neighbour and boundary.

The point list describes the corner vertices of the cell faces with the

means of three-dimensional Cartesian coordinates. Additionally all vertices get

Figure 4.1: Owner – neighbour correlation between two polyhedral cells

۾௙܁ ۼ
owner
cell
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consecutive numbers deviated from their line number in the list (which do not

have to be stored explicitly). With the help of these reference numbers, the faces

can be defined in the next list by describing each cell face with the respective

vertices that belong to the face. Additionally, the amount of vertices belonging

to each face is stored. With the following two lists, each cell face is assigned to

an owner and a neighbour cell, whereby the cell with the lower listing number

is always defined as owner. In a correctly defined mesh all faces must have an

owner cell. A neighbour cell is only necessary, when internal faces are

described. Boundary faces do not have a neighbour cell. For a simpler definition

of the boundary faces, the owner list is designed such, that all faces without

neighbour entry are listed at the end. The boundary list can therefore refer to

its associated faces by a starting number, referring to the owner list, and an

amount of faces that belong to the boundary. In the boundary list, all boundary

faces should be clustered according to their physical properties and their

assigned boundary conditions. For easier reference, when defining boundary

conditions, the boundary face clusters can be labelled with a name. With the

concept explained for the mesh definition, the storage capacity for the grid

information is minimized and the calculation with polyhedral cells with an

arbitrary number of faces is enabled. All additional geometrical information

needed for the calculation can be derived from the information given in the lists.

Equation Discretization

The applied FVM for polyhedral meshes uses a cell-centred approach meaning

that all primary variables are principally saved in the centroid of the cells,

although they can also be stored on the cell faces. Variables referring to cell

faces are indexed with ݂. The discretization of the equations is performed per

operator, meaning that every single operator can be discretized with an

independent method.
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To illustrate the discretization the following general transport equation for a

general quantity A (�, 4, |, �) is used:

V(A)V� + W ∙ (1A) − W ∙ ]DAWA^ = �A(A)
(4.27)

The first term in the equation describes the temporal variation of the quantity A.

The second term accounts for the convective transport of A and 1 being the

transporting velocity field. The last term on the left hand side of the equation

characterizes the diffusive transport of A, with DA describing the diffusion

coefficient. On the right hand side of the equations the source term is depicted.

As the diffusion term includes a second derivative of A in space, the equation is

of second order. Following Jasak (1996), who performed a very detailed error

analysis of the discretization approach described below, the spatial and temporal

discretization schemes should at least be of the same order of accuracy as the

equation. As the order of accuracy is dependent on the kind of the temporal and

spatial variance of variables A around the point P, the variance has to be defined

as linear. This is achieved with the following truncated Taylor series expansion.

Spatial discretisation:

A(3) ≈ A
 + (3 − 3
 ) ∙ (WA)
 (4.28)

where 3 = (�, 4, |).

Temporal discretisation:

A(3�+}�) ≈ A� + ~� �VAV� ��
(4.29)

In this manner the second order discretization is reached for all terms, meaning

that the truncation errors in time and space scale with the square of the grid size

and the time-step, respectively (Jasak  1996). For the discretization of the

general transport equation (4.30) the differential form is first transformed into

the integral form.
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This is done by integrating all terms over discrete time-steps and control ݐ∆

volumes 0
 :

d o VV� d (A) 	00

+ d W ∙ (1A) 	00


− d W ∙ (0

DAWA) 	0 p�+∆�

� 	�
= d od �(A) 	00
 p�+∆�

� 	� (4.30)

In the next step the spatial integrals are discretized, meaning that the volume

integrals are interpreted with algebraic expressions, so that a solution for the

finite volumes can be calculated. To accomplish this, the volume integrals are

transformed into surface integrals using the Gauss theorem, which can generally

be written as:

d W ⋆ (A) 	00+
= d	� ⋆ (A)�� (4.31)

The star operator ⋆ used stands for any possible tensor product (divergence,

gradient or curl). ܸ݀ is an infinitesimal element of the volume ܸ and	݀܁
represents an infinitesimal surface element. The linearization of the convection

term results in a sum of the mass flux over the cell faces ݂:

dW ∙ (1A) 	00 = d	� ∙ (1A) =� g {� ∙ 1� A�� = g � A�� (4.32)

with the mass flux � = {� ∙ 1�  being the dot product of the outward pointing

face area vector {�  and the velocity 1 interpolated to the cell face � . A�  refers

to the face value of the quantity A, which has to be calculated from the cell

value. The diffusion term is discretized with:

d W ∙ ]DAWA^	0 = d	� ∙ (DAWA)� =�0 g(DA)�� (WA)� ∙ {�
(4.33)

where DAis the diffusivity.
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For an orthogonal grid the cell-centred gradient interpolated to the cell face can

be calculated with:

(WA)� ∙ {� = q{� q A� − A

|�
� | (4.34)

This formulation is suitable for the owner-neighbour cell concept, as it considers

the neighbours of the cell face. To handle non-orthogonal grids, the face

gradient discretization has to be extended. As the vector �
�  might not be

parallel with the surface normal vector {�  in non-orthogonal grids, a non-

orthogonal correction is introduced.

Therefore, the face normal vector is decomposed into an orthogonal part ∆ and a

non-orthogonal part #:

{� = ∆ + #
(4.35)

The following sketch clarifies the correlation:

Figure 4.2: Decomposition of the face normal vector into an orthogonal part and

a non-orthogonal part

Given this, the cell-centred gradient interpolated to the cell face for non-
orthogonal grids can be calculated with:

(WA)� ∙ {� = ∆ ∙ (WA)� + # ∙ (WA)�
(4.36)

N

݂
݀

P ∆
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Applying the over-relaxed approach, meaning that the vector # is orthogonal to

the surface normal area vector {�  (as described by Jasak 2006b, Moukalled et

al. 2016) the face normal vector components can be described with:

∆=
�� ∙ ���� ∙ � �  with � =

�PN

|�PN|

and

� = ]� − 1�w�9 �^q{� q with � =
{�q{� q

(4.37)

In an orthogonal grid the vectors � and � are parallel. With that the non-

orthogonal component disappears. For the discretization source terms have to be

linearized in the following form:

� = �� + �+A+
(4.38)

The integration over the control volume leads to:

d �A(A)	0 ≈)+
��0+ + �+0+A+

(4.39)

After the transfer of the spatial integrals into discrete algebraic expressions the

integration of all terms over the time-step is performed to update the solution ݐ∆

in time:

d � VV� d A 	00+
+ g {� ∙ 1� A�� − g (DA)� {� ∙ (W� A)� �

�+∆�
� 	� =

d [��0+ + �+0+A+\
�+∆�
�

	� (4.40)
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Sorting  the  transient  term  to  the  left  hand  side  and  all  other  terms  to  the  right
hand side, the transport equation can be written with:

d � VV� d A 	00+ �
�+∆�
�

	�
= d jg �� ∙ i� A�� − g (DA)� {� ∙ (�� A)� − ��0+ + �+0+A�+∆�

�
(4.41)

The temporal discretization of each of the two sides of the equation is

independent. In this thesis, the transient term on the left hand side of equation

(4.44) is discretized implicitly. The discretization results in:

d �d VAV� 	00+ �
�+∆�
�

	� ≈ AP+1 − AP
}� 0+ (4.42)

The temporal discretization method for the right hand side of equation (3.38) is

case dependent. Generally, the terms can be discretized with the implicit Euler

method, the explicit Euler method or the Crank-Nicolson method. For the

following explanations of the three methods the terms of the right hand side of

equation (4.41) are replaced by � (�, A):

d � VV� d A 	00+ �
�+∆�
�

	� = d [� (�, A)]
�+∆�

� 	�
(4.43)

The  temporal  discretization  can  either  be  based  on  the  values  of  the  current

time-steps  or  on  values  of  the  next  time-step.  A  combination  of  both  is  also

possible. Thus, the discretized form of the right hand side can be generally

expressed with:

d [� (�, A)]

�+∆�
�

	� = [9AP+1 + (1 − 9)AP\∆�
(4.44)

where 9 is  a  weighting  factor  taking  values  between  0  and  1.  For  the explicit

Euler method the weighting function ݂ is set to zero. Thereby only values

from the current time-step are used, which are directly obtained for each node
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without solving a system of equations. However, to ensure stability a time-step

limitation according to the Courant number limit has to be respected. The

Courant number Co (also referred to as Courant-Friedrichs-Lewy number) is

defined as:

Co =
|1 ∙ 	|∆� (4.45)

It describes how far the information transported by the velocity within one time-

step ∆�. In OpenFOAM, the velocity on the faces 1�  is used. By limiting the

Courant number to unity, the information is only allowed to be transported

through one cell per time-step, described by the distance from owner cell centre

to neighbour cell center �. The explicit Euler method is of first order accuracy in

time. In the implicit Euler method all values used for the calculation of the

new values stem from the next time-step, meaning that the weighting factor of

equation  (4.44)  is  set  to 9 = 1.  As  the  new  time-step  values  are  unknown  a

system of algebraic equations has to be solved. The implicit Euler method is also

first order accurate. A time-step restriction is theoretically unnecessary because

the method is unconditionally stable. In coupled systems, as used in the chosen

modelling approach, the time-step still needs to be restricted to ensure a proper

coupling. Second order accuracy can for example be achieved with the Crank-

Nicolson method, when the weighting between old and new values is

balanced: 9 = 0.5.  The  application  of  this  weighting  is  often  not  feasible  as  it

does not guarantee boundedness, and thereby sometimes causes stability

problems. As compromise between stability and accuracy weightings of

0 < 9 < 1  are possible but the accuracy decreases below second order.

Comparable with the explicit Euler method a time-step restriction according to

the Courant number criterion has to be respected when the Crank-Nicolson

method is applied. The new cell values can then be calculated with:

A+P+1 = A+P +
∆�=+0+ [9A+P+1 + (1 − 9)A+P\

(4.46)
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Basic Boundary Conditions

In addition to the discretization, initial and boundary conditions have to be

defined for a complete description of a numerical problem. Generally, all

boundary conditions are derived from two basic boundary types: Dirichlet

condition and Neumann condition. With a Dirichlet boundary condition the

value at the boundary patch is fixed to a defined value. The discretization of the

convection term at the boundary with a Dirichlet boundary condition reads:

dW ∙ (1A) 	00 = d	� ∙ (1A) =� g {� ∙ 1� A��
= g � A� + ��A�� ≠�

(4.47)

where the index ܾ denotes the values at the boundary. Due to the definition of

the boundary values with the boundary condition, the last term can be calculated

explicitly. It is therefore added to the source term (Hill, 1998). In the diffusion

term the Dirichlet condition affects the calculation of the face gradient. Instead

of using owner and neighbour cell values to calculate the gradient, the neighbour

value is replaced by the boundary value. For an orthogonal grid the cell-centred

gradient at the boundary is calculated with:

(�A)� ∙ {� = q{� q A� − A

|�
� |

= q{� q A�
|�
� |

− q{� q A

|�
� | (4.48)

Due to the known boundary value the penultimate term can be calculated

explicitly. The last term remains implicit (Hill, 1998).

A Neumann boundary condition defines a fixed gradient ݃௕ normal to patch
face �:

(� ∙ WA� )� = S {�q{� q ∙ (WA)� U�
= �� (4.49)

where � is the unit normal vector pointing out of the domain.
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If a value at the boundary patch is needed, this can be calculated with :

A� = A
 + �P ∙ WA� = A
 + |�P|��
(4.50)

�P is the boundary normal component of the vector connecting the cell centre

and the boundary face centre �
�. For orthogonal grids, �
� coincides with �P.

For non-orthogonal grids, �P can be calculated with (Jasak, 1996):

�P =
{�q{� q

	
� ∙ {�q{� q (4.51)

The discretization of a convection term at a boundary with Neumann condition

results in:

��A� = ��A
 + ��|	P|�� (4.52)

The discretization of a diffusion term at a Neumann condition boundary yields

to:

4.2.2 Discretization Schemes

The required interpolation of the cell values to the cell faces can be performed

with various differencing schemes. As discretized convection terms tend to

unboundedness on the one hand and to inaccurate, “smeared” solutions on the

other hand, the scheme must be chosen with great care.

Using the central differencing (CD) scheme the determination of the

face value is achieved with a linear interpolation of the values in the owner

(index ܲ) and the neighbour (index ܰ) cell:

(A� )�� = ��(A
 − A� ) + A�
(4.54)

{� ∙ (WA)� = q{� q�� (4.53)
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with �� = ��z 
�z⁄  describing the ratio of the distances from the neighbour cell

to the face ��z  to the distance between owner and neighbour midpoint 
�z .

Independent from the grid structure, the central differencing scheme is of

second order accuracy in space (as shown in Ferziger and Peric 1997) and tends

to suffer from severe unboundedness caused by large unphysical over- and

undershoots in the solution. This is especially disadvantageous, when the natural

value of the transported property is bounded between two values. Alternatively,

the upwind differencing (UD) scheme can be applied. In this scheme, the face

value is adapted according to the direction of the flow:

(A� )�� = �A� = A
 �w� � ≥ 0A� = A� �w� � < 0 (4.55)

If the fluid flows from owner to neighbour cell, the face value A�  is adopted

from  the  owner  cell.  If  the  flow  is  directed  from  neighbour  to  owner  cell, A�
gets the value from the neighbour. The upwind scheme guarantees boundedness,

but is only of first order accuracy and strongly smears the solution. Through the

process of smearing, caused by artificial numerical diffusion, instantaneous

jumps, as they often occur e.g. at the interface between two phases, cannot be

accurately depicted. For adapting the advantages and avoiding the drawbacks of

both aforementioned schemes, blended differencing schemes can  be

deployed. Generally, the discretization of linearly blended schemes can be

expressed with:

for � ≥ 0 A� = (1 − 6)(A� )�� + 6(A� )�� = (1 − 6)[A
 ] +

6[��(A
 − A� ) + A� \ (4.56)

for � < 0 A� = (1 − 6)(A� )�� + 6(A� )�� = (1 − 6)[A� ] +

6[��(A
 − A� ) + A� \ (4.57)

With the linear factor Ͳ ≤ ߛ ≤ 1 the weighting between upwind and central

differencing can be regulated. The more the factor tends to unity, the less

numerical diffusion is introduced. Simultaneously the tendency to

unboundedness increases. Linear blending cannot guarantee boundedness and
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high accuracy over the complete domain. Especially in regions of high gradients

discontinuities, over- and undershoots are likely to occur.

With non-linear blended schemes boundedness and higher accuracy than

with the upwind scheme can be achieved over the entire domain. These schemes

can be characterized with the total variation diminishing (TVD) method. The

method, introduced by Harten (1984), makes the assumption that for bounded

schemes the total variation /0 (AP) of the solution should not vary between

consecutive time-steps. The total variation of a variable ߶ for the time-step	݊ is

defined as:

/0 (AP) = g qA�P − A
P q� (4.58)

where �  and 
  are points around the face � .

For schemes, fulfilling the total variation diminishing condition, the following
applies:

/0 ]AP+1^ ≤ /0 (AP)
(4.59)

Sweby (1984) suggested to formulate the non-linear blending as sum of the first

order upwind differencing scheme and a higher order correction (index ,(ܱܪ

which is limited by a flux limiter B(�):

A� = (A� )�� + B(�)[(A� )�� − (A� )��\
(4.60)

The flux limiter function is dependent on the ratio of successive gradients �. For

a structured grid, this ratio is defined as:

� =
A
 + A�A� − A
 (4.61)

where A
  is the cell value for which the flux is to be calculated, A� is the

upwind neighbour value and A�is the downwind neighbour value. For an

unstructured grid, which is based on the owner-neighbour relation of each face,
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next neighbour cells are not directly accessible. Therefore, an adapted

formulation of the limiter function is necessary. Darwish and Moukalled (2003)

showed that the limiter function can be re-written into a more general form:

� = Q2(�A)
 ∙ �
�A� − A
 R − 1
(4.62)

Using only the values of the cell under consideration (A
 ), the value of the

neighbour cell (A� ) and the distance vector from the midpoint of the owner cell

to the neighbour cell (�
� ) this approach is appropriate for the owner-neighbour

face relation. The total variation diminishing schemes in OpenFOAM are based

on this formulation. To guarantee the total variation diminishing constraint, the

blending function has to lie in a certain region of the diagram in Figure 4.3.

Figure 4.3: Total variation diminishing diagram

The total variation diminishing condition is fulfilled for all functions lying

within the grey shaded region. The hatched region describes all second-order

schemes.

B(�)
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Mathematically, the TVD constraint can be described as:

0 ≤ ψ(�)� ≤ 2

and

0 ≤ B(�) ≤ 2

(4.63)

The schemes are second order, if they lie within the grey shaded region in Figure
4.3. The second-order TVD schemes fulfil the following constraint:

� ≤ B(�) ≤ 1
(4.64)

To guarantee stability, the TVD schemes have to additionally respect the

Courant  number  (CFL)  limitation  (see  section  4.2.1).  With  increasing  CFL

numbers the differencing schemes become more and more diffusive, reducing to

UD for the limit of CFL=1 (Jasak, 1996).

Personal experience showed that the boundedness and stability of the

TVD schemes implemented in OpenFOAM is strongly dependent on the mesh

quality and the CFL number. With three-dimensional grids a bounded

oscillation-free solution is not inherently guaranteed (see e.g. Denner and van

Wachem, 2015). Standard TVD methods cannot be applied to equations with

source or sink term, as the total variation diminishing condition is not applicable

in these cases. Special adoptions for these cases are available (see e.g. Chalabi,

1997).

4.2.3 Solution Techniques for the Linear Equation Systems

Finally, the discretized partial differential equations result in large sets of linear

equations, which can be written in the form of large matrices of the following

form:

{�}[3] = [�]
(4.65)

{�} is the coefficient matrix, [3] is the solution vector and [�] contains explicit

terms and the source terms. To allow an effective storage the sparse coefficient
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matrix is divided into a three arrays: the diagonal, an upper triangle and a lower

triangle. The diagonal array contains all coefficients dependent on the point

value of the cell; the neighbour coefficients fill the upper and the lower triangle.

The equation system can either be solved with direct or iterative solution

techniques. Direct solution techniques apply a series of algebraic operations for

solving the matrix system directly. After a finite number of operations the final

solution is reached. In contrast, iterative solution techniques start with a guessed

value for the solution and perform then a set of algebraic operations to improve

the initial guess. By repeating this procedure several times, the solution should

converge, meaning that it tends to the exact solution. The iterative procedure is

stopped, when a pre-defined convergence criterion is met. Direct methods have

the advantage, that the number of steps to the exact solution is known.

Furthermore, they are effective and robust for solving dense matrices. However,

the necessary storage is immense. In contrary, iterative methods are

advantageous when very large, sparse matrices are to be solved. Here, the

iterative methods are far less expensive and much faster than direct methods,

where the computational costs scale with the size of the matrix. Dependent on

the convergence criteria and the set tolerances, iterative methods can be even

more accurate, since direct methods suffer from rounding errors.

The  FVM  applied  to  model  three-dimensional  flow  in  the  nearfield  of

complex hydraulic structures results in very large, sparse, diagonally dominant

matrix systems. Therefore, iterative methods are applied in most cases. The most

simple and concurrently oldest methods are point relaxation methods like the

Jacobi method, the Gauss-Seidel method or the successive over-relaxation

method. These so-called stationary iterative methods are based on relaxing the

coordinates. During the iterative process, an initially approximated solution is

constantly improved by modifying its components based on the measured error

(Saad, 2003). The methods are simple to implement but their convergence rate

can be slow for large equation systems (Versteeg and Malalasekera, 2007).

Nowadays, the stationary iterative methods are combined or completely replaced

by the more sophisticated Kylov subspace methods like e.g. the Generalized

Minimal  Residual  (GMRES),  the  Conjugate  Gradient  (CG)  method  and  its
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variants like the Biconjugate Gradient (BCG) method, the Bi-Conjugate

Gradient Stabilized (BiCGStab) method. The Krylov subspace methods

construct a step-wise approximation to the solution which lies within a defined

subspace. During the iterative process the residual over the defined subspace

decreases. The methods mentioned are known for their robustness and their

simple implementation. A further alternative for solving the sparse linear

equation system is the application of multigrid methods like the algebraic

multigrid solver (AMG) and its variants can be applied. Multigrid solvers use

coarse grids with fast solution times to smoothen high frequency errors to find

initial solutions for the finer grid (Behrens, 2009). More detailed information

about the solvers functionality can be found in e.g. Saad (2003). The choice for

each system has to be made dependent on its characteristic. To find the optimal

method the symmetry properties and the size of the matrix has to be considered.

Additional speed-up of the convergence of the linear equation systems can

be achieved by applying preconditioners. The preconditioner changes the form

of  the  given  problem  in  such  a  way  that  it  becomes  faster  to  solve  for  the

iterative solver. Under-relaxation can be used to increase diagonal dominance

and thereby improve numerical stability.

4.2.4 Bounded Discretizing Procedure for the Mass Conservation Equation

of the Continuous Phase

To guarantee a bounded solution of the phase fraction equation, the multi-

dimensional limiter for explicit solution (MULES) solver is applied. The

MULES procedure is a native method of OpenFOAM, originally designed for

the VoF solver interFoam. The principle of  MULES is  based on the method of

flux corrected transport for hyperbolic problems as developed by Boris and

Book (1973) and Zalesak (1979). The solution procedure combines the

advantages of lower and higher order discretization for the flux calculation:

where the lower order scheme always produces a bounded but rather inaccurate

solution, the higher order scheme discretization results in an accurate but

possibly unbounded result for the flux.
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To  combine  the  advantages  of  both,  MULES  performs  the  following  steps

(Damian, 2013):

∂ compute the flux with a lower order scheme ��%, to get a bounded

result,

∂ compute  the  flux  with  a  higher  order  scheme ��� ,  to  get  a  more

accurate result,

∂ calculate the anti-diffusive flux � defined as difference between the

lower and higher order flux � = ��� − ��% and finally

∂ add a portion of the difference to the lower order flux, to obtain

corrected flux ��� = ��% + ��.

The definition of the portion in the last step is the main challenge in this ߣ

procedure, because the added portion should be as large as possible but still

guarantee boundedness. No new extrema should be created. To achieve this, the

local extrema for each cell are calculated:

A'*'P = *'P	(A'P, A�P )

A'*�� = *��	(A'P, A�P ) (4.66)

Then, the local extrema are compared with the global extrema A*'P�, A*��� and

clipped if they are larger or smaller than the allowed minimum or maximum:

A'*'P ∶= *��	(A*'P�, A'*'P)

A'*�� ∶= *'P	(A*���, A'*��) (4.67)

From this the net fluxes

,'− = ]A'P − A'�^ Δ�0
,'+ = ]A'� − A'P^ Δ�0 (4.68)

are calculated, which would create a local minimum or maximum. With these,

the necessary limiter for the bounded fluxes can be calculated. In OpenFOAM
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the limiter is determined iteratively. Beginning with ௙ఔୀଵߣ = 1, the limiter values

for the faces are determined by iterating over the following equations:

For  the  current  code,  the  number  of  iterations  is  set  to  three.  This  setting  is

proven to lead to bounded results in representative engineering applications. The

original method by Boris and Book (1973) and Zalesak (1979) directly

determines the limiter value by dividing the net fluxes by the summations of

inflows ௜ܲାand outflows ௜ܲି
�'± = �*'P�1, ,'± 
'±⁄ � '� 
'± > 0

0 '� 
'± = 0 (4.71)

This flux correction limiter allows the calculation of the limited flux within one

step, thus produces less computational effort. According to Kuzmin and Gorb

(2012) the direct determination of the limiter can sometimes lead to unnecessary

corrections, because the formulation for .௜± is based on a worst case scenarioߣ

The iterative procedure remedies this disadvantage.

The original MULES procedure is explicit, therefore opposes strict

Courant number limits to the solution process (Weller, 2015). To overcome this

limitation, a semi-implicit variant of the MULES procedure was introduced.

This adapted variant first calculates an implicit solution based on purely

bounded operators and subsequently performs an explicit correction based on

the MULES limiter. With this approach the time-step restriction is not as strict

as before. Instead, accuracy considerations govern the time-step restrictions.

4.2.5 Derivation of the Pressure Equation for the Mixture Model

The equation system describing the fluid flow consists of two partial differential

equations which are non-linear and coupled. The linear coupling between the

�'±,<+1
= *�� �*'P S± ∑ ��P�
'± , 1U , 0� (4.69)

��<+1
= ⎩⎪⎨

⎪⎧*'P��
+,<+1
, ��−,<+1� , '� 'P�(w@� ≥ 0

*'P��
−,<+1
, ��+,<+1� , '� w���(w@� < 0 (4.70)
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velocity and the pressure has much higher influence than the non-linearity of the

convection term, when the computation is performed with low Courant numbers.

Therefore, the non-linearity of the momentum in the convection term can be

linearized through the discretization.

The continuity and the momentum equation include only two unknowns,

namely the pressure and the velocity ݌ 1,  therefore  the  problem  seems  well-

posed at first sight. A closer look reveals the difficulty of the problem: the

pressure, which is necessary for the solution of the momentum equation, is not

included in the continuity equation. The absence of the pressure in the continuity

equation makes the derivation of an equation for the pressure necessary.

Therefore the continuity criterion of the first equation is imposed on the

momentum equation, resulting in a Poisson equation for the pressure. With an

iterative solution procedure pressure and velocity can be approximated. The

semi-discretized set of equation can be written as:

Mass conservation equation

∑  � ∙ {�� = 0
(4.72)

Momentum conservation equation

�
 (i*)
 + g �� (1*)�� = . − �p +
(1*)0

∆� (4.73)

�
  includes all matrix coefficients of the momentum equation which are directly

dependent on the value of the velocity (1*)
  in the considered cell P. �
  is the

diagonal part of the matrix {�}. ��  is the off-diagonal part of the matrix{�},

containing all entries of the momentum equation which depend on the

neighbour-value of the velocity (1*)� . All contributions in the momentum

equation, which are not directly dependent on ௉ or܃ (1*)�  contribute to the

right hand side ..

. = −� ∙ � − W ∙ oF1(1 − F1)
=1=2=* 1−�1−�p (4.74)
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For simplification, the off-diagonal matrix and the entries of the source terms

excluding the pressure gradient contribution are combined in the �[1]

operator:

�[i ] = . − g �� (1*)�� +
(1*)0

∆� (4.75)

�[1] contains the matrix of the neighbour coefficients multiplied by the

corresponding velocity vector 1 and the source term contributions .. By

substituting the �[1] expression into the momentum equation, the following is

obtained:

�
 (1*)
 = �[1] − Wp
(4.76)

Resolving for (1*)
  gives:

(1*)
 = �
 −1�[1] − �
 −1Wp
(4.77)

To obtain velocities at the cell faces, an interpolation to the cell faces is

performed:

(1*)� = j�
 −1�[1]k� − [�
 −1Wp\� (4.78)

To assemble the fluxes, the correlation between velocity of the centre of volume and the mixture velocity of the centre of mass 1* described in equation (4.6) is

used:

 � ∙ {� = (1*)� ∙ {� − oF1(1 − F1)
=1 − =2=* p� (1−�)� ∙ {�

(4.79)

The resulting expression can be used to derive a pressure equation.
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For that (1*)�  in the mass conservation equation (4.72) is substituted by the

expression of equation (4.79):

g  �� ∙ {� = g j�
 −1�[1]k� ∙ {�� − g[�
 −1Wp\ ∙ {��

− g ooF1(1 − F1)
=1 − =2=* p� (1−�)� p� ∙ {� !=  0 (4.80)

Resolving equation (4.80) for the pressure yields to:

g[(�
 −1)� (Wp)� \ ∙ {��
= gj]�
 −1^� (�[1])� k� ∙ {�
− g ooF1(1 − F1)

=1 − =2=* p� (1−�)� p� ∙ {�
(4.81)

Equation (4.77) is usually referred to as momentum predictor and equation

(4.81) as pressure equation.

The Solution Algorithm for the Mixture Model

For the mixture model simulations one mass, one momentum and one volume

fraction equation has to be solved in a coupled manner. When designing an

algorithm for the coupling of the equation set, the following aspects have to be

considered:

∂ the volume fraction is a bounded property,

∂ the momentum equation contains a non-linear term and

∂ the equations are coupled via the velocity.

The solution algorithm chosen is divided into two parts. In the first part of the

solution algorithm, the volume fraction equation has to be solved. To obtain an

accurate and bounded solution, a higher order, TVD scheme is used for the

discretization of the face fluxes. Additionally the standard MULES algorithm
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(as described in section 4.2.4) is applied to ensure boundedness. In the second

part, a solution for the momentum and the phase continuity equation has to be

found. For this purpose, a segregated pressure-velocity coupling algorithm is

applied. The approach used resembles the pressure implicit splitting of operators

(PISO) technique which was developed by Issa (1986). Instead of using a simple

iterative solution procedure, the PISO method splits the operators into an

implicit predictor step and multiple explicit corrector steps (Churchfield, 2010).

The pressure-velocity algorithm begins with the momentum predictor step. If the

momentum predictor is switched on, the predicted velocity is calculated

implicitly based on the pressure gradient of the previous time-step.

�
 (1*)
 = �[1] − Wp
(4.82)

The resulting approximated velocity field 1*  is not divergence free, as

stipulated by the continuity equation. Nevertheless, the predicted velocities are

used to assemble the fluxes. Intermediate fluxes are denoted with � ̃.  If  the

momentum predictor step is neglected, the velocity values from the previous

time-step are used instead.

�1̃ = gj]�
 −1^� (�[1])� k� ∙ {�
(4.83)

and

�2̃ = g ooF1(1 − F1)
=1 − =2=* p� (1−�)� p� ∙ {�

(4.84)

Then, the new pressure can be calculated using the explicit fluxes. This step is

called pressure solution:

gj]�
 −1^� (Wp)� k ∙ {�� = �1̃ − �2̃
(4.85)

With the new pressure the explicit flux field can be corrected to obtain a

conservative flux field consistent with the new pressure:
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� = F̃1 − j]�
 −1^� (Wp)� k ∙ {� (4.86)

A corrected velocity field can be calculated explicitly:

(i*)
 = �
 −1[�[1] − Wp]
(4.87)

Additionally, the face flux for the velocity of the centre of volume is corrected:

� ∶= � − � ̃
(4.88)

With the explicit velocity correction in equation (4.87), the assumption is made,

that the velocity correction solely results from the pressure gradient, neglecting

the influence of the neighbouring velocities (Jasak, 1996). To account for the

contribution of the 1�
 �[1] term, the pressure solution and the explicit velocity

correction have to be repeated for a defined number of loops or until a defined

tolerance is reached. Due to the assumption that non-linear effects are of minor

influence, the �[1]  operator is not re-assembled within the correction

procedure.

4.3 Implementation Details

4.3.1 The OpenFOAM library

The widely known CFD-toolbox “OpenFOAM” (Open Field Operation and

Manipulation) is a well-designed C++ library that allows the numerical

simulation of various engineering applications. Through its object-orientated

structure it is very flexible and can be adjusted to very specific problems. The

class based structure divides the software into the smallest possible units, where

each is designed for performing one specific task. With its object orientated

structure the maintenance of the code and development of extensions are

generally simplified. Utilizing this it is possible to add functionality to the outer

layers of the code without the necessity to know everything about the inner
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layers. Furthermore, code duplication is avoided, since all parts of the library

can be used at multiple positions. Since the code is open source, code analysis

and manipulation are possible. In general, the library is designed for tackling

complex physical problems, which can be described with the means of partial

differential equations (PDEs). These PDEs are then discretized on the basis of

the above described finite volume method in space and with a finite differences

method in time. With its specific data types for describing the PDEs and the

usage of operator overloading, OpenFOAM allows formulating the equations in

a way that resembles the mathematical formulation (Weller et al., 1998). Thus,

operators like divergence, gradient or laplacian can simply be written as div,

grad and laplacian. With its ingenious concept for the discretization,

which is described above, the software allows the usage of arbitrarily shaped

cells in the mesh. A message passing interface based parallelization concept is

embedded seamlessly which enables highly effective massive parallel

computing. As the code is open source, parallel computing with OpenFOAM is

limited by the hardware resources available and not by the number of licenses

available. But, as the parallelization is based on a domain decomposition

approach, the efficiency of parallelization is given only, if the problem size is

large enough (Hinkelmann, 2003). The official version of OpenFOAM is

distributed under the GNU license by ESI/OpenCFD (www.openfoam.org).

Besides the official release some forks and adaptions are available. One

noteworthy release is the community-driven distribution by the “extend-

project”, which aims to “open the OpenFOAM CFD toolbox to community

contributed extensions in the spirit of the Open Source development”

(www.extend-project.de). Containing various valuable user-developed

extensions, it is widely used by many researchers. With the ongoing

developments the differences between the two main release branches are

growing, therefore switching between different versions is not recommended.

The following description refers to the official version 2.2.2.
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4.3.2 Mixture Model Fields and Variables

For the AOMM model variables for each cell are stored in arrays. Dependent on

the type of the variable, scalar, vector or tensor fields can be defined. Variable

fields, which are stored in the cell centres, are defined as volume fields. Variable

fields, which are stored on the cell faces, are defined as surface fields. For the

mixture model the following fields are defined:

Table 4.3.1: Model fields in the mixture model

volScalarFields

volScalarField name Unit Description

alpha1 - volume fraction of the primary

phase

p kg/m/s² pressure

dB m bubble diameter

rho1 kg/m³ density of the primary phase

rho2 kg/m³ density of the secondary phase

p_rgh kg/m/s² pressure without hydrostatic

pressure

g m/s² gravity

sigma N/m surface tension

volVectorFields

volVectorField name Unit Description

U m/s velocity of the mixture

Vpq m/s relative velocity between the

phases
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surfaceScalarFields

surfaceScalarFields Unit Description

phi m³/s face flux

phiVpq m³/s face flux of the relative

velocity

4.3.3 Summarized Solution Algorithm

The solution algorithm applied in the mixture model implementation is a

combination of the PISO and the SIMPLE algorithm, called PIMPLE algorithm.

It enables under-relaxation to improve the convergence and outer iterations to

enforce the coupling between mass and momentum conservation (Venier et al

2014). The solution procedure can be summarized with the following steps:

∂ Primary phase conservation equation solved with MULES algorithm

(alpha sub-cycling)

∂ Momentum predictor step if switched on by the user

∂ PIMPLE loop performed n times over the following steps:

- Assembly of �[1] operator

- Solution of pressure equation

- Flux correction with pressure effect

- Explicit velocity correction

∂ Correct flux with relative velocity effect

The single steps are described in detail in the sections below.

4.3.4 Solution of the Mass Conservation Equation for the Primary Phase

In the first step of the mixture model solution procedure the primary phase

conservation equation is solved. A sub-cycling loop is used to divide the time-

step  into  smaller  steps.  The  number  of  sub-cycles  is  defined  by  the  user.  Each

sub-cycle provides a new volume fraction field. First, the explicit phase fraction

flux is calculated. The flux consists of the volume fraction flux of the primary

phase transported by the mixture velocity (from the previous time-step) added to

the volume fraction flux in the interface or bubbly regions transported by the
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relative velocity (from the previous time-step). The explicit discretization is

performed according to the user defined schemes. To obtain good accuracy,

either  TVD  or  NVD  schemes  should  be  used.  Then  the  volume  fraction  flux

field is transferred to the MULES solver. Moreover, the volume fraction field,

the mixture velocity flux field and the global minimum and maximum value for

the volume fraction are provided as arguments. In the MULES algorithm a lower

order solution for the primary phase conservation equation is calculated

explicitly. By subtracting the higher order flux from the lower order flux, an

anti-diffusive flux is calculated. In an iterative procedure a limiter is determined,

which is finally multiplied with the higher order flux and added to the lower

order solution to receive a bounded volume fraction field. After sub-cycling, the

new density values for each cell can be calculated.

4.3.5 Velocity Predictor Equation

To predict a new velocity field, the momentum equation is assembled. Except

from the contribution from the relative velocity between the phases, source and

pressure terms are neglected. When the momentum predictor is switched on, the

assembled momentum matrix is equated with the right hand side terms of the

momentum equation including the gravitational term and the pressure gradient.

The right hand side is formulated in terms of face values and transformed back

to the cell values with a special reconstruction function. This is advantageous

when large density gradients are present in the flow field.

4.3.6 Pressure Equation

For the pressure equation the �[1] operator is assembled with the predicted

velocity field. If the predictor step is not performed, the velocity field from the

previous time-step is used for the operator assembly. To obtain �[1] the off-

diagonal matrix part of the momentum equation matrix is multiplied with the

inverse of the diagonal matrix part of the momentum equation matrix. Next,�[1] is interpolated to the cell faces and the previously neglected source term

contributions added. To add the source term fields, they have to be interpolated

to the faces and multiplied by the inverse of the diagonal momentum matrix.
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The pressure gradient is still excluded. In the following, the pressure-velocity

calculation procedure starts: at first the pressure equation can be constructed

based on the predicted velocity field. The solution gives a new pressure. Then,

in the velocity correction step the velocity field on the cell faces is corrected

with the new pressure and a new velocity field for the cell values is calculated

by adding the reconstructed, corrected face velocity flux to the predicted

velocity field. Finally, the relative velocity face flux is corrected by subtracting

the flux resulting from the relation between the velocity of the mass of the

mixture and the velocity of the volume of the mixture.

4.3.7 Time-stepping Procedure

In the mixture model the time-step restriction results from two aspects: the

hyperbolic character of the phase continuity equation and the operator splitting

in the pressure-velocity coupling algorithm. Due to these aspects, the time-steps

of the simulations have to be restricted to fulfil a certain Courant number

criterion. For explicit schemes a Courant number smaller than unity is

theoretically inevitable to receive stable results. Implicit schemes entail no

theoretical restriction. For the mixture model, the time-step should be restricted

to receive Courant numbers smaller than 0.5.

OpenFOAM provides two different time-stepping procedures for transient

simulations. Either a user-defined, fixed time-step is used for the temporal

discretization or adaptive time-stepping is applied. With the adaptive time-

stepping procedure, each time-step is adjusted according to a user-defined

maximum Courant number. The Courant number restriction for the mixture

model is defined as:

Co = 0.5 ∙ *��	S∑ |�� |�0 ∙ ∆�U (4.89)

Additionally, a Courant number restriction for cells containing both phases is

introduced, which is calculated only in cells, where both phases are present.
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The alpha-Courant CoF number is defined as:

This second restriction is introduced, because the first becomes zero in the two-

phase regions. In regions where only one phase is present the divergence terms

of the phase continuity equation become zero:

if F = 0
W ∙ (F  ) = 0 and W ∙ [F1(1 − F1)1−�\ =

0 (4.91)

if F = 1 W ∙  = 0 and W ∙ [F1(1 − F1)1−�\ = 0
(4.92)

Before starting the solution procedure, the current maximum of all Courant

number values in the domain is determined with equation (4.89). If the received

value is larger than the user defined maxima Co*�� or CoF,*�� the time-step is

reduced. Otherwise the time-step is increased to reach the maximum. To avoid

large jumps in time-stepping, the maximum change rate of the time-step size and

the maximum time-step size is also fixed. During runtime the size for the next

time-step is determined by:

� = *'P	oQ Co*��
Co + 1 ∙ 10−6R , Q CoF,*��

CoF + 1 ∙ 10−6Rp
4 = *'P	[*'P (�, 1.1�), 1.2]

∆�P+1 = *'P[4 ∙ ∆�P, ∆�*��\
(4.93)

∆tP is taken from the previous time-step. For the first time-step of a simulation∆t is user defined and may not exceed the global time-step maximum ∆t*��.

The factors 1.1 and 1.2 used in y are used to dampen sudden jumps between

subsequent time-steps. With that, the growth of the Courant number is ensured

to be smooth.

CoF = 0.5 ∙ *��	�∑ |�� +��−�|� 0 ∙ ∆�� for 0 < F < 1
(4.90)
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4.3.8 Integration of the Turbulence Model

To enable the modelling of turbulent flows without resolving all turbulent

scales, a turbulence model can be integrated into the mixture model framework.

For that additional transport equations are solved, which account for the effects

of turbulence which are not directly resolved. A large variety of turbulence

models is available in OpenFOAM. The linkage between the mixture model and

the turbulence model is achieved via the effective viscosity. The effective

viscosity is calculated as sum of the molecular and the turbulent viscosity, where

the molecular viscosity is a constant fluid property and the turbulent viscosity is

determined with the turbulence model.

4.4 Modelling Settings

4.4.1 Boundary Conditions for Hydraulic Applications

At the boundary patches conditions for all variables are defined. In the mixture

model the momentum and the pressure equation form a coupled set of equations.

Consequently, the boundary conditions for p and 1 are dependent on each other.

A wrong combination of boundary conditions for these fields may lead to an ill-

defined system. At boundary patches, where the pressure is defined the gradient

of the pressure will determine the flow rate. For boundaries where the velocity is

defined, the value of the pressure is part of the solution and cannot be chosen

(Jasak, 2006b).

In addition to the basic boundary conditions (as described in section 4.2.1)

derived boundary conditions can be used, which combine the basic conditions in

a way, that certain real life conditions can be simulated with more convenience.

To simplify the setup of hydraulic engineering cases, Thorenz and Strybny

(2012) implemented a set of derived boundary conditions into the framework of

OpenFOAM. In particular, boundary conditions for free surface flow

simulations with a fixed water level and an atmospheric boundary condition

were contributed. The following section describes how these boundary

conditions work.
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Boundary Conditions to Hold a Fixed Water Level

To enable a fixed water level at a boundary patch, certain conditions for the

volume fraction function, the pressure and the velocity at the boundary patch

have to be combined. An in-house implementation simplifies the usage. For the

application of the fixed water level condition the user defines a reference point

on  the  chosen  water  level  surface.  The  water  level  is  assumed to  be  normal  to

gravity on the level of the given point. Below the surface plane the volume

fraction function is assumed to be unity, above the volume fraction function is

zero.

If	xpatch > xpatch F = 1
(4.94)

If xpatch < xpatch F = 0
(4.95)

For the velocity a derived boundary condition is applied. It is defined as

Neumann boundary when the velocity vector points out of the domain. For an

inflow the velocity is obtained from the normal component of the patch face

value.

If ℎ݅݌ < 0 �V1V� �+���ℎ� = 0
(4.96)

If ℎ݅݌ > 0 1+���ℎ� = 1P
(4.97)

The pressure value at the patch faces can be calculated with two different
methods. The first method uses the user defined reference point to find out,
whether the face in consideration lies above or below the water surface. For the
cells above the water surface the density of the second phase air is used to
calculate the pressure. For cells below the reference point ����
w'P� the density of

the primary phase water is used.
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Method 1 for the boundary pressure calculation

If ]� ∙ x+���ℎ� ^ − ]� ∙ x���
w'P�^ > 0

p = ���0�(�� + =1 ∗ []� ∙ x+���ℎ^ − ]� ∙ x���
w'P�^\ − ����'('|��'wP (4.98)

If ]� ∙ x+���ℎ� ^ − ]� ∙ x���
w'P�^ < 0

p = ���0�(�� + =2 ∗ []� ∙ x+���ℎ^ − ]� ∙ x���
w'P�^\ − ����'('|��'wP (4.99)

In case of inward pointing velocity vectors (positive flux values) the pressure is

decreased by substituting the dynamic pressure. The influence can be controlled

by a user defined factor ܿ with which the stabilization factor is exponentiated.

If +ℎ' > 0 ����'('|��'wP = ]0.5 ∗ =
 ∗ q1� q2^�
(4.100)

If +ℎ' < 0 ����'('|��'wP = 0
(4.101)

The second method uses the actual density value in the adjacent cell to calculate

the pressure value for the boundary value. For inward flow the same

stabilization method is used, where the dynamic pressure is subtracted from the

hydrostatic pressure.

Method 2 for the boundary pressure calculation

p = ���0�(�� + =
 ∗ []� ∙ x+���ℎ^ − ]� ∙ x���
w'P�^\ − ����'('|��'wP
(4.102)

The first method gives a smooth pressure boundary field, which does not

completely match the available density and volume fraction field. In contrary,

the pressure boundary field calculated with the second method matches the

current volume fraction and density but can be very irregular due to variations in

the volume fraction function. From practical experience, the first method is

advantageous for complex engineering applications. A stabilization factor ofܿ = 1 is recommendable.
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Boundary Conditions for Patches Open to the Atmosphere

In two-phase flows with free surface, conditions for boundaries which are open

to the atmosphere are often necessary. At the boundary air or water should be

allowed  to  flow  out  and  in.  Furthermore,  the  pressure  is  assumed  to  be

atmospheric. To define such a boundary, the pressure should be fixed to the

atmospheric pressure and the gradient of the velocity is assumed to be zero.

In practice, it is useful to apply the fixed water level boundary conditions

to atmospheric boundaries that share one or more edges with a fixed water level

boundary. This helps to ensure that the boundary conditions match in corner

regions, where the pressure and velocity fields of one cell are defined by more

than one boundary condition.

Boundary Conditions for Fixed Walls

Impermeable walls allow only a tangential flow velocity which is equal to the

wall velocity. For non-moving walls, the tangential velocity is zero.

Additionally,  the  normal  velocity  component  at  the  wall  has  to  be  zero.  The

pressure values at the boundary are consequently defined through a zero

gradient (Neumann) condition.

In turbulent flows a turbulent boundary layer develops where the wall

normal velocity profile is logarithmically decreasing towards the wall. The

turbulent boundary layer can be divided into three zones: the outer layer, the

log-law layer and the viscous sub layer. Far away from the wall, in the so-called

outer layer the flow is inertia dominated. In the log-layer closer to the wall,

viscous and turbulent effects are both relevant. Below the log-law layer adjacent

to the fixed wall, a viscous sublayer exists where the flow is laminar. To capture

the correct velocity profile, the complete boundary layer has to be resolved

including the very thin viscous sublayer. Alternatively to resolving the boundary

layer, wall functions can be applied instead. These functions model the effects

of the turbulent boundary layer with the means of empirical formula. With the

usage of empirical laws, the wall functions enable the definition of the mean

velocity outside the viscous sublayer as well as wall conditions for shear stress
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and pressure gradient. Wall functions are based on the following assumptions

(Hill, 1998):

∂ the velocity varies only normal to the wall, a one-dimensional description

of the flow is feasible,

∂ the flow is fully developed in the flow direction; gradients are zero except

from the pressure gradient,

∂ within the boundary layer turbulence production and dissipation are

perfectly balanced,

∂ the length scale of the turbulence changes linearly with distance from the

wall and

∂ the shear stress is constant across the boundary layer.

The calculation of the shear stress for the boundary cell is dependent on the

location of the cell centre: when the cell centre lies within the laminar region

the  velocity  profile  is  linear.  The  wall  shear  stress  in  the  sublayer  region ?@ is

calculated with

?@ = 
 �4,
}4
 (4.103)

where }4
  is the distance from the cell centre to the wall and �4,
  is the wall-

parallel velocity component at the point P. For the log-layer region the velocity

profile follows a logarithmic law. The wall shear stress for the log-law layer is

obtained with

?@ =
�4,
 �
0.25√$
 :)(P( � 4+) (4.104)

where �
 is a dimensionless constant, $
  accounts for the turbulent kinetic

energy at the cell centre and :)  represents the von Karman’s constant

(:) = 0.4187). �) is an empirical constant ܧ = 9.793).
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4+ is the dimensionless distance:

4+ =
}4
 =
 �?@= (4.105)

The transition between the laminar and the turbulent flow is expected to be at4+ = 11. For smooth walls the viscous sublayer is found in the region where4+ < 5. The logarithmic velocity profile applies for regions where 30 < 4+

(Pope, 2000).

When applying standard wall functions, the wall treatment implies that the

centre of the first cell adjacent to the wall boundary lies within the logarithmic

region of the boundary layer. In OpenFOAM the logarithmic layer wall function

treatment is applied when 4∗ > 10.97. 4∗ is calculated with (Tapia, 2009)

4∗ = 4 =�
0.25√$

 (4.106)

In the cells adjacent to the wall boundary the velocity in the cell centre is

calculated with:

1
 =
1:) (P( � 4∗) − }�

(4.107)

where Δܤ models the influence of surface roughness on the wall.

To calculate the roughness Δ� a non-dimensional roughness height "�+ is

introduced:

"�+ =
="� �
0.25√$

 (4.108)

where "�  is the effective sand grain roughness height. Dependent on the non-

dimensional roughness height, the flow regime at the boundary surface can be

divided into three types: a smooth surface regime, a transitional regime and a

fully rough regime.
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Following the approach by Cebeci and Bradshaw (1977) Δ� can be calculated

for the smooth surface regime with "�+ < 2.5

}� = 0
(4.109)

for the transitional regime with 2.5 < "�+ < 2.5

}� =
1:) S"�+ − 2.25

87.75
+ �� "�+U �'P	[0.4258((P "�+ − 0.811)\

(4.110)

for the fully rough regime with "�+ > 90

}� =
1:) (P]1 + �� "�+^

(4.111)

where ��  is a roughness coefficient, which identifies the roughness shape. The

roughness also affects the calculation of the turbulent viscosity ௧ which isߤ

obtained with


� = 
 Q 4+:)(P( �4∗/�:)}�)
− 1R (4.112)

Alternatively to the standard wall functions which are only applicable for certain4+values hybrid wall functions exist. These adapt the wall treatment according

to  the  position  of  the  first  cell  centre  adjacent  to  the  wall  boundary.  The

available k-ω-SST turbulence model in OpenFOAM can be used with hybrid

wall functions.

4.4.2 Discretization Schemes

For the discretization of the equation terms, schemes have to be specified. In

OpenFOAM, each term can be discretized with a different scheme. As described

in section 4.2.1 the temporal discretization can be performed with the Euler

implicit, the Crank-Nicholson or the backward scheme. A blending between the

methods is also possible.
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The accuracy of the mixture model results is strongly dependent on the

discretization of the convection terms. With diffusive, stable schemes like the

upwind scheme, the large scale interfaces show significant smearing. High

resolution schemes give more accurate solutions.

4.4.3 Linear System Solvers

For the solution of the linear systems, resulting from the discretization

procedure, OpenFOAM offers a bundle of iterative equation solvers. Since the

solution of the large sparse matrices is very time consuming, the solution

method should be chosen carefully. To enhance convergence, pre-conditioners

and smoothers can be selected additionally. The smoother ensures the smoothing

of numerical spikes, occurring through ill-formed matrices or uneven

intermediate solutions (Behrens, 2009).

Depending on the matrix structure, different solvers are advantageous. In the

current thesis, the resulting linear equation systems are very large and sparse.

These properties are suitable for applying sophisticated iterative methods,

trimmed for fast convergence and low storage costs. It is very common to apply

the Preconditioned Conjugated Gradient (PCG) method, the BiCGStab method

or the generalized algebraic multi-grid method (GAMG) method. To find the

optimal composition of solvers for each test case is tedious and not expedient.

Hence, in the scope of this thesis the same combination of solvers, pre-

conditioners and smoothers was always used.

4.4.4 Parallel Processing

The study of Keough (2004) gives a good insight in the influencing factors for

the speed of parallel computations with OpenFOAM cases. His findings are

summarized below. The general calculation speed of computations is dependent

on various hardware and software factors. On the one hand properties of the

hardware architecture like the speed of the RAM, bandwidth, network speed or

the processing speed is relevant significantly determine the efficiency of the

calculation. On the other hand, software properties and user-controllable

software settings play a significant role for the final calculation speed for CFD
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simulations. For most CFD applications parallel processing of the simulations is

necessary to ensure feasible computation times. OpenFOAM provides generic

parallelisation for all solvers developed with the standard methods. The

multiphase solver developed can therefore be used in parallel without further

effort. The computation in parallel requires the decomposition of the simulation

case into several subsections. If the calculations of all subsection were

independent from each other, the speed-up of the case would increase linearly

with the number of subsections. However, inter-process communication is

unavoidable. Therefore, the communication overhead increases with the

growing number of subsections and thereby reduces the speed-up. Thus, the

speed-up is influenced by the number of subsections and the resulting

communication overhead. The efficiency of a calculation can be further

increased when the decomposition method is optimized. Automatic mesh

decomposition methods like scotch or metis allow  an  effective  cutting  of  the

domain, so that the load is balanced between the processor cores and the

communication cost is minimized. The associated field information is also

decomposed with the provided decomposition utility. Every decomposed section

is assigned to a processing unit. For the parallel processing message passing

interface (MPI) methods are applied.

4.4.5 Scalability of the Solver

To test the scalability of the solver and find a suitable decomposition correlation

between the number of cells and number of computing units used for the parallel

computing, speed-up tests were performed on the in-house high performance

computer. For the tests one case of the latter described lock filling simulation

(see chapter 6) was used. The mesh of the case was refined creating a mesh with

approximately 19 million cells. To get a stable starting point for the calculation,

the result from the coarser mesh was mapped to the new mesh. Then, the

simulation was run for another 15 seconds. The result received was used as

initial  condition for  the tests  performed.  Afterwards,  the test  case was run with

eight different decompositions. The approximate number of cells per core and

the number of applied resources are listed in Table 4.4.1.
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Table 4.4.1: Decomposition setups for the scalability tests

Case Name Number of Cells per Core Number of Cores

Case 1 958 608 64

Case 2 479 304 32

Case 3 239 652 24

Case 4 119 826 16

Case 5 59 913 8

Case 6 39 942 4

Case 7 29 956 2

Case 8 14 978 1

In all cases the nodes containing 20 CPUs were fully allocated. The

decomposition was performed with the scotch decomposition method. This

method is designed to minimize the boundaries between the subsections. Each

simulation was run for 500 time-steps. To ensure comparability the time-step

size was fixed during the course of the calculation. As a result, the execution

times were compared. Figure 4.4 presents the resulting execution times

dependent on the number of cells per core.

In the region between 60 000 cells per core and 960 000 cells per core the

execution time scales linearly dependent on the number of cells per core. This

means that a doubling of the resources halves the execution time. Only when

less than 60 000 cells are processed by one computation unit, the execution time

can no longer be reduced by applying more resources. To ensure a linear speed-

up, it is therefore advisable to use at least 60 000 cells per core for the

simulations with the mixture model.

To find an optimal number of cells per core, not only linear speedup but

also the total time of all allocated processing units was considered. For the

process  of  evaluation,  the  efficiency  of  the  case  with  the  smallest  product  of
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execution time and number of cores is defined as unity. The efficiency of all

further cases is the ratio of the minimum product of number of cores and the

execution time to the product of the case core number and the case execution

time. The efficiencies of the eight cases are shown in Figure 4.5.

Figure 4.5: Efficiency with various decompositions

With a number of 119 826 cells per core Case 4 was identified to be the most

efficient. The efficiency decreases rapidly when the number of cells per core is

Figure 4.4: Correlation between the number of cells per core and the resulting

execution time
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smaller than in Case 4. Larger subsections only slightly reduce the efficiency.

Thus, it can be concluded that the subsections for the parallel processing on the

in-house cluster should contain at least 60 000 cells. With fewer cells a speed-up

linear speed-up can still be achieved but the actual costs increase

disproportionate. From the results of the tests it can be concluded that the solver

is definitely applicable in parallel. An increasing usage of computational

resources leads to decreasing execution times. The solver showed similar speed-

up as other OpenFOAM solvers which were tested the same way on the same in-

house cluster. For all following tests, the decomposition was always adjusted to

assign at least 60 000 cells per core, which is the best compromise between

speed-up and use of resources.
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5 Validation and Verification
Examples

The following examples are documented to show, that the solver meets the

defined demands concerning multiscale two-phase flow. Comparisons with

analytical and experimental results demonstrate the functionality and the

accuracy of the implemented model.

5.1 Detrainment of Uniformly Distributed Bubbles in a Tank

The first  example proves the ability of  the mixture model  to model  small  scale

two-phase phenomena like bubble transport. Particularly, it simulates the

detrainment of air bubbles, which are uniformly distributed within a water filled

tank. The bubbles are not resolved by the grid, meaning that the mesh size is

larger than the bubble size. This example shows the advantages of the mixture

model compared to the VoF model, which is not able to model this situation

correctly.

5.1.1 Model Setup

For the example a rectangular tank was meshed with an orthogonally structured

grid, consisting of cube-shaped cells with an edge length of 0.01 m. A two-

dimensional section through the grid is shown in Figure 5.1. The tank was 1.5 m

high and had a base area of 0.5 m x 0.1 m. It was initially filled up to a height of
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1  m  with  an  air-water  mixture  consisting  of  95  %  water  and  5  %  air.  The  air

content in the mixture zone represents the uniformly distributed bubbles. All

bubbles were assumed to have a diameter of 0.5 mm. With the bubble diameter

being smaller than the edge length of the grid cells, the bubbles were considered

as unresolved. Above the air-water mixture the cells were initially filled with air

corresponding to a value of F = 0. The initial phase distribution in the tank is

visualized in Figure 5.1. The tank was surrounded by no-slip walls, meaning that

the mixture and the relative velocities were zero. Additionally, the pressure

gradient was defined to be zero at the walls. The top boundary was open to the

atmosphere and allowed inflow and outflow. At the atmospheric boundary the

velocity gradients were defined to be zero and the value of the pressure is set to

zero. The initial velocity in the complete tank was set to zero in all directions

and the pressure field, which was calculated in the first time-step, represented a

hydrostatic pressure distribution corresponding to the fluid mixture distribution.

Figure 5.1: Sketch of the mesh and initial water air distribution in the tank

The  properties  of  the  primary,  liquid  phase  were  defined  with  a  density  of=1 = 1000  kg/m³ and a viscosity of. <1 = 1 ∙ 10−6  m²/s The secondary, gaseous

phase had a density of =2 = 1 kg/m³ and a viscosity of  <2 = 1.3 ∙ 10−5  m²/s.

The gravitational acceleration was defined as vector parallel to the z-direction of

the tank � = (0, 0, −9.81) m/s². For this test case no turbulence model was

applied. The time-step was adaptive, allowing a maximum Courant number of

z

x

y

α=0

α=0.9
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0.45  and  a  maximum  interface  Courant  number  of  0.5.  In  the  first  test  the

influence of the numerical discretization schemes on the accuracy was studied.

For the detrainment height of 1 m the compressibility is considered as

negligible. The influence of the compressibility of the bubbles investigated in

the last test series, where the tank height was increased step-wise.

5.1.2 Analytical Results

To validate the results of the first test case, the bubble rising velocity is

calculated analytically. Furthermore, the expected water level decrease can be

determined. For the calculations the influence of the interactions of the bubbles

with the wall as well as non-drag forces are assumed to be negligible. The

bubble rising velocity is calculated with the approach for the spherical regime

developed by Zheng and Yapa (2000) as shown in section 4.1.2. Complete

detrainment is reached when bubbles have risen to the water surface and the

remaining water region has a volume fraction of ߙ = 1. The detrainment is

expected to be completed after all bubbles from the lowest point of the tank have

reached the water surface.

With the analytically determined rising velocity of 1r the detrainment

time ∆t for the mixture can be calculated with:

∆� =
ℎ�'P�(F1� (5.1)

where the final water level ℎ�'P�( is calculated as difference between the initial

water level and the water level drop:

ℎ�'P�( = ℎ0 − ∆ℎ
(5.2)

Due to the detrainment, the water level is expected to drop by:

∆ℎ = F ∙ ℎ0 (5.3)
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For the current example a rising velocity of 1� = 0.2413 m/s is calculated with

the implemented model by Zheng and Yapa (2000). Hence, after a detrainment

time of ∆t = 4.14 s the final interface height of ℎ�'P�( = ℎ0 − ∆ℎ = 0.95 m = is

reached. The initial state and the expected final state are shown in Figure 5.2.

In the initial state all cells below the water level at z = 1.0 m are filled with 95 %

water and 5 % air. All cells above the water level are solely filled with air. In the

final state all cells are either filled with water or air. No more mixture cells are

present. After the detrainment of the complete gas content the water level

surface dropped by 5 cm which corresponds to the 5 % of the height of the

initial mixture filled volume. Analytically, the ratio should increase linearly

from the initial value of 0.95 to 1.0 within a time of 4.14 s. For the comparison

with the numerical results, an additional control volume is introduced, which

includes all cells below z= 0.4 m (see Figure 5.2). During the simulation the air-

water ratio within this zone is recorded every ten time-steps. From this the rising

velocity of the gas content can be calculated and compared for different

scenarios.

5.1.3 Evaluation of the Mixture Model Simulations

When the described case was simulated with the mixture model a smooth and

continuous detrainment of the bubbles was observed. Starting from the bottom

Figure 5.2: Initial water air distribution in the tank (left) and final water air

distribution (right)

interface

drop:

5 cm

control
volume0.4 m

0.95 m

α=0. α=1.
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of the tank propagating towards the water surface, the volume fraction rose from

the initial value to the final value of ߙ = 1.  Opposed  to  the  direction  of  the

rising bubbles, the water level continuously decreased. Concurrently, the volume

fraction in the water region increased. The results of the simulations can be

compared with the analytical solution. Particularly, the detrainment time and the

water level decrease can be evaluated. In the numerical simulations, detrainment

times were measured from the starting time to the time-step until the initial air

content within the pre-defined control volume is completely released.

Afterwards, the impact of the spatial resolution, the numerical discretization

schemes, the bubble size, the gas content and the compressibility were tested

and evaluated.

Influence of the Spatial Resolution

To test the influence of the grid resolution on the detrainment behaviour, four

different meshes were created. The coarsest grid had an edge length of 0.02 m.

For the standard mesh the edge length was halved to 0.01 m. One more halving

of the edge length resulted in the fine mesh with an edge length of 0.005 m. The

final refinement up to an edge length of 0.0025 m was used for the generation of

the very fine grid. With every halving of the edge length the grid size grows

with a factor of eight. A summary of the total cell numbers is shown in Table

5.1.1. When the Courant number restriction remains the same, the maximal

time-step is halved. Therefore, the calculation effort rises by a factor of 16 with

every halving of the edge length. This immense growth of computational effort

has to be considered, when the optimal grid resolution is chosen. For real-world

engineering application a good compromise between accuracy and calculation

effort has to be found.
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Table 5.1.1: Variants to test the influence of the spatial resolution in the tank

detrainment tests

Name Edge Length

[m]

Total Cell Number

[-]

coarse 0.02 9,375

standard 0.01 75,000

fine 0.005 600,000

very fine 0.0025 4,800,000

For the grid resolution test cases, the setup described in section 5.2.1 was used.

The discretization of the phase transport terms were performed with the van

Leer  scheme.  The  equivalent  bubble  diameter  was  set  to  0.5  mm.  With  the

application of the approach by Zheng and Yapa (2000) a rising velocity of

0.2413 m/s is expected. All simulations were performed in parallel. For the

comparison of the results the air-water ratio within a pre-defined control volume

was recorded. The data of the air content within the control volume was probed

every ten time-steps with an accuracy of 0.0001.

Due to the constant air-water ratio and the constant bubble rising velocity,

the detrainment is expected to be linear up to the point, where the air content is

completely detrained. However, the linear detrainment cannot be achieved

completely in the numerical simulations, as numerical errors are inevitable. The

results with the different mesh resolutions show that a refinement of the mesh

improves the detrainment behaviour compared to the analytical solution. During

the detrainment the theoretically sharp discontinuity in the volume fraction field

between the water and the air-water zone is smeared over several cells. This

effect is referred to as numerical diffusion, which results from discretisation

errors of the convective and the temporal terms and from errors resulting from

the mesh quality (Jasak, 1996). As the same setup is used for all cases, the

difference of the numerical diffusion is only dependent on the mesh resolution.

The results show that the influence of the numerical diffusion decreases with
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increasing mesh refinement. Thus, the lowest error is received with the finest

mesh. The results of the simulations are presented in the two diagrams of Figure

5.3:  The  left  diagram shows  the  air-water  ratio  within  the  control  volume over

time. The right diagram shows the accumulated deviation from the analytical

solution during the detrainment progress. In both diagrams only the last part of

the complete simulation process is plotted where most deviation is visible.

Figure 5.3: Detrainment behaviour with various mesh resolutions

Looking at the first diagram of Figure 5.3 (left), the numerical results of all

cases show good agreement with the analytical solution during the first 1.4

seconds of the detrainment process. During this period the exact value of the

analytical calculation is met, no difference between the different mesh

resolutions is visible. Only towards the end of the detrainment process

deviations from the analytical solution become visible. The deviations, which

correspond to the smearing of the propagating front, decrease with increasing

grid resolution. The recorded data shown in the second diagram of Figure 5.3

indicate that the deviation from the analytical solution increases exponentially

towards the end of the detrainment process. For the coarsest mesh it takes

approximately 54 % longer until the 99.99 % of the initial air content is released

from the control volume. The medium mesh takes 33 % more time than

analytically calculated. With the fine mesh, the detrainment process is increased
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by approximately 15 %. In the very fine mesh resolution a water content of

99.99 % is reached after a delay of 7 %. As good compromise between

computational effort and numerical error the medium mesh was chosen for all

further tests.

Influence of the Numerical Discretization Schemes

To test the influence of the numerical discretization schemes on the accuracy of

the results, the tank detrainment simulation was performed with six different

discretization settings. All bubbles were assumed to have an equivalent diameter

of  0.5  mm.  In  this  example,  the  detrainment  time  was  only  dependent  on  the

propagation of the bubbles towards the water surface. Analytically a sharp

horizontal front is expected to rise in the mixture, which divides the zone of

clear water from the mixture. As all bubbles have the same diameter, a

continuous relative velocity equal to the bubble rising velocity is expected to

develop in the complete mixture zone. The horizontal front is expected to move

with the bubble rising velocity. Due to numerical diffusion, the propagating front

does not remain a sharp line. Instead it smears in vertical direction orthogonally

to the transport. When using the same mesh and the same time discretisation, the

variation of the smearing is dependent on the discretization scheme used for the

phase fraction equation. In particular, the discretisation of the divergence term

describing the convection of α due to the relative velocity ௥ is responsible for܃

the numerical diffusion. For this test, the following schemes for the

discretization of the mentioned divergence term were compared: upwind,

Minmod,  MUSCL,  van  Albada,  van  Leer  and  Super  Bee.  A  visual  analysis  of

intermediate simulation results after 3.6 s (see Figure 5.4) shows that the upwind

discretization causes the most diffusion at the propagating front.

The  schemes  Minmod,  van  Albada,  van  Leer  and  MUSCL  show  similar

diffusion level at the detrainment front. The sharpest interface was received,

when the Super Bee scheme was applied for the discretization of the divergence

terms in the volume fraction equation (cf. equation (4.5)).
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Due to the perfectly structured grid without complex geometries and the Courant

number limitation the simulation ran stable and fast with all tested schemes in

the current test case series.

upwind Minmod van Albada van Leer MUSCL Super Bee

alpha [-]

Figure 5.4: Simulation results with different discretization schemes

The influence of the numerical diffusion for the different schemes can be

illustrated by measuring the air-water content within a defined volume over

time. Figure 5.5 shows the recorded results for the six different discretisation

schemes  for  the  phase  fraction  transport.  In  analogy  to  the  evaluation  of  the

mesh resolution tests,  two diagrams are presented.  The first  diagram shows the

development of the air-water ratio within the control volume over time. The

second diagram presents the accumulated derivation between the numerical and

the analytical solution.

Both diagrams clearly indicate that the upwind scheme generates results

with the largest deviation from the analytical solution. This is reducible to the

large numerical diffusion, which widens the propagation front to both sides. Due

to the smearing, it takes longer until the complete air content is transported to

the surface. All further schemes showed very similar results. Up to an air-water

ratio of 0.996 within the control volume no deviation from the analytical

solution is apparent.

Looking at the quantitative results the Super Bee scheme shows slightly

faster detrainment than all other schemes indicating the lowest numerical
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diffusion error. Sorting all further schemes from shortest to longest detrainment

times, the following list is achieved: van Leer, van Albada, Minmod, upwind.

Figure 5.5: Detrainment behaviour with various discretization schemes

As the Super Bee scheme is known for artificially sharpening smooth gradients

(Leonard, 1991), the van Leer scheme is chosen for the discretisation of the

volume fraction transport in all following tests.

Influence of the Gas Content

To show the influence of the gas content, the tank was filled with four different

gas contents. In particular the mixture zone was initialized with ,values of: 0.9-ߙ

0.8, 0.7 and 0.6. As in all previous tests an equivalent bubble diameter of 0.5

mm was chosen. All further simulation settings were also preserved. For the

evaluation the gas content within a control volume was recorded over time.

Analogue to the previous tests, the control volume included all cells of the tank

up to a height of 0.4 m. The following diagram (shown in Figure 5.6) compares

the results of the cases with different gas contents. To allow a direct comparison

of the different cases, the progress of the detrainment process is shown. For that

the air-water ratio in the tank was normalized. The results of the simulations

indicate that the detrainment times depend on the gas content in the mixture. In
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the approach used the relative velocity is calculated as product of the gas content

and the single bubble rising velocity. As a consequence the detrainment process

is  decelerated  with  growing  air  content  inside  the  tank.  At  the  same  time,  the

velocity of the surrounding fluid increases with growing air content.

Figure 5.6: Detrainment behaviour with various gas contents

Physically, this can be justified with the increasing interactions between the

bubbles when the gas content grows. Simultaneously, the rising air content

entails an increased momentum transfer between the two phases. This

correlation is commonly referred to as hindrance effect, which occurs in gas-

liquid mixtures with gas contents lower than a critical gas content value. With

gas contents higher than the critical value, the relative velocity increases with

the growing gas content. The increasing rising velocity can be explained with

three effects: coalescence, bubble induced turbulence and the rising of bubbles

within the wakes of preceding bubbles (Simonnet et al., 2007). For a bubble

column, Simonnet et al. determined a critical gas content of 15 %. In all further

test cases entrained gas contents were lower than 15 %, therefore the

implemented correlation between gas content and relative velocity is assumed to

be acceptable.
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Influence of the Bubble Size

To  show  the  influence  of  the  bubble  size  on  the  detrainment  times,  a  set  of

simulations  with  eight  different  bubble  sizes  was  performed.  For  the  tests,  the

standard case was used. Since the calculation formula for the rising velocity is

non-linear and dependent on the bubble size regime, the bubble diameter has

non-linear influence on the detrainment times. Figure 5.7 shows the correlation

between the bubble diameter and the terminal velocity of a single bubble. The

given  diagram  compares  the  results  from  the  simulations  (red  marks  in  the

diagram) with data from literature described in section 2.1.5 .

Figure 5.7: Detrainment behaviour with various bubble sizes

This test case serves as verification of the code. The analysis of the results

illustrates that the approach by Zheng and Yapa (2000) was implemented

correctly and produces the expected results. Up to bubble diameters of 2 mm the

terminal velocity of a single bubble grows with growing bubble size. With

diameters between 2 mm and 20 mm the terminal velocity remains almost

constant at a value of approximately 0.2 m/s. For bubbles larger than 20 mm in

diameter the size regains influence on the resulting rising velocity. The approach
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chosen also shows good agreement with the experimental values of Haberman

and Morton (1953) and Clift et al. (1987) for diameters between 0.5 mm and 15

mm.  This  range  of  diameters  is  assumed to  be  suitable  for  the  investigation  of

the cases considered within this study.

Influence of the Compressibility of the Bubbles on the Detrainment Process

In the tank used in all previous tests the compressibility of the bubbles is

negligible.  Due  to  the  small  water  depth  in  the  tank,  the  water  pressure  at  the

lowest point is not significantly changing the bubble volume. To investigate the

influence of the pseudo-compressibility of the bubbles, the height of the tank

was increased. The following seven different heights were investigated:

Table 5.1.2: Cases for testing the compressibility influence

Name Tank Height

[m]

Initial Mixture Height

[m]

Case 1 1.5 1

Case 2 5.5 5

Case 3 10.5 10

Case 4 20.5 20

Case 5 30.5 30

Case 6 40.5 40

Case 7 50.5 50

In all cases the tank was initialized with an air-water mixture of 95 % up to 0.5

m below the top boundary. Each test case was performed with and without

pseudo-compressibility of the bubbles. For comparison the air-water content

within a control volume was recorded over time. The control volume included

all cells within the expected final water filled region. All simulations were

performed with the same settings and their meshes were created with the same

edge length. For the evaluation the time until 99 % of the control volume is
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filled with water was recorded. Figure 5.8 shows the differences between the

detrainment  times  for  the  cases  simulated  with  and  without  the  pseudo-

compressibility. The results clearly demonstrate the increasing influence of the

compressibility with increasing water depth. No relevant difference is visible for

water  depths  of  1  m and  5  m.  With  a  water  depth  of  10  m the  simulation  with

pseudo-compressibility increases the detrainment time by approximately 17 %.

Doubling the height of the detrainment zone, the difference between the two

cases  grows  to  approximately  20  %.  Further  expansion  of  the  height  results  in

significant enlargement of the difference, indicating that the influence of the

compressibility gets relevant for larger cases.

Figure 5.8: Difference between the detrainment times with and without the

pseudo-compressibility

5.1.4 Conclusion from the Test Variations

The simulations of this study showed that the implemented mixture model is

able to model the detrainment of gas bubbles within a liquid, which are not

directly resolved by the computational grid. The presence of the gaseous phase

within a cell induces a velocity in the mixture which acts in opposite direction to

the gravity. Additionally, momentum is induced. Thus, the main effects of rising
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bubbles on the flow can be modelled in a simplified form. As a result the gas

content is detrained from the mixture. The magnitude of the velocity field in the

mixture-filled cell is dependent on the single bubble rising velocity, the gas

content and the prevailing velocity from the existent flow field. The single

bubble rising velocity is either defined as a fixed value or calculated dependent

on the bubble diameter with an approach by Zheng and Yapa (2000).

The accuracy of the results in the detrainment tests is essentially

dependent on the spatial discretization and the chosen discretization schemes.

With decreasing cell size the accuracy is increased. As the computational effort

rises  with  a  factor  of  16  when  halving  the  edge  length  of  the  mesh,  a

compromise between an appropriate edge length and the resulting accuracy has

to be found for each case. In addition to choosing an appropriate mesh size the

discretisation scheme for the volume fraction transport is most relevant for an

accurate modelling of the detrainment process. The tests of this study showed

that with higher order TVD schemes the convective transport can be modelled

appropriately. Concurrently numerical diffusion is reduced.

5.2 Submerged Free Surface Flow over a Sharp Crested Weir

The second example demonstrates that the implemented mixture model is able

to capture large scale multiphase phenomena as they occur in free surface flows.

For the demonstration the flow over a sharp crested weir is simulated. Various

water level discharge combinations were simulated with the implemented

mixture model. To avoid the influence of air-water intermixing processes, only

submerged flow situations were considered. The results were compared with

measurement results from a physical scale model to evaluate the functionality

and the accuracy of the model for the simulation of free surface flow.

5.2.1 Model Setup

The model setup consists of a sharp-crested weir structure installed within a 17

m long flume. The installed weir has a height of 0.301 m a width of 0.02 m and

it blocks the flume width of 0.80 m. It is positioned at a distance of 10.13 m to

the defined zero position of the local coordinate system.
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The  weir  crest  has  an  angle  of  45  degrees.  Figure  5.9  shows  a  sketch  of  the

model setup.

Figure 5.9: Sketch of the model setup

In the physical model the discharge was measured at the upstream inlet before

entering the flume. The downstream end of the flume is equipped with a flap to

fix the water level. Along the middle axis of the flume bottom measuring pots

are connected. With the means of ultrasonic probes the water levels inside the

measuring pots can be recorded. For each test case of this study, the water levels

were recorded over five minutes. The time-averaged values of water level

probes serve as comparison variable for the evaluation of the mixture model

simulations. The locations of the probing points are listed in Table 5.2.1.

The numerical model replicates the physical model setup. The model inlet

corresponds  to  the  zero  position  of  the  flume  in  the  physical  model  and  is

located at a distance of 1.36 m to the first water level probing point. The outlet

in the numerical model is placed at the position of the last water level probe. A

three-dimensional geometry of the weir structure was used to create the

hexahedral-dominant mesh. At the inlet the discharge was defined according to

the physical model setup. The water level at the inlet boundary can adapt freely.

At the outlet boundary the water level was fixed. Pressure and velocity adjust to

the given level. The bottom and the structure surface were defined as walls with

a roughness height of 0.0001 m. The side walls of the flume were assumed to be

frictionless. The top was defined as atmospheric boundary. For the simulation

the k-omega SST turbulence model was applied. To achieve a steady result, the

simulation was run until no more significant variation of flow field was

apparent. Probing points for the determination of the water levels were inserted
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at  the  locations  identical  to  the  probing  locations  of  the  physical  model  (cf.

Table 5.2.1). At these points, the pressure was measured every ten time-steps.

Table 5.2.1: Probing locations for the water level measurements

Point number Distance zero position in [m]

1 1.36

2 2.72

3 4.06

4 5.41

5 6.77

6 8.12

7 9.47

8 10.81

9 12.17

10 13.51

11 14.86

5.2.2 Results from the Physical Model

With  the  physical  model,  installed  within  a  flume  of  the  BAW,  seven  water

level-discharge combinations were measured. The boundary conditions of the

experiments are shown in Table 5.2.2.
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Table 5.2.2: Boundary conditions for the physical model cases

Name Discharge in

[m³/s]

Outlet water level in [m]

Case 1 0.04980 0.302

Case 2 0.04989 0.323

Case 3 0.05016 0.344

Case 4 0.05017 0.364

Case 5 0.05008 0.387

Case 6 0.05011 0.407

Case 7 0.05003 0.417

To avoid influence of air-water interactions, only submerged flow situations

were considered. From the experiments water levels at ten measuring points in

the middle of the flume are received. The resulting water levels at the measuring

locations are shown in comparison to the numerical model results (cf. Figure

5.10). The physical model tests build the foundation of the mixture model

evaluation.

5.2.3 Evaluation of the Mixture Model Simulations

For the evaluation the water surface curves of the physical model tests are

compared with the results of the mixture model simulations. The simulations

were run until a quasi-steady flow field was received. Then, the water level at

the probing points was recorded and averaged over a period 300 seconds. The

measuring locations in the numerical model corresponded to the connection

points of the measuring pots in the physical model.

Generally, the simulations of the flume showed satisfactory performance.

The parallel calculations run smoothly without showing large numerical

instabilities. The received water level curves show satisfactory agreement with

the physical model results, proving that the free surface can be modelled
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appropriately. Remaining deviations arise from model inaccuracies of both

models. Errors or inaccuracies of the measurement methods applied for the

physical model results can contribute to the deviations. Furthermore, small

discrepancies between the geometrical setup of both models are inevitable and

cause differences in the results. In the numerical simulations inaccuracies can

result from various sources like convergence or discretisation errors. Due to the

iterative nature of the solvers used for solving the linear equation system

convergence errors cannot completely be avoided. However, by ensuring that

suitable tolerances are met the convergence error is reduced. The discretisation

errors can be reduced by improving spatial resolution and finding suitable

discretisation schemes. To find a suitable mesh resolution for the simulations of

the submerged free surface flow over the sharp-crested weir, the influence of the

mesh on the results was tested for one case. Starting with a basis edge length of

0.05 m in the complete model, the mesh was refined step-wise until the change

in the solution became negligible. Particularly the regions where strong

gradients in the flow field were visible were refined. With decreasing cell sizes,

the deviation between the numerical and the physical model water surface curve

reduced. However, after the second halving of the basis edge length in the

nearfield of the weir, the difference in the water level results gets very small.

Thus, the growing calculation effort increases disproportionately compared to

the gain in accuracy. As consequence, the final mesh used for all following

simulations consists of approximately 5 million cells with a basis edge length of

0.005 m. In the water filled region, the edge length was quartered to 0.00625 m.

To get a suitable approximation of the weir structure, the edge length was

decreased to 0.003125 m in proximity to the structure surface.

The discretisation of the terms in the equation system was performed with

a combination of  schemes,  which is  well-tried and in-house commonly applied

for the simulation of free surface flows at the BAW. Of particular significance

for the free surface is the choice of the discretisation schemes in the volume

fraction equation. In this study the van Leer scheme was applied. After reaching

a  steady  state,  the  simulation  results  show  good  agreement  with  the

measurements from the physical model. A comparison of the results is presented
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in Figure 5.10. For better clarity, the results are depicted in two diagrams.

Physical model results are represented with black dashed lines, numerical model

results are marked with solid, coloured lines. The weir structure is positioned at

a model length of 10.13 m.

Figure 5.10: Comparison of the physical model tests with the simulation results

Considering the values of the first six upstream water probes, the difference

between the time-averaged values of the physical model and the simulation is
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less than 0.0017 m for case 1 to case 6. (Only case 7 showed larger deviations of

0.0035 m). In close proximity to the weir structure, higher deviations are

observed. Upstream of the weir the physical model values are slightly higher

than the numerical model results. The first probe upstream the weir structure

shows a maximum difference of 0.0021 m. The first measuring point of the

downstream  side  of  the  weir  shows  the  largest  deviations.  In  the  cases  1,  2,  3

and 4 the water levels at this point are noticeable lower in the numerical model

than in the physical models. A maximum difference of 0.0118 m was recorded.

In these cases significant waves were observed behind the weir. The height of

the waves decreases with increasing downstream water level. The occurring

deviation between the models can be assumed to result from the different

measuring systems. Whereas the physical model works with communicating

vessels, the numerical model directly calculates the water level from the

hydrostatic pressure. The measuring system of the physical model is assumed to

be more inert than the direct measuring in the numerical model. Hence, fast

wavy motions of the flow are differently recorded in the two systems. All other

downstream measuring positions correspond well with maximum deviations of

0.0045 m.

In an additional simulation, case 4 was simulated with the standard

volume of fluid solver of the OpenFOAM library. The received results from the

interFoam solver were compared with the mixture model results. As expected,

the results are very similar only showing negligible differences of less than

0.0011 m. This example demonstrates that both models depict the free surface

flow with comparable accuracy.

5.2.4 Conclusion from the Test Variations

The modelling of the flow over a sharp-crested weir demonstrated that the

mixture model is able to capture free surface flows. The comparison of the water

surface curves of the mixture model simulations showed high concordance with

measurements from a physical model. Small deviations are expected to result

from errors of both models. The numerical model errors were minimized by

increasing the mesh resolution and choosing appropriate discretisation schemes.
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Inaccuracies in the physical model values can result from the measuring

technique, which is not able to capture the exact water level height when the

flow is very turbulent and wavy. Despite the small, inevitable differences the

received results can be regarded as very satisfactory.

The subsequent comparison of the mixture model to a simulation with the

standard VoF solver of the OpenFOAM library also showed convincing results.

The received surface curves were almost congruent. The occurring differences

were negligible.
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6 Application to Navigation Lock
Systems

The following test cases show how the developed model can be applied to

investigate air transport and detrainment processes within navigation lock

systems. The first case presents a case study with relevance for the design and

optimization of navigation locks. In the second case, the comparison to physical

model tests is paramount.

6.1 Air Transport and Detrainment in a Through-The-Gate Filling System

It  is  the  aim of  this  test  case  to  show an  example  application  of  the  developed

solver to a real-world engineering structure. In this test case the filling of a

typical through-the-gate filling system is modelled, where strong air-water

intermixing processes can be observed during the filling. The dimensions of the

studied test case were adopted from the existent lock of Bolzum. The prototype

structure connects the Mittelland Canal with the side canal of Hildesheim. It was

built from 2007 to 2012 and initially operated in 2012. A schematic sketch of the

lock filling system is shown in Figure 6.1. The lock has a usable length of

139 m, a width of 12.5 m and a lift height of 8.6 m. The upstream gate is

constructed as segment gate. For filling, this segment gate is slightly turned to

release the upstream water into the lock chamber. At the gate opening a free

falling jet evolves. The falling jet plunges into a stilling zone where most energy
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is  supposed  to  be  dissipated.  A  grid  structured  wall  at  the  end  of  the  stilling

basin is expected to homogenize the flow towards the lock chamber. Through

the plunging of the jet a lot of air is entrained into the lock chamber water during

the filling process. Observations showed that the air degassing takes place in the

front part of the lock, within the region where the ships are lying during the

lockage. During the air detrainment large surface velocities were noticed in the

air detrainment area. Until now it is unknown whether the air detrainment has an

effect on the ships lying in the chamber. In the test case the effects of the air

transport and detrainment on the flow field during the filling process are

investigated. A large variety of simulations are performed with the new solver to

show the correlations between air entrainment, the flow field and the forces

acting on a ship in the lock. In the test series the water level in the chamber and

the inflow discharge are kept constant.

Plan view Longitudinal section

Figure 6.1: Sketch of the front part of the lock of Bolzum

With this setup the necessity for moving objects in the simulation is avoided and

the effect of the air transport processes is evaluated independent from the

complex transient processes resulting from the inflow rate gradients. A rough

comparison of the resulting surface velocities in the simulations with video

recordings from the Bolzum lock allows initial assessment of the air entrainment

range. This leads to first conclusions about the influence of the air transport

processes. Finally, the applicability of through-the-gate systems for larger lift
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heights is analysed. As before, the focus is put on the evaluation of the influence

of the air transport and detrainment processes.

6.1.1 Forces on a Ship in a Through-the-Gate Filling System

When a navigation lock is filled through the upstream gate, the resulting wave

and flow phenomena generate longitudinal and transversal forces on the ship

which are passed onto the mooring lines (PIANC InCom Working Group 155,

2015). The main hydrostatic forces on the ship result from the sloping water

level along the hull in the lock chamber.

At the beginning of the filling process the first rise of the inflow rate

provokes a slope pointing towards the downstream chamber wall. Hence, the

water  level  on  the  upstream  side  of  the  chamber  is  higher  than  on  the

downstream side and the ship is forced in downstream direction. The slope can

be considered as a shallow water wave, which propagates through the chamber.

At  the  gates  and  partly  at  the  hull  the  translatory  waves  in  the  chamber  are

reflected. Through the reflection, the longitudinal forces can change their

direction during the filling process. Furthermore, the oscillating surge can be

superposed and thereby decreased by the steadily growing inflow from the

filling through the gate.

In addition to the hydrostatic forces due to the water level sloping, the

ship is exposed to hydrodynamic forces. Those can result e.g. from the dynamic

pressure  of  a  jet  impinging  on  the  ship.  Another  effect  that  influences  the  ship

forces during the filling is the reduction of the flow velocity from the upstream

towards the downstream end of the lock chamber (Thorenz et  al., 2017). This

reduction causes a slope towards the upstream of the lock chamber.

In most through-the-gate filling systems the hydrostatic longitudinal force is the

main component of the total forces on the ship (PIANC InCom Working Group

155, 2015). For the dimensioning the direction of the forces is irrelevant; only

the largest absolute force values on the ship are decisive. The temporal

occurrence of the largest forces in through-the-gate filling systems without air

entrainment is dependent on the geometry, the gate size, the gate opening and

the resulting inflow gradients.
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6.1.2 Forces in the System under Investigation

In this study, the dynamic filling process is not completely reproduced. To avoid

movements of the ship during the simulation, a state with constant water level

and fixed ship hull is considered. Therefore, forces resulting from the inflow rate

gradient at the beginning of the filling process as well as the oscillation of the

translatory waves are not considered in this study.

To create a quasi-steady state the water level is kept constant by inserting

vertical inflow into the system at the upstream side of the wall and releasing the

same amount of water through the bottom. The velocity in the chamber

decreases with growing distance to the inlet. As a consequence the water level

on the upstream side of the lock chamber is lower than on the downstream side.

Neglecting the small velocities produced by the outflowing water, a force on the

ship pointing towards the upstream wall is expected to result, when no air is

influencing the system.

In the prototype system of Bolzum a significant amount of air is

introduced into the lock system during the process of filling through the segment

gate. Observations of the filling process lead to the assumption that the

characteristic of the flow during the filling is significantly influenced through

the air-water intermixing. It is the aim of this study to analyse the effect of the

presence of bubbles inside the system. The results of the study are analysed in

the following section.

6.1.3 Model Setup

Model Geometry

A three-dimensional geometry of the lock with prototype dimensions was used

for  the  mesh  generation.  As  the  geometry  is  axisymmetric  to  the  longitudinal

axis, the model only reproduces one half of the lock. Figure 17 shows the

geometry  of  the  lock  with  the  used  symmetry  axis.  The  model  starts  at  the

upstream lock chamber wall and ends with the downstream mitre gates; the

upstream segment gate is not reproduced in the model. To evaluate the effect of
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the bubble degassing on the ship forces, an inland vessel of 135 m length and

11 m width is positioned within the lock.

Figure 6.2: Three-dimensional geometry of the Bolzum lock with vessel

The bow of the vessel lies at the foremost position allowed during the lock

operation. It is modelled as rigid solid body, which cannot move during the

simulation. For the comparison of the water velocities at the surface additional

cases without vessel geometry were created.

Mesh

To prove the suitability of the mesh resolution, a pre-study was performed

where one case was simulated with four different mesh resolutions. In the mesh

comparison study, the edge length in the front part of the lock was varied. The

first case (in the following referred to as standard mesh) used the resolution as

described below. For the additional three test cases the resolution in the water

filled  region  was  once  coarsened  by  doubling  the  edge  length,  and  refined  by

halving the edge length once, twice and three times. Comparing the resulting

flow patterns in the velocity field, the pressure distribution as well as the air

content transportation and degassing, the standard case and the finer mesh cases

were very similar. The coarser mesh case showed deviations especially visible in

the velocity distribution. The comparison of the resulting ship forces from the

mesh-resolution pre-study showed small deviations between the standard and

the finest mesh. Comparing the resulting flow patterns in the velocity field, the

pressure distribution as well as the air content transportation and degassing, the

standard case and the finer mesh cases were very similar. The coarser mesh case

symmetry axis (red)

energy conversion
zone with concrete
grid wall

lock chamber with ship hull
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downstream
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showed deviations especially visible in the velocity distribution. The comparison

of the resulting ship forces from the mesh-resolution pre-study showed small

deviations between the standard and the finest mesh. Therefore the standard

resolution was considered as best compromise between accuracy and

consequential time-step size.

Figure 6.3: Illustration of the mesh resolution in the front part of the lock on a

vertical section plane

The standard hexahedral-dominant mesh consists of approximately two million

cells with a basis edge length of 0.5 m. The water filled region in the front part

of the lock the space was discretized with cubic cells having an edge length of

0.25 m. In proximity to the structure cells are refined three times up to edge

lengths of approximately 0.0625 m. Especially in the region around the inlet

boundary, very fine discretisation was necessary, to allow an accurate definition

of the inlet width. Figure 6.3 illustrates the different discretisation zones in the

front part of the mesh. All meshes were created with the OpenFOAM meshing

tool snappyHexMesh.

Boundary Conditions

The simulations are intended to enable statements about the influence of the

entrained air on the ship forces during filling. With the new model, the air

transport and degassing processes can be modelled. However, the air

entrainment process through the plunging jet cannot be captured suitably. For

this purpose a direct numerical simulation of the jet and the entrainment process

would be necessary, which is not feasible with reasonable resources. Instead, the

jet is omitted and replaced by an inlet boundary condition.
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In this study, only steady states are considered, meaning that the water in

the  chamber  is  held  on  one  level.  Therefore,  the  bottom  patch  of  the  lock  is

defined as an outlet boundary. The flow rate out of the bottom patch is set equal

to the inflow rate at the inlet. The flow rate out of the bottom is small compared

to the large release area of the chamber bottom. Therefore, the resulting

velocities in the lock chamber towards the bottom can be neglected.

Figure 6.4: Sketch of the boundary conditions for the lock filling simulations

The side wall of the lock and the mitre gate are modelled as wall boundaries.

The patch at the longitudinal axis is defined as symmetry plane. The top patch is

modelled as open boundary, defining an atmospheric pressure condition. For

turbulence modelling, a k-omega SST RANS model is applied.

Model Variants

In this study two water levels in the lock were investigated. The setup conditions

of the two cases are summarized in Table 6.1.1. An illustration of the two cases

can  be  found  in  Figure  6.5.  The  first  water  level  represents  a  situation  at  the

beginning of the filling process, when the inflow starts rising steadily and the

water cushion below the ship is still very small. In the modelled case, the water

level in the lock chamber is 4.5 m. With a draught of 2.80 m the water cushion

below the ship bottom has a height of 1.70 m. The second water level represents

a  situation  towards  the  end  of  the  filling  process.  At  this  stage  of  the  filling

process the inflow rate should already be very high to allow a fast filling. At the

same time a free falling jet in the front part of the lock is still evolving. The
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remaining falling height for the jet is 6 m. The water level in the chamber is 6.6

m  and  the  water  cushion  below  the  ship  has  a  height  of  3.20  m.  For  the

simulations the Bolzum lock geometry (as described above) with a total lift

height of 8.6 m was used.

To test the influence of the entrained air content all cases were simulated

with four different inlet conditions. The following four variants of the volume

fraction at the inlet boundary were defined with: 1.0, 0.9, 0.8 and 0.7. The test

matrix was further extended with variants of the discharge to evaluate the

influence of the discharge on the ship forces. The test cases were simulated with

an inflow of 10 m³/s, 20 m³/s and 30 m³/s. The discharges were applied to the

half model.

Table 6.1.1: Case setup conditions

Case name Remaining lift
height

[m]

Water level in
the chamber

[m]

Total lift height

[m]

Case 1 8.1 4.5 8.6

Case 2 6 6.6 8.6

Case 1: At  the beginning of the filling

process

Case 2: Towards the end of the

filling process

Figure 6.5: Illustration of the test cases

To test the influence of the entrained air content all cases were simulated with

four different inlet conditions. The following four variants of the volume

fraction at the inlet boundary were defined with: 1.0, 0.9, 0.8 and 0.7. The test

matrix was further extended with variants of the discharge to evaluate the

influence of the discharge on the ship forces. The test cases were simulated with

an inflow of 10 m³/s, 20 m³/s and 30 m³/s. The discharges were applied to the
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half model. From the variations of the flow rate and the inlet air-water

distribution 16 simulations result for each setup.

6.1.4 Analysis and Evaluation of the Numerical Model Results

All simulations were performed in parallel on 20 processor cores. After a total

simulation time of approximately 800 s changes in the flow field were small so

that the results can be considered as quasi-steady. Thus, this state is considered

as steady state result for the visual analysis. For the quantitative analysis of the

ship forces the simulations were performed for 1500 s and the values were

averaged over the last 500 s. The analysis of the results showed that the presence

of air within the filling system has major impact on the flow characteristic. As a

consequence the ship forces are also affected when air is intermixed into the

flow.

Analysis of the Flow Characteristics

The numerical simulations with the new solver allow a detailed insight into the

flow characteristic during the filling of the system under investigation.

Visualisations of the velocity field and the volume fraction distribution for a

water inflow rate of 20 m³/s are shown in 6 and Figure 6.7. The visualisation of

all further results of the simulations can be found in the appendix A.6.

In the model a defined air-water mixture inflow rate is released via the

inlet boundary area into the filling system. Due to orientation of the

impingement area perpendicular to the water surface the inflow is initially

transported towards the lock chamber bottom. The incoming jet is deflected at

the bottom and the first row of baffle blocks. Subsequently, a vortex forms in the

front  part  of  the  stilling  area.  The  vortex  formation  dissipates  a  part  of  the

kinetic energy of the flow. The remaining kinetic energy leads the flow through

gaps between the remaining baffle block towards the concrete grid wall. Without

air entrainment homogenized flow is supposed to be released through the grid

wall pointing in downstream direction.

In the simulations of Case 1 (state at the beginning of the filling process)

it is visible that without air entrainment at the inlet the water is released through
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the gaps in the grid wall at two different heights, forming two jets towards the

ship. At the ship bow the upper jet is deflected towards the chamber bottom.

With growing inflow rate the velocity of the jets and the velocity of the flow

below  the  ship  bottom  increase.  When  the  flow  contains  air,  the  density

difference between air and water applies an upward pointing force component to

the flow. As a consequence, the upper jet which is released at the bottom of the

grid wall gets stronger; higher velocities are visible over a larger width. The

lower jet is deflected towards the water surface. Additionally, the water level on

the upstream side rises with growing air volume and the velocity below the ship

hull increases. Thus, higher air content leads to growing water level slopes

towards the downstream end of the lock chamber. From the visualisations of the

velocity field it is visible that the velocity grows with increasing air content even

if the inlet velocity and the water inflow rates are constant. The illustrations of

the air-water distribution show that larger inflow rates lead to longer transport of

the  entrained  air  bubbles  with  the  flow.  For  the  water  inflow  rate  of  10  m³/s

hardly any air reaches the hull. With an inflow rate of 30 m³/s a large amount of

bubbles surrounds the ship bow and accumulate below the hull.

In the simulations of Case 2, where the water level in the chamber is

higher, the inflow can spread over a larger area. As a result, the velocities in the

vortices and the jets are smaller than for lower water levels. Otherwise, the

simulations with the higher water level show the same tendencies: with larger

inflow rates the velocities in the system increase. Without air entrainment at the

inlet,  the  flow  distributes  over  the  complete  height  of  the  water  body  and  the

velocities at the ship hull are small. The entrainment of air at the inlet leads to

growing velocities in the stilling area and to stronger jets in the upper region

behind the grid wall. Also the velocities below the ship hull rise, when more air

is present within the water body.

The screenshots in the left column of Figure 6.6 and Figure 6.7 show the

water-air distribution. The screenshots on the right in the named figures show

the velocity distribution in the front part of the lock projected on a vertical slice

parallel to the symmetry axis. The slice was located at a distance of 1.35 m from

the middle axis.
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Case 1 - Q = 20 m³/s
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Figure 6.6: Results from the simulations of Case 1 with an inflow discharge of 20

m³/s
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Case 2 – Q = 20 m³/s
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Figure 6.7: Results from the simulations of Case 2 with an inflow discharge of 20

m³/s
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Analysis of the Ship Forces

Quantitatively, the influence of the air transport and degassing processes can be

captured by measuring the forces on the ship. As the longitudinal forces are

much larger than the transversal forces on the ship, only the longitudinal forces

were  considered  in  this  study.  The  quantitative  results  of  the  ship  forces  in  the

numerical simulations are illustrated in a diagram shown in Figure 6.8. The

number values can be found in the appendix A.6.

When evaluating the absolute values of the ship forces resulting in the

tested scenario, it should be noted that in Germany the forces on the tested ship

are usually limited to 23 kN (cf. Partenscky, 1986). The Netherlands allow

forces up to 29 kN. When the when the lock is equipped with inset bollards

forces up to 39 kN are accepted in the Netherlands (PIANC InCom Working

Group 155, 2015). Only when the forces on the ship range in or above the order

of the given limits, the influence of the air-water transport and degassing

processes can be expected to have relevant influence for the design and the

functionality of the ship lock. Considering the given limits it can be concluded,

that the air intermixing does not have significant influence on the ship forces in

the tested setup, if the inflow rate for the half model is not larger than 10 m³/s

and the maximum air entrainment rate at the inlet is limited to 30 %.

Furthermore, the results showed that air contents up to 10 % should be uncritical

for the ship forces, when the maximum inlet rate is limited to 30 m³/s for the

half model. Additionally, the results of show that the forces on the ship in the

lock system under investigation mainly depend on the following factors:

∂ air content,

∂ inflow rate and

∂ remaining lift height of the inflow jet.
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Influence of the Air Content

Looking at the diagrams of Figure 6.8 following tendency can be concluded:

growing air contents lead to increasing forces on the ship towards the

downstream end of the chamber. The downstream pointing forces result from

two effects. On the one hand the forces result from the concentrated velocity jet

in the upper water body behind the grid wall, which pushes the bow of the ship

towards  the  downstream  end  of  the  lock  chamber.  The  jet  gets  stronger  with

growing  air  content  and  in  all  cases  where  this  jet  reaches  the  ship  hull,

additional rising of the forces can be observed. On the other hand the air

entrainment  leads  to  a  rising  water  level  in  the  front  part  of  the  lock.  As  a

consequence the water level slope and the resulting ship force towards the

downstream end of the lock grow with increasing air content.

Influence of the Inflow Rate

In this study each setup was tested with three inflow rates. The evaluation of the

simulation shows that an increasing inflow rate leads to higher forces on the

ship. When the flow rate is increased the horizontal velocity component of the

flow  in  front  part  of  the  lock  gets  larger,  whereas  the  vertical  velocity

component induced by the air is not influenced. In the case where no air is

introduced into the system, the higher horizontal velocities in the front part of

the lock lead to a larger water level slope towards the upstream end of the

chamber. As a result the forces towards the upstream end (marked as negative

forces in the current notification) get larger with growing inflow rates when no

air intermixing is present. With the introduction of air at the inlet the aerated jet

extends further into the lock chamber towards the ship hull when the inflow rate

is increased. Thus, higher inflow rates produce higher positive ship forces

towards the downstream end of the lock chamber when air is present within the

flow.
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Figure 6.8: Case 1 and Case 2: Forces on the ship dependent on inflow rate and

air content



APPLICATION TO NAVIGATION LOCK SYSTEMS

164

Influence of the Chamber Water Level

When the results of the two cases are compared it can be seen that the forces on

the ship resulting from the air transport and detrainment processes are higher in

towards the end of the filling process than at the beginning of the filling process.

Considering two cases with same inlet conditions (inflow rate and air-water

ratio) it can be seen that the absolute water level rise in the front part is larger in

Case 2 than in Case 1. Consequently, a larger water level slope results in Case 2

which leads to higher forces on the ship.

6.1.5 Transferability of the Results to the Prototype Structure

To  allow  conclusions  from  the  results  of  this  study  for  the  prototype  structure

information about the inflow conditions is inevitable. Especially the knowledge

about reasonable inflow rates and realistic air contents is necessary. From the

commissioning of the prototype lock in Bolzum three video recordings exist.

Additionally, recordings of the water levels during the filling are available,

which allow the calculation of the associated inflow rates. In the commissioning

test, the lock inflow was phased with three constant inflow rates. In the video

recordings the air degassing zone is clearly recognisable from the white crest in

the front part of the lock. Three different degassing zone lengths related to the

three inflow rates of 7.5 m³/s, 12.5 m³/s and 22.5 m³/s can be clearly

distinguished in the videos. From the video recordings of the filling process of

the lock in Bolzum the surface velocities in the detrainment zone were estimated

for the highest inflow rate.

For a comparison, numerical simulations with the highest inflow rate of

22.5 m³/s (equates to 11.5 m³/s for the half model) and a water level in the

chamber  of  6.5  m  was  set  up.  The  simulations  without  a  ship  were  performed

with four different inlet air-water ratios: 1.0, 0.9, 0.8 and 0.7. Comparable to the

simulations of the test cases described in section 6.1.4 the simulations were

calculated until a quasi-steady state was received. As result the velocities on a

plane slightly below the water surface were evaluated. A comparison with the

surface velocities resulting in the numerical simulations allows the assumption

that the air-water ratio in the intermixing zone ranges between 0.8 and 0.9.
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Looking  at  the  results  of  the  test  cases  in  the  previous  section  6.1.4,  it  can  be

assumed, that with an inflow rate maximum of 22.5 m³/s the air transport and

detrainment processes only have minor impact on the ship forces in the

prototype structure. Inflow rates up to 30 m³/s (corresponding to 15 m³/s for the

half model) can probably be realized for the prototype structure of Bolzum

without provoking critical ship forces on the vessel used. This first conclusion

gives a good starting point for future investigations of air transport and

detrainment processes in through-the-gate lock filling systems with construction

characteristics and lift heights similar to those of the lock of Bolzum.

For making final statements about absolute values occurring in the lock

system of Bolzum, field measurements are indispensable. In the model used the

inflow rate and the air content at the inlet have to be defined as boundary

conditions. Unlike the inflow rate, which is a controllable quantity in the

prototype structure, the value of the air content is an uncontrolled, unknown

quantity. To get reliable results, the order of magnitude of the entrained air

dependent on the lift height has to be determined with the means of field

measurements. Alternatively, an entrainment model for the numerical

approximation of the air entrainment through the plunging jet would have to be

developed and implemented.

6.1.6 Applicability to Larger Lift Heights

Through-the-gate filling systems are mostly applied to locks with lift heights

smaller than 10 m. Due to the relatively small building and maintenance costs in

comparison to more complex filling systems it would be desirable to allow the

application of through-the-gate systems also to larger lift heights. To investigate

the applicability to larger lift heights, the lock system of Bolzum was enlarged to

a  lift  height  of  18  m.  For  that  the  grid  wall  and  the  lock  chamber  walls  where

extended in vertical direction. In the lower part of the grid wall the horizontal

bars have the same spacing as in the Bolzum lock setup. In the upper part of the

extended grid wall the horizontal bars were inserted with regular spacing.
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Table 6.1.2: Case setup conditions

Case name Remaining lift

height

[m]

Water level in

the chamber

[m]

Total lift height

[m]

Case 3 17.5 4.5 18

Case 4 6 16 18

Case 3: At the beginning of the filling

process

Case 4: Towards the end of the

filling process

Figure 6.9: Illustration of the test cases

As in the previous test cases described in section 6.1.4 a constant state is

simulated and the focus is put on the analysis of the effect of air entrainment and

transport processes. The model setup is similar to Bolzum lock study: to save

computational effort a half model is used. The falling jet is replaced by an inlet

boundary condition, which inserts a pre-defined inflow rate with a specified air-

water ratio into the system. The inlet boundary area is adapted for each

simulation, so that a calculated inflow velocity is received. For the calculation of

the suitable inflow velocity, it is assumed that the potential energy of the

upstream water is converted into kinetic energy by the falling jet.

Model Variants

In this study, the three inflow rates of 10 m³/s, 20 m³/s and 30 m³/s for the half

model and four air-water ratios at the inlet boundary of 1, 0.9, 0.8 and 0.7 were

tested. All inflow setups are tested with two different filling states. Table 6.1.2
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summarizes the setup of the two cases. The first water level of 4.5 m represents

a state at the beginning of the filling process. The remaining lift height is 17.5

m. In the second configuration,  a  state towards the end of  the filling process is

simulated. The remaining falling height of the jet is 6 m and the chamber is

filled up to a height of 16 m above the chamber bottom.

Analysis of the Flow Characteristics

The resulting velocity and volume fraction distributions for a water inflow rate

of 20 m³/s are exemplarily shown in Figure 6.10 and Figure 6.11. The

visualisation of all further results can be found in the appendix A.6.

With large total lift heights as those simulated in Case 3 and Case 4 the

flow characteristics show significant differences between the beginning and the

end of the filling process. At the beginning of the filling process (Case 3), the

flow  fields  are  similar  to  those  resulting  with  the  setup  of  Case  1,  where  the

water level is equal but the total lift height equals 8.6 m. The volume fraction

plots show that the entrained air-water mixture distributes throughout the

complete dissipation zone. Only behind the second row of baffle blocks pure

water  is  visible.  The  transport  length  of  the  bubbles  with  the  flow  is  strongly

dependent on the inflow rate: the larger the inflow rate, the stronger gets the

horizontal velocity component towards the chamber. Thus, with larger inflow

rates and constant bubble diameter the bubbles are transported further into the

chamber. The illustrations of the velocity distribution show that the larges inflow

velocities occur at the inlet, where the inflowing air-water mixture enters

vertically. Where inflowing jet reaches the bottom it is first deflected in

downstream direction and then again redirected at the first row of baffle blocks

towards the surface. As a consequence a vortex forms behind the first baffle

block row. A part of the flow which flows between the baffle blocks forms a jet

which is slightly deflected in diagonal direction by the second row of baffle

blocks. The jet reaches the grid wall and finds its way through the gaps. Most of

the flow is released above the first vertical beam of the grid wall, forming a

horizontal jet towards the bow of the ship. With growing air entrainment at the

inlet or growing water inflow rate, the jet is getting stronger. At the bow the jet
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is redirected below and to the sides of the ship. As the ship hull occupies a large

volume  of  the  cross  section,  the  velocity  below  and  at  the  sides  of  the  ship

increases. With larger air contents and/or larger inflow rates, this phenomenon

intensifies.

Towards the end of the filling process (Case 4), the inflowing velocity

correspondent with the smaller remaining falling height is smaller than at the

beginning of the filling process. Additionally, the distance from the inlet to the

bottom is much larger than in the beginning. Hence, the resulting velocities in

the energy dissipation zone are smaller than at the beginning of the filling

process. Without air entrainment at the inlet the inflowing water forms a large

vortex in the energy dissipation zone, which is deflected at the bottom and at the

baffle blocks. The velocities behind the grid wall are small and most flow is

released through the bottom part of the grid wall. When an air-water mixture is

entrained at the inlet, the forming vortices get shorter as the inflow is redirected

before reaching the bottom. Through the introduction of air, a vertical velocity

component opposed to the gravitational force is applied to the flow. With

growing air content, the upward force rises. As a consequence, the incoming jet

is redirected towards the surface before reaching the bottom.

In most cases with air entrainment, the flow is again deflected at the water

surface forming a second vortex within the energy conversion zone. Most of the

flow is released in the upper part of the grid wall, when air is present in the flow.

The  resulting  jet  towards  the  bow  of  the  ship  gets  stronger  with  growing  air

content and increasing water inflow rate. It can be concluded, that the large

water cushion below the ship cannot dampen the impact of the inflow when air

is present.
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Case 3 – Q = 20 m³/s
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Figure 6.10: Results from the simulations of Case 3 with an inflow discharge of

20 m³/s
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Case 4 - Q = 20 m³/s
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Figure 6.11: Results from the simulations of Case 4 with an inflow discharge of

20 m³/s
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Analysis of the Ship Forces

All simulations were run until a quasi-steady state was reached. Then, the ship

force measurement was started and averaged over 500 s. The results are

presented in the following diagrams shown in Figure 6.12. The associated

number values are listed in the appendix A.7.

The evaluation of the ship forces show comparable tendencies as the

simulation  results  from the  previous  study  (cf.  section  6.1.2):  with  growing  air

content and growing inflow rates, the forces on the ship increase. Without air

entrainment the forces on the ship point in the upstream direction. In the shown

diagram, these forces are defined as negative forces. Air entrainment leads to

rising water levels in the front part of the chamber. The consequent water level

slope towards the downstream end of the chamber leads to positive forces on the

ship.

In comparison to the smaller lift height studied in the previous section, the

larger lift height leads to the following differences: inflow velocities at the

beginning of the lock filling process are higher for the larger lift height,

corresponding to the larger remaining lift height. The difference between the

inflow velocities results in slightly stronger forces on the ship for the larger lift

height (Case 3). Towards the end of the filling process, the remaining lift height

of the cases is equal in both cases. However, the water cushion is much larger in

the cases with larger total lift height. The larger water body below the ship has a

dampening effect on the ship forces. Thus, the forces on the ship are smaller for

the case with the larger lift height (Case 4).

When comparing the two lift heights it must be noticed that in reality the

inflow air-water ratios are likely to vary significantly between the cases with

different total lift heights. With growing falling length of the water jet, a higher

air entrainment volume is presumable.
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Figure 6.12: Case 3 and Case 4: Forces on the ship dependent on inflow rate and

air content
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Due to the lack of a correlation between the falling height of a wide large

vertical plunging jet and the resulting air entrainment rate, quantitative

conclusions for larger lift heights cannot be made. However, the model provides

the opportunity of finding an inflow rate for the larger lift height system, where

air entrainment is completely irrelevant for the forces on the lock.

Looking at the absolute values of the resulting ship forces it can be

concluded that water inflow rates up to 10 m³/s are uncritical, when the air

entrainment is not larger than 30 %. When the air entrainment at the inlet stays

below 10 %, the contribution of the air-water intermixing to the ship forces is

below the common limits for the given setup.

6.1.7 Uncertainty Factors

The uncertainty of the results in the current study is mainly influenced by the

following factors:

∂ geometrical uncertainty due to the geometry simplification and the spatial

mesh configuration,

∂ boundary data uncertainty due to the estimated inflow conditions,

∂ numerical uncertainty due to the usage of discretization schemes for the

evaluation of the model equations and the RANS turbulence model and

∂ physical approximation errors due to uncertainty in the formulation and

simplifications in the model.

For the benefit of acceptable simulation times a rather coarse mesh resolution

was chosen for the current study. Cells were refined such that the main character

of the flow was preserved. During the mesh generation particular effort was put

into the accurate reproduction of the geometry of the stilling area and of the ship

hull, as this is significant for the force calculation. Due to the high pre-

processing effort and the high probability of bad mesh quality, boundary layers

around the ship for the accurate reproduction of the surface friction were

omitted. This is acceptable as form drag is assumed to be dominating the flow

situation, whereas surface friction can be neglected. Special focus was further

put on the creation of the inlet boundary area, as the size of the boundary area
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defines the inlet velocity and thereby represents the falling height of the jet. Due

to the mesh creation algorithm it is yet challenging to meet the aspired width.

Thus, deviations for the area width up to 10 % were defined as acceptable for

this study. Comparing the results of the numerical model with the prototype

structure the inlet boundary definition with the specified air content and the inlet

velocity is the major factor for uncertainty of the results. The range of

reasonable air contents had to be estimated. Field measurements are necessary to

improve the knowledge about the real conditions. The feasibility of the results is

further influenced by the accuracy of the numerical schemes used for the

discretization of the equations. Theoretically, the chosen schemes for the

discretization of the divergence terms are of higher order and promise total

variation diminishing properties (cf. section 4.2.2). In non-orthogonal three-

dimensional meshes this is not guaranteed (Denner and van Wachem, 2015).

Nevertheless numerical errors are assumed to be small compared to the resulting

total values.

6.1.8 Conclusions

The study described above showed the application of the developed solver to

investigate the features of a hydraulic engineering structure significantly

influenced by air entrainment, transport and detrainment processes. In the

navigation lock under investigation, the filling process is initiated by opening

the head segment gate. A free falling jet evolves and plunges into the stilling

area in the front part of the lock. Through the plunging jet air is entrained into

the lock chamber, which substantially impacts the hydraulic properties of the

system. Due to the lack of investigation methods, the consequences of the air

intermixing were unclear heretofore.

Influencing Factors for the Structure Design and Operation

From the performed simulations, correlations between various influencing

factors valuable for the structure design and operation were found. It was shown,

that the air entrainment significantly influences the relevant hydraulic properties

in the given navigation lock system during the process of filling. An increasing
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air content in the system leads to growing longitudinal forces on the ship. The

inflow rate shows a comparable tendency: raising the inflow rate results in larger

forces on the ship. The information gained can for example be used to develop

optimized structure designs for future projects or even to create more effective

operation modes for the existing system.

Performance of the Solver

Regarding the stability during the computation of the simulation results, the

solver showed a satisfactory performance comparable to standard solvers of the

used C++ library OpenFOAM. No exceptional abortions nor under- or

overshoots were observed during the execution of the large case study. Stable

calculations were achieved by limiting the Courant number to values below 1. In

most cases, Courant numbers of up to 2 were still leading to a stable calculation.

The increase of the Courant number limitation was proven to be useful in the

beginning of a simulation, to speed up the phase from initialization until a quasi-

steady state is achieved.

6.2 Air Transport and Detrainment Processes in a Complex Lock Filling

System

6.2.1 Project Background

In the following test case the filling process of a navigation lock system was

simulated. The modelled lock system represents a new filling system proposed

by Thorenz (2012). A sketch of the system is shown in Figure 6.13. The new

system was developed during the planning phase of two structurally identical

locks for the Maine-Danube-Canal (MDK) which have to be replaced in the next

years. Both locks have a lift height of approximately 18 m, a length of 200 m

and a width of 12.50 m. For inland waterway ship locks with lift heights larger

than 10 m, it is state-of-the-art not to fill the lock through the gates, but to

provide a special filling and emptying system containing several culverts and

channels that homogenise the filling flow over the length of the chamber in

order to ensure as little water level oscillations as possible.
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The proposed system includes a pressure chamber beneath the actual lock

chamber. Both chambers are connected through small cylindrical filling nozzles

that guide the filling water into the chamber. The three laterally-arranged

stepped water saving-basins are connected to the pressure chamber by channels

that meet the pressure chamber in the third sections of the length.

Approximately 60 % of the water needed for the lock filling from the

downstream water level to the upstream water level is provided by the saving

basins.  The  remaining  40  %  are  taken  from  the  upstream  water  canal.  In  the

proposed system a drop shaft connects the upstream water level with the

pressure chamber.

Figure 6.13: Schematic sketch of the lock filling system under investigation

The upstream lock gate, a segment gate, serves as a seal and controller gate for

the drop shaft. By turning the gate counter-clockwise, the shaft is gradually

unblocked and the water can drop through the shaft into the pressure chamber.

After the filling process has been completed, the segment gate can be turned on

until it reaches the opening position, so that the ships can vacate the lock

chamber.

Before starting the rotation of the gate, the drop shaft is partly filled with

air.  As  soon  as  a  gap  from  the  shaft  to  the  canal  is  released,  the  water  starts

falling into the shaft, reaching the plunging pool at the height of the water level

in the lock. Arriving at a relatively high vertical downward velocity, the

plunging water jet is likely to entrain a significant amount of air into the system.

drop

shaft

pressure chamber

upstream approach
segment

gate

lock chamber
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Since air entrainment can severely influence the flow properties and

consequently the hydrodynamic effects on the structure and the ship, the

knowledge about the quantity and the impact on the locking process is crucial

for the feasibility of the new system.

6.2.2 Relevant Air-Water Flow Patterns for the Lock Filling System

For the investigation of the lock filling process different flow patterns have to be

analysed. The free surface flow from upstream of the lock enters the filling

system through the drop shaft. When the water drops into the shaft, a free falling

jet  evolves.  At the bottom of the shaft,  the decayed jet  plunges into a pool  and

thereby entrains air  into the system. The water  air  mixture then flows from the

pool into the pressure chamber and enters the lock chamber from the bottom

through round nozzles. Detrainment of the air takes place all along the flow path

and finally reaches the free surface of the lock chamber.

6.2.3 Classification  of  the  Flow  in  the  Lock  Filling  System  under

Investigation

In the system under investigation, the filling procedure is a transient process.

With Reynolds numbers larger than 10 000 the flow of the system is highly

turbulent, meaning that inertial forces dominate the flow behaviour. Within the

flow, the two Newtonian immiscible components water and air are involved.

Therefore, the flow can be classified as two-component gas-liquid flow. The

phases are immiscible; solubility of air in water is neglected. In the system the

phases occur in different flow patterns, which are described in the next section.

When both components are intermixing, as it is the case in the pressure chamber

of the lock, the flow should actually be regarded as compressible. As the

examination of compressible fluids is much more complex in many cases,

incompressibility is assumed. In reality entrained bubbles are compressible, thus

their volume is dependent on the local pressure. In the given system, air

entrainment is expected to be most relevant in the beginning of the filling, where

the falling height of the jet at maximum. At the same time, the water body where

the bubbles are entrained is still very small, meaning that the hydrostatic



APPLICATION TO NAVIGATION LOCK SYSTEMS

178

pressure acting on the bubbles is still relatively small. Therefore, the error due to

the disregard of the compressibility is accepted. Through the interaction of the

air bubbles with the surrounding water, mass and momentum transfer takes

place, which influences the dynamic of the flow. Surface tension has significant

influence of the bubble shape, size and behaviour.

6.2.4 Objectives and Limitations of the Test Case

Air entrainment, transport and detrainment processes are assumed to influence

the flow behaviour inside the system significantly. With its ability to model large

stretched free surface as well as small-scale bubble transport, the new model is

expected to contribute to the understanding of the flow processes involved

during the phase of filling.

To avoid the complexity of modelling the turning of the segment gate during the

simulation and to allow time-averaged measurements in the physical model, the

filling situation was simplified for this test case. Instead of considering the

transient filling process, three constant situations were defined. For this, the

segment gate is kept at a fixed opening position. Additionally, the water in the

chamber is kept on a defined level regulated via the downstream gate of the

lock.

With  this  study,  the  practical  usability  of  the  solver  to  a  hydraulic

engineering application is tested. To evaluate the numerical simulation the

results are compared with a physical scale model. As discussed in section 2.2.2,

some flow phenomena cannot be represented properly with a scale model.

Therefore, the data of the scale model are compared with a numerical model of

the same size. With its simplified setup and the small scale the tests serve as

preliminary study. Final statements about the relevant quantities for evaluating

the design concept cannot be made with the results. It is assumed, that once the

physical and the numerical model show satisfactory agreement, the numerical

model can later be scaled up to gain relevant data for the prototype size. As the

filling of the lock is a highly transient process, the complete transient filling

process including the segment gate should be considered in future

investigations.
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6.2.5 Physical Model Setup

Model Structure

The physical scale model was built by the staff in the laboratory facilities of the

Federal Waterways Engineering and Research Institute in Karlsruhe. Photos of

the physical scale model are shown in Figure 6.1.

The model recreates a navigation lock with a large lift height. The lock structure

consists of the upstream lock approach, a cuboid lock chamber with a pressure

chamber below, laterally arranged saving basins and the downstream lock

approach. Pressure chamber and lock chamber are connected through cylindrical

nozzles embedded in the intermediate ceiling. Side channels with included

operation valves connect the lateral saving basins with the pressure chamber. A

vertical drop shaft connects the upstream water level with the pressure chamber.

The upstream lock gate, constructed as segment gate, operates the filling from

the upstream canal into the lock filling system and simultaneously separates the

water in the upper approach from the lock chamber.

Figure 6.14: Photographs of the physical scale model with the drop shaft

construction

upstream approach

downstream aprroach

segment

gate

drop

shaft
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In the physical model (shown in Figure 6.14), the lock and pressure chamber

body is constructed from acrylic glass to enable visual observations and

recordings of the filling process. The shape of the drop shaft is constructed from

polyurethane foam plates, a material which can be milled and is water-repellent.

It  is  designed  as  interchangeable  part,  to  enable  studies  of  different  drop  shaft

shapes. The segment gate is constructed from polyvinyl chloride (PVC). A

motor at the side of the segment gate allows its turning. Through the connected

control  system,  the  segment  can  be  turned  with  pre-defined  velocities.  The

controller allows constant or pre-defined opening curves.

Upstream and downstream approaches are constructed from brickwork

walls and concrete, which is sealed with a waterproof coating. At the time of the

study  the  construction  of  the  lateral  saving  basins  was  not  completed.  This  is

irrelevant as the current study investigates only the process of filling through the

drop shaft.

Model Scales

The dimensions of the physical model correspond to the lock of Erlangen at the

Main-Danube  Canal  built  with  a  scale  of  1  to  25.  For  the  purpose  of  scaling

Froude similarity was applied. With that, the scaling measures presented in

Table 6.2.1 apply.

As described in section 2.2.2 the scale effects are unavoidable in the case

of turbulent free-surface flow with air entrainment. With the chosen Froude

similarity the air-water intermixing in the plunging pool region cannot be

reproduced according to the chosen scale. This must be considered when

drawing conclusions for the prototype structure. However, this study focussed

on the comparison of the physical model with a numerical model with the same

dimensions.
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Table 6.2.1: Scaling factors between scale model and prototype structure

Physical Parameter Unit
Scaling

Factor
Conversion Factor

Length, Width,

Height
[m] L 25

Time [s] T 5

Velocity [m/s] L/T 5

Mass [kg] M 25

Discharge [m³/s] L³/T 3125

Force [N] M*L/T² 15625

The complete model has a length of approximately 30 m. At the upstream end of

the model a labyrinth weir regulates the water level. Downstream of the lock

chamber the water can be released directly into the water circuit of the

laboratory hall. Additionally, drain valves on the bottom of the lock chamber

allow the regulation and drainage of the model. The lock chamber is jacked up

to enable illumination and recordings from below.

Water Level Probes

For analysing the water level in the chamber, the model is equipped with

ultrasonic sensors and water level gauges. In the experimental setup of the lock,

three ultrasonic water level probes are installed at each approach, for measuring

the upstream and the downstream water levels. Within the chamber two water

level gauges are installed at the bottom of the chamber. The ultrasonic sensors

are installed in laterally connected stilling wells which are connected to the

model via communicating pipes. This indirect measuring prevents the measuring

system from disturbances resulting from foam or turbulence. By continuously

transmitting pulses of ultrasonic waves towards the water surface and measuring

the reflection time, the distance between the water surface and the sensor surface
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can be calculated. In particular, the sensor consists of a transmitter and a

receiver. The ultrasonic transducer transmits sound waves with a defined

frequency and constant speed towards the water surface. There, the signal is

reflected and returned to the sensor and registered by the receiver. The time

between sending and receiving the signal is proportional to the distance. The

measured water level is averaged over the projection area.

Radiometric Density Meter

To measure the air entrainment in the drop shaft, a radiometric density meter

was installed in front of the pressure chamber (see Figure 6.15). The device

records the volume averaged density of the incoming air-water mixture. The

sensor setup consists of a transmitter and a detector. The transmitter contains a

small portion of an alkaline metal, namely Caesium 137 (intensity 185 MBq),

welded into a stainless steel capsule and embedded within a spherical lead

covering. The dose rate at the surface of the covering is 1 μSv/h. A 0.01 m wide

opening allows the directed emission of radiometric rays. As the rays penetrate

the fluid, it is partly absorbed proportionally to the density of the fluid. The

detector registers the radiometric rays arriving allowing the average density of

the penetrated volume to be calculated. To minimize the necessary ray intensity

a vertical setup was chosen. Like this the rays only have to be strong enough to

penetrate a height of approximately 0.10 m instead of 0.5 m for the horizontal

setup. The measuring volume of the density meter has the shape of a truncated

cone  which  results  from  the  ray  beam  diameter  on  the  bottom  side  of  the

pressure chamber and the beam angle. Before the series of measurements was

started, the density meter was calibrated. For this purpose the lock was filled, so

that the pressure chamber contained water only. The measured value was set to

correspond to the density of water. For defining the value corresponding to air,

the chamber was emptied. According to the manufacturer (RGI GmbH) the

accuracy of a 1 s measuring interval corresponds to 1 % for a density of 1 kg/m³.

Measurements of the density of a constant state (complete chamber empty or

full) over a longer time period showed variations of up to 2 %. This inherent
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measurement setup inaccuracy has to be taken into account when measuring

results are analysed.

Figure 6.15: Radiometric measurement equipment installation at the physical

model

6.2.6 Numerical Model Setup

The numerical model was designed in analogy to the physical scale model.

Therefore, the three-dimensional geometry used had the same dimensions. To

reduce computational effort, only one longitudinal half of the lock was

simulated and the middle patch was defined as symmetry plane. The model was

spatially discretised with a hexahedral-dominant, polyhedral mesh, where the

cells were refined in proximity to the geometry. In total the mesh consisted of

approximately seven million cells. The basic edge length was 0.01 m. Inside the

pressure chamber and the drop shaft the mesh was refined to an edge length of

0.0025 m.

As the falling jet and the subsequent air entrainment through the plunging

cannot be represented correctly by the numerical model, a suitable inlet

boundary condition had to be found. Therefore, a horizontal inlet plane was

defined within the drop shaft, allowing the inflow of a defined water-air mixture

into the lock filling system. The inlet patch was located slightly below the

expected water surface attached on the upstream wall side of the drop shaft

encompassing the complete width of the model. The inlet boundary was aimed

detector

transmitter

transmitter
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to replace the effect of the plunging jet. It was assumed, that the plunging of the

jet transfers the potential energy of the upstream water into kinetic energy. For

the sake of simplicity, friction losses were discarded. Consequentially, the jet

velocity at the height of the inlet could be calculated from the lift height. From

the physical model, the inflow rate and a volume averaged air content within the

pressure chamber was known. The inflow and the jet velocity were used to

calculate the necessary width of the inlet plane. In the simulations an inflow

discharge with a prescribed volume fraction directed normal to the inlet were

defined, resulting in the calculated velocity. An exemplary calculation of the

inflow velocity and the necessary inflow area can be found in the appendix A.5.

To ensure a fixed water level in the lock chamber, the downstream wall

was defined as fixed water level boundary. The side wall of the lock chamber

was defined as slip wall. For the top atmospheric boundary conditions assuming

atmospheric pressure were defined. The geometry surfaces were defined as no-

slip walls.

Figure 6.16: Sketch of the numerical model setup for the lock filling simulation

In the first attempt the Spalart-Allmaras DES turbulence model was applied. The

first  test  was  used  for  the  analysis  of  the  qualitative  flow  behaviour.  In  latter

tests the influence of the turbulence modelling was studied by applying various

turbulence models. To enable the measuring of the water levels in the numerical

model probing points were created, which recorded the calculated pressure and

atmospheric boundary

geometric boundary

inlet

ou
tl

et

probing points

drop shaft back side



APPLICATION TO NAVIGATION LOCK SYSTEMS

185

velocity data at an interval of ten time-steps. For the latter analysis the values

were averaged over time.

6.2.7 Model Variants

For  the  following  series  of  tests  the  segment  opening  of  the  gate  is  fixed

throughout all tests. For each test a different, fixed water level in the chamber is

defined. The water levels and corresponding inflow discharges are listed in

Table  6.2.2.  It  is  assumed  that  a  quasi-steady  state  flow  situation  develops  for

each opening angle.

In the physical model the measurements were started, when the steady

state flow situation could be detected visibly. The resulting measurement values

were averaged over time. For the numerical model, the simulation was

performed until a quasi-steady flow situation was reached. Afterwards the

probing of the relevant variable was started and the simulation was continued.

For evaluation, the variables were averaged over time. Within this series of tests

three water levels were studied. Table 6.2.2 shows the resulting measurement

values from the physical model tests, which were used as boundary conditions

of the numerical model.

Table 6.2.2: Boundary conditions for the three tests

Water level inside

the lock chamber

[m]

Inflow discharge

[m³/s]

Volume fraction

at the probing location [-]

0.27 0.027 0.847

0.366 0.027 0.856

0.476 0.027 0.856

In all cases the gate was opened by 22° corresponding to a completely opened

gate.
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6.2.8 Analysis of the Numerical Model Results

The  numerical  simulations  were  run  in  parallel  on  100  processor  cores.  For  a

simulated time of 115 s the execution time amounted to approximately 140

hours. The simulations run stable; no severe disturbances from numerical

instabilities were observed. For the evaluation, additional fields with the time-

average values of the volume fraction distribution and the velocity distribution

were created. The results of the numerical model were visualized with the post-

processing software Paraview. For the quantitative analysis of the flow

behaviour two presentation forms were considered: firstly, snapshots of the

instantaneous flow field variables were created. Secondly, images of time-

averaged variables were made. For the qualitative evaluation, the density

distribution inside the pressure chamber was analysed.

Qualitative Analysis of the Instantaneous Flow Behaviour

The following snapshots shown in Figure 6.17 compare the instantaneous

velocity and the volume fraction field of the different water levels visualized on

vertical section planes of the model, which were created in the middle of the

model width. To emphasize the important parts of the simulation, only the cells

containing more than 1 % water are coloured according to the velocity or the

volume fraction distribution respectively. The air filled region is marked with a

uniform blue plane.

Although the water levels and inlet velocities differ visibly in the three

cases, no significant difference in the velocity and the air transport characteristic

can be identified, when looking at the instantaneous snapshots of the flow fields.

Generally, the flow behaviour in the drop shaft and the pressure chamber can be

described as highly non-uniform. Thus, the volume fraction, velocity and

pressure distributions are very time-dependent. At the inlet the inserted vertical

flow forms a thin bundled jet alongside the upstream directed drop shaft wall.

The density of the jet increases with growing depth. At the bottom bend towards

the pressure chamber, the complete air content is released. Hence, the jet at the

bottom end of the shaft has the density of water. The jet follows the shape of the

wall and enters the pressure chamber at the bottom. Its velocity decreases with
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growing depth.  The rest  of  the drop shaft  is  filled with an air-water  mixture of

lower density than the inlet discharge density. At the inner side of the drop shaft

bend the flow forms a vortex, reversing the flow direction towards the water

surface.

Water Level 0.27 m

Water Level 0.366 m

Water Level 0.476 m

Figure 6.17: Velocity and volume fraction distribution of the three lock filling

simulations
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The unsteady upward directed velocity in the drop shaft creates a wavy, irregular

water surface, which is slightly higher than the water level in the lock chamber.

From the bottom towards the water surface a density gradient evolves within the

drop shaft. However, not all bubbles contained in the drop shaft are released.

Turbulent bubble accumulations surge irregularly through the pressure chamber,

releasing bubble jets through the nozzles into the lock chamber. The air-water

mixture jets rise vertically and deform the water surface at the penetration point.

The intensity of the jets decreases in downstream direction. Corresponding to

the bubble transport inside the pressure chamber, the density composition of the

jets is very variable.

Air bubbles which do not hit a nozzle when meeting the ceiling are

transported further along the ceiling of the pressure chamber until they are

released through a nozzle. In all cases, air content is visible only within the first

third of the pressure chamber.

Qualitative Analysis of Air Transport within the Pressure Chamber

To gain more detailed information about the air transport behaviour within the

pressure chamber, time-averaged values were determined. For the evaluation a

section of the pressure chamber was defined in which the received values were

visualized to compare the different water level cases (see Figure 6.24). The

following Figure 6.18 highlights the section chosen for the evaluation, which

captures the pressure chamber over the complete height at a distance of 0.27 m

to 0.99 m from the drop shaft back side. The section displays the same location

as the long exposure photos taken in the physical model tests. Analysing these

time-averaged results helped to understand the mean flow behaviour inside the

filling system. In analogy to photographs with longer exposure times, the

volume fraction distribution can be averaged over a defined time period. With a

volume rendering technique the averaged volume fraction distribution was

illustrated. In the images shown, all cells containing an air volume fraction of

0.1 % or more are taken into account for volume rendering. The intensity of the

white colour indicates how often air was existent in the cell considered during
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the averaging time period. Thus, zones with very dense white colouring were

experiencing high air flux.

Figure 6.18: Section for the quantitative analysis

Lighter shaded areas were less frequently filled with air. Highest incidence of

bubbles becomes visible in a wedge shaped volume in the pressure chamber.

Influence of the Turbulence Model

The flow patterns conceived within the system are strongly dependent on the

turbulence model used. For showing the influence the case with the chamber

water level at 0.366 m was simulated with different turbulence model setups:

∂ without applying a turbulence model,

∂ applying the DES turbulence model,

∂ applying the k-omega SST RANS turbulence model,

∂ applying the k-omega SST RANS turbulence model with additional

turbulent diffusion of the air bubble distribution.

To allow a comparison between the models the mean detrainment behaviour of

the bubbles within the pressure chamber is captured. Figure 6.19 shows the

results of the four cases. The comparison of the tested variants shows that the

resulting bubble distribution within the pressure chamber significantly depends

on the turbulence model. The case with the k-omega SST turbulence model

shows the shortest detrainment length, because the flow structure is smoother

zeroth position for the quantitative measurements

section for the qualitative analysis
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than  in  the  other  cases.  The  result  with  the  DES  approach  shows  a  longer

detrainment length in the pressure chamber. The longest detrainment length was

achieved when no turbulence model was applied. This behaviour seems to result

from the functionality of the different models.

a) without turbulence model

b) DES approach

c) k-omega SST model

d) k-omega SST model and additional turbulent diffusion

Figure 6.19: Volume fraction distribution in the pressure chamber with different

turbulence modelling approaches
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By  applying  the  RANS  k-omega  SST  model,  the  complete  spectrum  of

turbulence is eliminated from the velocity field. In the case of the DES model,

the near-wall regions are treated with the RANS approach and the regions

further away from the wall apply the LES approach. Hence, turbulent structures

which are resolved by the grid are directly captured. All smaller vortices are

modelled. With the mesh used in this study approximately 77 % of the volume

was modelled with the LES approach and 23% applied the RANS approach. The

RANS model is applied in all cells that are close to a geometric or symmetry

boundary, where the mesh is too coarse to capture the complete turbulent

spectrum. In the case without turbulent model only the turbulent eddies which

are captured by the grid are captured. The dissipative effect of the unresolved

vortices is neglected. It can be assumed that the difference in the detrainment

length between the case without turbulence model and the DES case results from

the missing diffusive effect of the unresolved turbulent scales. Particularly the

bubble transport due to the instantaneous velocity fluctuations is not accounted

for in RANS models. With the approach presented in section 4.1.4 this

underestimation can be counteracted by extending the primary phase fraction

equation with a diffusion term. For this study the diffusion coefficient was set

equal  to the turbulent  diffusion.  The effect  of  the additional  turbulent  diffusion

can clearly be recognized by comparing the results of the normal k-omega SST

model application shown in Figure 6.19c with the results from the model with

additional turbulent diffusion presented in Figure 6.19d. Due to the extra

diffusion in the volume fraction equation bubbles are transported further inside

the pressure chamber. The resulting detrainment length is comparable to the

DES results. The test of the different turbulence approaches demonstrates that

the application of the standard RANS models, which were designed for single

phase flows, are not able to capture the highly turbulent two-phase flow in the

pressure chamber system. When the mesh is fine enough to resolve the main part

of the turbulent scales the DES model presents a suitable alternative. For coarse

grid resolution the RANS models should be extended for the two-phase usage.

The suggested method of section 4.1.4 presents a simple way for the adaptation.

However,  a  more  extensive  study  is  necessary  to  prove  the  suitability  of  this
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approach. In the following cases all simulations were performed with the DES

approach. Utilizing this approach, different water levels were tested.

Comparison of the Three Water Levels

A comparison of the different water level configurations reveals tendencies

similar to the physical model evaluation (see Figure 6.24): an increasing water

level implicates a lower falling height and thereby reduces the impact of the

plunging jet. Consequently, the bubble transporting velocity declines and the

bubble path through the pressure chamber is shortened. Thus, higher water

levels lead to shorter degassing length when all other variables like the segment

gate opening width and the air entrainment rate are kept constant.

Quantitative Analysis of the Air Content Distribution within the Pressure

Chamber

For the quantitative analysis of the simulations, the volumetric air content in the

pressure chamber was evaluated for all three water levels. In 0.10 m steps a

0.08 m wide cuboid measuring volume was defined. The measuring volume

captures the values over the complete width of the model. Taking the time-

averaged values and averaging them over the volume, the mean air content was

received. Due to the high computational costs, the time-averaging of the volume

fraction in each cell was limited to a period of 20 s. The results obtained are

shown in the following Figure 6.20.

The diagram shows the decreasing air content in the pressure chamber

with growing distance from the drop shaft. Although different water levels in the

chamber with corresponding inflow velocities were chosen for the three

simulations, the resulting quantitative distribution of the air content within the

pressure chamber is very similar. Within the first 0.7 m most of the entrained air

content is released into the pressure chamber. Only approximately 1 % of the air

is transported further.
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Chamber water level: 0.368 m

Figure 6.20: Time-averaged air content in the pressure chamber in the numerical

model

After  the  detrainment  of  the  major  part  of  the  air  content  a  small  air  layer

remains below the ceiling of the pressure chamber which is further transported

with the flow. This corresponds to the above discussed visualisation of the

results. However, the difference of the bubble distribution in the three different

cases which were visualized in the screenshots of Figure 6.24 is not directly

visible in the diagram in Figure 6.20. This is assumed to result from the small air

content in this region and the accuracy of the quantitative data. The section of

the qualitative evaluation with the screenshot captures the pressure chamber at a

distance from the drop shaft back side of 0.34 m to 0.94 m. In this region the

quantitative values of the air content range between 0.04 and 0.02.

6.2.9 Analysis of the Physical Model Results

For the analysis of the physical model behaviour, the measurement values were

recorded over a time period of 350 s to allow the calculation of time-averaged

values. Video recordings were taken to allow the visual analysis of the flow.

Two screenshots of the video recordings at two different filling stages are shown

in Figure 6.21. Each model test was performed twice.
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Qualitative Analysis of the Instantaneous Flow Behaviour

From the visual analysis the flow inside the filling system can be described as

follows: comparable to the numerical simulation, the flow behaviour in the

physical model is apparently fluctuating. The location of visible bubbles is

strongly variable. Along the opened segment gate the water starts falling into the

drop  shaft.  A  thin  water  jet  develops  along  the  outer  wall  of  the  drop  shaft

without visibly absorbing a lot of air. Subsequent to the gate opening it attaches

to the wall and the width of the jet decreases. After plunging into the pool, the

water jet remains visibly attached to the wall.

Figure 6.21: Photographs of the physical model

Above the water level, the remaining volume of the drop shaft next to the water

jet is air filled. Below the water level, it is filled with bubble saturated water up

to  the  water  surface,  which  is  slightly  lower  than  the  water  level  in  the  lock

chamber. The water surface in the drop shaft is very wavy. A precise observation

of the bubbles shows that the bubbles on the side of the inner wall move towards

the water surface. The motion seems pulsating. A part of the bubbles is

transported into the pressure chamber. With increasing opening angles, the

amount  of  air  entrainment  grows.  As  long  as  the  drop  shaft  is  not  completely

filled with bubbly flow, a part of the bubbles is detrained at the free surface

inside  the  drop  shaft,  the  remaining  bubbles  degas  in  the  front  part  of  the

chamber. Within the first 10 % of the pressure chamber length most bubbles

reach the ceiling. Most of the bubbles directly find their way through the nozzles

into the lock chamber. There they rise vertically towards the water surface.

Inside the pressure chamber, the bubbles are smaller than in the lock chamber.

Whilst rising inside the lock chamber, some bubbles accumulate and form larger
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bubbles. The transformation of a spherical shape to a cap shape can be observed

from time to time. At the free surface in the lock chamber the bubbles create

irregular waves. Some of the bubbles inside the pressure chamber which do not

directly encounter a nozzle are transported further along the ceiling. Thus,

isolated bubbles rising can be recorded throughout the complete length of the

chamber.  A  series  of  photographs  of  the  same  model  setup  (see  Figure  6.22)

shows  the  irregular  bubble  distribution  along  the  pressure  chamber.  It  can  be

assumed, that the bubble density decreases along the pressure chamber. After a

certain length only very few bubbles are visible inside the pressure chamber.

However, a typical degassing length after which the bubbles reach the pressure

chamber ceiling is not directly identifiable.
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a) Water level 0.27 m

b) Water level 0.366 m

c) Water level 0.475 m

Figure 6.22: Physical model: Photographs of the pressure chamber section

for the three water level variations showing the variety of the

instantaneous bubble distributions
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a) Water level 0.27 – 22° opening

b) Water level 0.368 m – 22° opening

c) Water level 0.475 m – 22° opening

Figure 6.23: Physical model results: Photographs of the pressure chamber

section for the three water level variations taken with an exposure time of

15 seconds

a) Water level 0.27 – 22° opening

b) Water level 0.368 m – 22° opening

c) Water level 0.475 m – 22° opening

Figure 6.24: Numerical model results: Time-averaged volume fraction

distributions in the pressure chamber for the three simulation cases
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Qualitative Analysis of Air Transport within the Pressure Chamber

Only the application of longer exposure times improves the identification of the

typical bubble flow patterns. For the visualization of the averaged bubble flow

behaviour various exposure times were tested. The objective of the exposure

was to find out how most bubbles pass through the pressure chamber. It was

assumed, that a longer exposure time decreases the visibility of exceptional

bubble paths and improves the averaging effect. With an ideal setup, multiple

pictures should show the same bubble distribution. Finally, an exposure time of

15 seconds showed the best results. To improve the recognisability of the bubble

filled part in the photographs, the contrast of the pictures was increased by post-

processing. The resulting images presented in Figure 6.23 show that most

bubbles concentrate within a wedge shaped volume during their passage through

the pressure chamber. From the resulting wedge angle it can be concluded that

the horizontal velocity component on the bubbles is much higher than the

vertical rising velocity. The photographed section captures the pressure chamber

between the second and the third vertical aluminium strut (shown in Figure

6.21) which build the static structure of the physical model.

A quantitative estimation of the degassing length can be made by

analysing the bubble filled wedge of the long exposure photographs.

Theoretically, the degassing length of the bubbles in the chamber can be roughly

estimated with the horizontal flow velocity in the pressure chamber and the

vertical bubble rising velocity. For the numerical simulation case with the

chamber  water  level  at  0.366  m  the  horizontal  flow  velocity  is  estimated  with

the pressure chamber section area of 0.01957 m² and the inflow discharge of

0.027 m³/s to approximately 1.4 m/s. With an estimated bubble rising velocity of

0.25 m/s the bubbles should reach the pressure chamber ceiling after 0.56 m,

when  a  distribution  of  the  bubbles  across  the  complete  height  of  0.1  m  is

assumed at the beginning of the chamber. Comparing this length with the

corresponding results of the numerical and the physical model, the estimated

length is too short. In both models, the bubbles travel much further through the

chamber. The reason for this is assumed to lie in the turbulent nature of the flow



APPLICATION TO NAVIGATION LOCK SYSTEMS

199

inside the pressure chamber. Occurring vortices prevent the bubbles from rising.

Therefore, most bubbles need longer for reaching the ceiling.

A comparison between the different  water  levels  shows,  that  with higher

water levels less bubbles are captured on the long exposure time photographs.

This indicates a decrease of the degassing length with increasing water levels.

The data from the radiometric density measuring system shows that the

entrained air content is almost constant for all cases considered here in this

study. Thus, it can be concluded, that the degassing length depends mainly on

the jet induced momentum on the flow in the pressure chamber.

Quantitative Analysis of the Air Content Distribution within the Pressure

Chamber

For the quantitative evaluation of the physical model and the comparison with

the numerical simulations described below, the volumetric air content in the

pressure was measured at ten locations. First, the radiometric density

measurement setup was positioned at a defined distance from the drop shaft

back side. All nozzles in the measuring area were sealed. Then, a calibration had

to be performed for each location. The measurement locations are listed in Table

6.2.3 with distances from drop shaft backside. To receive a reliable average

value  the  recording  of  the  density  was  performed  over  a  time  period  of  300  s.

Each measurement was performed three times.

The diagram shows that the density strongly decreases within the first

meter of the model and finally tends to an air content of 2 %. This corresponds

to the visible observations described above. After most of the air is released

from the pressure chamber some bubbles accumulate below the ceiling of the

pressure chamber. The accumulated bubbles are transported with the flow until

the coincidently meet a nozzle. The results of the measurements are shown in

Figure 6.25.
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Table 6.2.3 Probing locations for the air content measurements in the physical

model for a chamber water level of 0.368 m

Point number
Distance from drop shaft

backside in [m]

1 0.045

2 0.157

3 0.270

4 0.375

5 0.479

6 0.583

7 0.683

8 0.790

9 0.894

10 0.998

Figure 6.25: Time-averaged air content in the pressure chamber in the physical

model
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Due to the high expenditure of time only one setup with a fixed water level and

a constant segment gate opening was carried out. Further measurements are

planned. Except the values at a distance of 0.6 m the three measurements at each

location show high agreement. Thus, it can be concluded that evaluated values

were reproducible.

6.2.10 Comparison and Evaluation of Both Models

The analysis of the numerical and the physical model showed that the flow

under investigation is highly fluctuating although the inflow rate and the outlet

water-level were kept on constant levels. The evolving turbulence within the

pressure chamber resulted in varying bubble rising behaviour: local turbulent

eddies prevented some bubble clusters from their continuous rising, thus several

bubbles were transported further into the pressure chamber than expected; others

rose much faster. The fluctuating behaviour within the filling system was visible

in both the physical and the numerical model. Qualitatively, the numerical

models showed similar behaviour to the physical model tests. The averaged

results of both models also demonstrated a high qualitative conformity (see

Figure 6.23 and Figure 6.24). However, a direct comparison of the photographs

from the physical model tests and the screenshots from the numerical

simulations is hardly possible, because the representation of the volume fraction

distribution is different in the models. Particularly the correlation of the visible

bubbles to the corresponding volume fraction is unknown. Whereas in the

physical model all bubbles are captured that are visible from the longitudinal

view during the exposure time period, the numerical model snapshots show the

averaged volume fraction in each cell visible in the chosen longitudinal section.

By adapting the colour scale of the numerical model visualization setup, various

air contents could be visualized. In the current setup for the averaged images,

the limit for the visibility of the air content was set to 0.1%. This corresponds to

the assumption that a bubble with a diameter of 0.012 m captured in a water

cube of 0.001m³ is still visible on the photographs.

For the quantitative comparison, the volume-averaged air content in the

pressure chamber with regard to the distance from the drop shaft was measured
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in both models. The following Figure 6.26 presents the results of both models

for the water level of 0.368 m (cf. Table 6.2.2). Generally, both models show the

same tendency: during the first six measuring points the air content slopes

downward tending to a small air content value. Close to the drop shaft, up to a

distance of 0.15 m the numerical model produced higher air content than the

physical model. In further distance to the drop shaft the numerical model values

are slightly lower than the measurements from the physical model. The smallest

value measured in the physical model of 2.4 % is slightly higher than the

smallest value of 1.2 % measured in the numerical model. The highest deviation

between the models occurs in close proximity to the drop shaft. This can be

clearly lead back to the different boundary conditions of the models. Especially

the inlet conditions of the two models are extremely different. Where the inflow

in  the  physical  model  is  controlled  by  the  upstream  water  level  in  the  lock

approach and the segment gate opening, the inlet boundary of the numerical

model replaces the evolving falling jet by a boundary condition imposed on a

horizontal plane below the drop shaft water level. Despite this difference in the

boundary conditions the received results showed satisfactory agreement.

Figure 6.26: Comparison of the physical and the numerical model

A correlation of the air entrainment rate, the inflow discharge and the lift height

of the jet is necessary to operate the numerical model of the filling system. Due
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to scaling effects, the physical model alone can also not provide quantitative

data about the investigated filling system. The wrong representation of the air

entrainment, transport and degassing process hinders the extraction of reliable

data.
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7 Summary, Conclusions and
Outlook

7.1 Summary and Conclusion

In this thesis an application-oriented approach for the modelling of multiscale

two-phase flows was developed, implemented and tested. The new approach

allows the simulation of two-phase flows which include a large free surface and

small dispersed bubbles simultaneously. Even when small bubbles are not

resolved by the computational grid, their physical behaviour is captured by the

implemented model. Dispersed air volumes inside the water body tend to rise in

opposite direction of the gravitational acceleration. Due to the rising of the

dispersed air momentum is transferred to the surrounding fluid. The rising

velocity is calculated dependent on the bubble size and the existent air content in

the cell. Three correlations between the bubble diameter and the resulting single

bubble rising velocity were implemented in the model. Being derived from the

volume of fluid solver the model is based on a single-fluid approach which

treats both phases as a mixture. The volumetric distribution of both phases is

determined with the volume fraction equation. In addition to this scalar transport

equation  the  set  of  equations  of  the  solver  consists  of  one  mass  and  one

momentum transport equation for the mixture. The deployment of higher order

schemes for the discretisation of the volume fraction equation counteracts the

typical smearing of the gas-liquid interface. The additional application of the
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MULES algorithm for  the  solution  of  the  scalar  transport  equation  ensures  the

boundedness of the solution. In contrary to the VoF approach, the approach

chosen allows a relative velocity between the phases. As a consequence,

detrainment of unresolved bubbles can be modelled. Generally, the

compressibility of the gaseous phase is neglected in the approach. This is

reasonable, when the water depth is small. With growing water depth the effect

of the compressibility increases. This particularly influences the bubble size and

subsequently the rising velocity of the bubbles. To account for the changing

bubble rising velocity in deep waters, an extension with “pseudo-

compressibility” was added to the model. This extension adapts the bubble

diameter in accordance with the local pressure, resulting in a pressure-adapted

rising velocity for the bubbles. To account for the turbulence in the system, a

variety of RANS or LES turbulence approaches can be chosen. The RANS

turbulence models, which are most often used in engineering applications,

eliminate the complete spectrum of turbulence from the velocity fields and

replace them with a model. In the case of free surface flow without dispersed

particles, this produces satisfactory results. However, when bubbles are present

in the flow, the RANS models cannot model the turbulent flow behaviour

properly. Particularly the bubble transport due to the instantaneous velocity

fluctuations cannot be reproduced. To overcome this, an extension of the

transport equation for the primary phase fraction is proposed. The introduction

of a diffusion term introduces additional diffusion into the system, which is

proportional to the turbulent diffusion.

Two simple test cases presented in chapter 5 proved the proper

implementation of the approach into the software framework of OpenFOAM.

With the first test case it was shown that unresolved air bubbles which are

located within a water filled tank detrain with the expected velocity. The second

test case demonstrated that the approach is able to capture free-surface flows

with satisfactory accuracy.

The combination of both two-phase scale phenomena was tested in

chapter 6 with two hydraulic engineering applications. Both cases of chapter 6

proved the applicability of the model to hydraulic engineering cases. The first



SUMMARY, CONCLUSIONS AND OUTLOOK

207

hydraulic engineering test case exemplified how the approach can be applied for

investigating the sensitivity of an existing structure to air entrainment. In the

tested lock Bolzum, the effects increasing air entrainment or higher flow rates

were investigated. The knowledge gained could be used to optimize the filling

schedules of the system.

In the second case the filling of a newly proposed high-head lock system

was simulated, including a lot of air entrainment. To prove the feasibility of the

new system,  the  effects  of  the  air-water  intermixing  on  the  functionality  of  the

system have to be studied. Here, the developed solver provides valuable insights

into  the  properties  of  the  new  system.  Particularly  the  transportation  of  the

entrained air with the highly turbulent flow through the filling system and its

detrainment in the lock chamber can be investigated with the solver.

Additionally, utilising the solver, an optimisation of the drop shaft shape can be

performed. Although the air entrainment rate is unknown, a quantitative analysis

can show the effects of shape changes. The comparison to a physical model

showed that the numerical model is able to capture the qualitative flow patterns

developing inside the filling system. Also the quantitative behaviour of the air

transport inside the system is comparable to the measurement data of the

physical model.

Due to the implementation within the OpenFOAM framework the

parallelisation was inherent. With a scale-up test the optimal decomposition for

the solver on the in-house high performance computer was found. When

adaptive time-stepping was used the computational speed is dependent on the

chosen Courant number. The accuracy of the numerical results is mainly

dependent on the grid resolution and the accuracy of the discretisation schemes.

The total error in the simulation is further dependent on the accuracy of the

geometry approximation. Here, compromises between accuracy, stability and

reasonable computation time have to be found for each case.
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7.2 Limitations and Outlook

The current model has several limitations which must be considered when

applying it and analysing its results. Some of the limitations are intentional,

others should still be improved. The following section clarifies the limits and

suggests possible improvements.

With the current implementation of the approach bubbles are not directly

resolved. Therefore, the resulting drag forces on the bubble are only

approximated. Interactions of the bubbles with the wall and unsteady forces on

the bubbles are neglected. Furthermore, the interactions occurring between

bubbles are not accounted for and the model is only capable to model bubbles of

one diameter. These restrictions are acceptable for applications where the total

bubble  content  is  small  and  where  the  bubble  diameters  do  not  vary  over  a

several orders of magnitude. It was assumed that this is true for the hydraulic

systems which were investigated in this study. However, bubble size

measurements at prototype structures or physical scale model could substantiate

the assertion.

The  library  of  OpenFOAM  in  which  the  solver  was  integrated  allows

coupling the model with a large variety of turbulence models. However, the

models commonly used in hydraulic engineering are mostly designed for flows

with isotropic turbulence behaviour. Turbulence models which are specifically

adapted to two-phase flows modelled with a single-phase approach are not

available yet. It is unknown whether the two-phasic nature of the flow

significantly influences the turbulence.

To enable an integrated view on the lock systems, the following

developments are necessary. For the quantitative analysis of the resulting forces

on the ship during the filling process it is essential to know the rate of air which

is  entrained by the falling jet.  In this  study the jet  was replaced by a boundary

condition with a constant water-air inflow rate. The complex physics of the free

falling jet cannot yet be captured by the model. Here, further research about the

decaying process of the jet, the plunging of the jet, the subsequent entrainment

of large air pockets and the influence of the turbulence on the named processes

is necessary to find a suitable way of reproducing these processes. On the one
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hand,  an  approach  for  the  numerical  approximation  of  the  jet  and  the  air

entrainment should be developed. Existent approaches as those discussed in

section 2.1.4 could serve as basis. On the other hand, prototype measures are

crucial for the validation of the numerical developments. Data of a plunging jet

could exemplarily be obtained by prototype measurements at existent structures

like the lock of Bolzum. For the measurements, robust devices for the highly

turbulent bubbly water zones close to the falling jets have to be developed,

which can be setup without danger to life.

In the prototype structure, the falling jet properties are also influenced by

the transient process of the segment gate opening. To capture the dynamics, the

moving segment gate would have to be integrated into the model. Research

towards the numerical simulation of a moving ship in a lock is already ongoing

at the BAW (see e.g. Schulze et al., 2015). The direct capturing of the segment

gate motion and the falling jet poses demanding requirements to the model.

Alternatively, an inlet condition with a variable inflow rate over time could be

thought of.
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Appendix

Breakup Length Calculation for the Falling Jet in the Drop ShaftA.1.

For the calculations the parameters listed in Table A 1.1were used.

Table A 1.1: Values used for breakup length calculation for the jet in the drop

shaft

Variable Value Dimensional

Unit

Variable Description

K 0.85 [-] non-dimensional fit coefficient

B f (opening width) [m] jet thickness

h 4 [m] upstream water depth

q 62.5 [m³/s] discharge (with the assumption

of a constant filling rate over 12

minutes filling time)

g 9.81 [m/(kg*s²)] gravity

Cd 2 [-] crest discharge coefficient

Applying the approach of Castillo and Luis (2006) to the lock system the

following relationship between the opening width and the breakup length is

received:

Table A 1.2: Relationship between the drop shaft opening width and the breakup

length of the jet
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Derivation of Equation 3.33A.2.

The following equation is derived:

1*,2 = Q1 − F2=2=* R 1� = (1 − �2)1� (3.33)

Figure A.2.1: Sketch of the relations between the various velocities

The sketch shown in Figure A.2.1 illustrates the relations between the various

velocities used in the formulae. For the derivation equations (3.24), (3.25),

(3.27) and (3.32) are used.

1* =
1=* g F$=$1$P$=1 (3.24)

=* = g F$=$P$=1 (3.25)

1*,$ = 1$ − 1*
(3.27)

1� = 12 − 11 (3.32)

Uଵ
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Derivation: 1*,2 = 12 − 1*
= 12 − 1=* (F1=111 + F2=212)

= Q1 − 1=* F2=2R 12 − 1=* F1=111

= Q1 − 1=* F2=2R 1� + Q1 − 1=* F2=2R 11 − 1=* (F1=111)

= Q1 − F2=2=* R 1� + Q1 − F2=2 − F1=1=* R 11

= Q1 − F2=2=* R 1� − Q−1 +
F2=2 + F1=1=* R 11

= Q1 − F2=2=* R 1� − Q−1 +
=*=*R 11

= Q1 − F2=2=* R 1�
Derivation of Equation 3.43A.3.

The following equation is derived:

=*�2(1 − �2)1�1� = F1(1 − F1)
=1=2=* 1−�1−� (3.43)

For the derivation, the equations (3.33), (3.34), (3.25) are used:

1*,2 = Q1 − F2=2=* R 1� = (1 − �2)1� (A.1)

�2 =
F2=2=* (A.2)

=* = g F$=$P$=1 (3.25)

1�1� = 1−�1−� (3.44)
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Derivation:

=*�2(1 − �2)1�1� = =* F2=2=* Q1 − F2=2=* R 1�1�
= F2=2 Q=*=* − F2=2=* R 1�1�
= F2=2 QF1=1+F2=2 − F2=2=* R 1�1�
= QF2=2F1=1=* R 1�1�
=

F1(1 − F1)=1=2=* 1�1�
= F1(1 − F1)

=1=2=* 1−�1−�
Derivation of Equation 3.48A.4.

The following equation is derived:

1* =  + F1(1 − F1)
=1 − =2=* 1−� (3.48)

Looking at the sketch shown in Figure A.2.1 the correlation between ௠ and܃ ܒ
can be expressed by using :as follows ܊

1* =  + �
1*,2 = F21�12,2 = 12 −  

= 12 − F111 − F212

= (1 − F2)12 − F111= F112 − F111= F2(12 − 11)

= F11�

(A.3)
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b is unknown and must should be replaced with known correlations:

� = 12,2 − 1*,2

= F11� − Q1 − F2=2=* R 1�
= QF1 − 1 +

F2=2=* R 1�
= − Q−F1 + 1 − F2=2=* R 1�

= − S(1 − F1) − F2=2=* U 1�

= − QF2=*=* − F2=2=* R 1�
= − QF1=1 + F2=2 − =2=* R F21�
= − QF1=1 + (F2 − 1)=2=* R F21�
= − QF1=1 − F1=2=* R F21�
= − Q=1 − =2=* R F1F21�
= F1(� − F1) Q=1 − =2=* R 1−�

(A.4)

Exemplary Calculation of the Inlet Conditions Replacing the FallingA.5.

Jet in the Simulations

As the developed model is not able to model a falling jet, the jet is replaced by

an inlet boundary. For the boundary definition it is assumed that the complete

potential energy of the upstream water is translated into kinetic energy. To

simulate the filling process of a lock with a defined water inflow rate and a fixed
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air-water ratio, the necessary inlet area is calculated as described below. The

potential energy of the upstream water body is equated with the kinetic energy

of the plunging jet:

* ∙ � ∙ ℎ =
1

2
∙ * ∙ )² (A.5)

To calculate the impact velocity of the jet, the equation is solved for ):

) = √2 ∙ � ∙ ℎ (A.6)

Knowing the water inflow rate ,-���� and the air-water ratio, the total inflow

rate can be calculated:

,�w��( =
,-����F (A.7)

The necessary inlet area � can be calculated with:

� =
,�w��(√2 ∙ � ∙ ℎ (A.8)

In  the  simulations  of  this  study,  the  width  of  the  model  is  defined  by  the  lock

chamber width. Therefore the inlet area is varied by defining different inlet

breadths.

Illustrations of the Numerical Results of Chapter 6.1A.6.

In the section below the numerical results of the simulations of chapter 6.2 are

visualised. For each simulation two screenshots are presented. The screenshots

on the left show the water-air distribution the screenshots on the right show the

velocity distribution in the front part of the lock projected on a vertical slice

parallel to the symmetry axis. The slice was located at a distance of 1.35 m from

the middle axis. The velocity distribution is visualised with a line integral

convolution (LIC) vector field visualisation method provided by the

visualisation software Paraview. The method brings out the vortices forming in

the flow field by producing streaking patterns that follow vector field tangents.

The plots  of  Case 1 and Case 2 with an inflow rate of  20 m³/s,  which are also

shown in 6 and Figure 6.7, are replicated in the following series of illustrations.
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Case 1 - Q = 10 m³/s
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Figure A.4.1: Results from the simulations of Case 1 with an inflow discharge of

10 m³/s
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Case 1 - Q = 15 m³/s
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Figure A.4.2: Results from the simulations of Case 1 with an inflow discharge of

15 m³/s
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Case 1 - Q = 20 m³/s
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Figure A.4.3: Results from the simulations of Case 1 with an inflow discharge of

20 m³/s
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Case 1 - Q = 30 m³/s
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Figure A.4.4: Results from the simulations of Case 1 with an inflow discharge of

30 m³/s
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Case 2 - Q = 10 m³/s
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Figure A.4.5: Results from the simulations of Case 2 with an inflow discharge of

10 m³/s
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Case 2 - Q = 15 m³/s
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Figure A.4.6: Results from the simulations of Case 2 with an inflow discharge of

15 m³/s
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Case 2 - Q = 20 m³/s
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Figure A.4.7: Results from the simulations of Case 2 with an inflow discharge of

20 m³/s
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Case 2 - Q = 30 m³/s
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Figure A.4.8: Results from the simulations of Case 2 with an inflow discharge of

30 m³/s
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Case 3 - Q = 10 m³/s
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Figure A.4.9: Results from the simulations of Case 3 with an inflow discharge of

10 m³/s
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Case 3 - Q = 20 m³/s
a

lp
h

a
(i

n
le

t)
=

1
.0

a
lp

h
a

(i
n

le
t)

=
0

.9
a

lp
h

a
(i

n
le

t)
=

0
.8

a
lp

h
a

(i
n

le
t)

=
0

.7

Figure A.4.10: Results from the simulations of Case 3 with an inflow

discharge of 20 m³/s



APPENDIX

227

Case 3 - Q = 30 m³/s
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Figure A.4.11: Results from the simulations of Case 3 with an inflow discharge

of 30 m³/s
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Case 4 - Q = 10 m³/s
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Figure A.4.12: Results from the simulations of Case 4 with an inflow discharge

of 10 m³/s
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Case 4 - Q = 20 m³/s
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Figure A.4.13: Results from the simulations of Case 4 with an inflow discharge

of 20 m³/s
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Case 4 - Q = 30 m³/s
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Figure A.4.14: Results from the simulations of Case 4 with an inflow discharge of

30 m³/s
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Number Values of the Ship Forces of Cases 1-4A.7.

Table A.7.1: Resulting forces on the ship

Q Air-

Water

Ratio

(alpha)

Case 1

Ship

Forces

Case 2

Ship

Forces

Case 3

Ship

Forces

Case 4

Ship

Forces

[m³/s] [-] [kN] [kN] [kN] [kN]

10 0 -1.2 -0.3 -1.3 -1.5

10 0.9 -0.6 2.3 -0.3 -0.7

10 0.8 -1.9 1.8 1.5 -0.4

10 0.7 5.2 20.0 3.7 0.3

15 0 -2.1 -3.5 - -

15 0.9 3.9 8.8 - -

15 0.8 10.1 32.8 - -

15 0.7 51.5 70.7 - -

20 0 -2.5 -2.7 -0.5 -1.9

20 0.9 8.6 17.8 17.7 9.9

20 0.8 33.8 55.0 40.0 38.6

20 0.7 71.4 109.9 81.7 67.0

30 0 -3.7 -5.2 -0.6 -3.0

30 0.9 15.8 29.8 20.8 17.8

30 0.8 46.7 84.6 57.8 55.5

30 0.7 99.5 160.0 103.0 136.2

Remark: A positive force points towards the downstream end of the lock

chamber. A negative force points towards the upstream end of the chamber.
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Förderverein 

Im Internet unter http://www.iwd.tu-dresden.de 

Zur Unterstützung der wasserbaulichen Forschung und Lehre wurde von 

Hochschullehrern und Mitarbeitern des Institutes am 24. Mai 1991 ein 

gemeinnütziger Förderverein, die Gesellschaft der Förderer des Hubert-Engels-

Institutes für Wasserbau und Technische Hydromechanik der Technischen 

Universität Dresden e. V., gegründet. Der Verein unterstützt die Herausgabe der 

seit 1990 wieder erscheinenden Dresdner Wasserbaulichen Mitteilungen und 

nimmt aktiv an der Vorbereitung und Durchführung des alljährlich stattfindenden 

Dresdner Wasserbaukolloquiums sowie der begleitenden Fachausstellung teil. 

Darüber hinaus werden vom Förderverein u. a. Studentenexkursionen und 

Forschungsarbeiten finanziell unterstützt. 

 

 

 

S A T Z U N G 

der 

Gesellschaft der Förderer des Hubert-Engels-Institutes 

für Wasserbau und Technische Hydromechanik 

der Technischen Universität Dresden e. V. 
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§ 1 Name und Sitz 

(1) Der Verein führt den Namen „Gesellschaft der Förderer des Hubert-

Engels-Instituts für Wasserbau und Technische Hydromechanik 

der Technischen Universität Dresden e. V.“ 

Er ist im Vereinsregister unter der Nummer VR 1335 registriert. 

(2) Der Sitz des Vereins ist Dresden.  

(3) Das Geschäftsjahr ist das Kalenderjahr. 

§ 2 Zweck 

(1) Der Verein verfolgt ausschließlich und unmittelbar gemeinnützige Zwecke 

im Sinne des Abschnittes "Steuerbegünstigte Zwecke" der 

Abgabenordnung. Er dient der Förderung wissenschaftlicher 

Forschungsarbeiten auf gemeinnütziger Grundlage, der Information seiner 

Mitglieder und der Öffentlichkeit über die Forschungs- und 

Versuchsarbeiten des Instituts, der Förderung von Aus- und Weiterbildung 

sowie der Förderung des Umwelt- und Landschaftsschutzes. 

(2) Der Satzungszweck wird insbesondere verwirklicht durch: 

1. Durchführung wissenschaftlicher Veranstaltungen und 

Forschungsvorhaben zu Themen des umweltverträglichen 

Wasserbaus, der Renaturierung von Gewässern, der Verbesserung 

der Wasserversorgung und Abwasserbehandlung, des 

Verkehrswasserbaus (mit dem Ziel umweltfreundlicher 

Transportdurchführung auf Wasserstraßen), sowie des Hochwasser- 

und Küstenschutzes 

2. Werbung in den interessierten Fachkreisen für den Wasserbau und 

das hydraulische Versuchswesen 

3. Koordinierung der Arbeiten und Zusammenarbeit auf 

wasserbaulichem und hydraulischem Gebiet mit anderen Instituten 
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4. Unterstützung von hydraulischen Modellversuchen 

5. Unterstützung der Durchführung von Kolloquien und Symposien in 

den Fachgebieten Wasserbau und Technische Hydromechanik 

6. Förderung der Publikation von wissenschaftlichen Arbeiten, 

Institutsberichten und Informationsmaterial 

7. Unterstützung von Reisen zu Fachvorträgen und zur Besichtigung 

von wasserbaulichen Objekten 

8. Durchführung von Informationsveranstaltungen an Schulen und 

Gymnasien 

9. Unterstützung von besonders förderungswürdigen in- und 

ausländischen Studierenden des Wasserbaus. 

10. Würdigung herausragender Leistungen von Absolventen und 

Studierenden in den Fachgebieten des Wasserbaus und der 

technischen Hydromechanik. 

(3) Der Verein ist selbstlos tätig und verfolgt nicht in erster Linie 

eigenwirtschaftliche Zwecke. 

§ 3 Mitgliedschaft 

(1) Ordentliche Mitglieder können natürliche und juristische Personen werden, 

die den Zweck des Vereins nach §2 unterstützen. 

(2) Jungmitglieder können Studenten werden, die an einer 

Hochschuleinrichtung mit wasserbaulich-wasserwirtschaftlicher 

Ausbildung immatrikuliert sind. 

(3) Korrespondierende Mitglieder können vom Vorstand ernannt werden, 

wenn sie auf dem Gebiet des Wasser- und Grundbaus, der Wasserwirtschaft 

und der Hydrologie forschend tätig sind. 

(4) Ehrenmitglieder können von der Mitgliederversammlung ernannt werden, 

wenn sie sich besondere Verdienste bei der Förderung des Vereins 

erworben haben.  
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§ 4 Organe des Vereins 

(1) Die Organe des Vereins sind  

a) die Mitgliederversammlung und 

b) der Vorstand. 

(2) Die Mitglieder des Vorstands sind ehrenamtlich tätig. 

§ 5 Mitgliederversammlung 

(1) Eine ordentliche Mitgliederversammlung findet einmal im Jahr (in der 

Regel in Verbindung mit dem Dresdner Wasserbaukolloquium) statt. Ihre 

Einberufung erfolgt unter Einhaltung einer Frist von vier Wochen in 

Textform durch den Geschäftsführer im Auftrag des Vorstandes unter 

Mitteilung des Termins, des Ortes und der Tagesordnung. 

(2) Zusätze zur Tagesordnung können innerhalb einer Frist von 14 Tagen beim 

Geschäfts-führer beantragt werden. 

(3) In der Mitgliederversammlung werden geschäftliche Angelegenheiten in 

Verbindung mit Vorträgen oder Mitteilungen und deren Beratung 

behandelt und erledigt. 

(4) Die Mitgliederversammlung beinhaltet: 

1. den Bericht des Vorsitzenden über das Geschäftsjahr 

2. den Bericht der Rechnungsprüfer 

3. Genehmigung der Berichte und Entlastung des Vorstandes 

4. Beschlüsse über vorliegende Anträge und über Änderungen der 

Satzung  

5. Wahl von zwei Rechnungsprüfern 

6. Verschiedenes 

(5) Der Vorstand kann jederzeit binnen 14 Tagen eine außerordentliche 

Mitgliederversammlung einberufen. Er ist dazu verpflichtet, wenn 
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mindestens ein Zehntel der Mitglieder dies unter Angabe des Zwecks und 

der Gründe fordert. 

(6) Der Vorsitz der Mitgliederversammlung wird vom Vorsitzenden oder vom 

stellvertretenden Vorsitzenden geführt. 

(7) Die Mitgliederversammlung fasst ihre Beschlüsse mit einfacher Mehrheit. 

Sie ist bei satzungsgemäßer Einladung in jedem Falle beschlussfähig. Bei 

Stimmengleichheit entscheidet die Stimme des Vorsitzenden. 

(8) Satzungsänderungen erfordern eine 3/4-Mehrheit. 

(9) Anträge auf Änderung der Satzung, die nicht vom Vorstand ausgehen, 

können nur dann beraten werden, wenn sie mindestens vier Wochen vor der 

Mitgliederversammlung unter Angabe der Gründe beim Vorstand 

eingereicht worden sind. 

(10) Jedes Mitglied hat nur eine Stimme. Stimmübertragungen sind durch 

schriftliche Vollmacht auf ordentliche Mitglieder nur bis zu zwei möglich.  

(11) Der Verein kann sich zur Regelung der vereinsinternen Abläufe 

Vereinsordnungen geben. Die Vereinsordnungen sind nicht Bestandteil der 

Satzung. Für den Erlass, die Änderung und Aufhebung von 

Vereinsordnungen ist die Mitgliederversammlung zuständig.  

(12) Die Beschlüssen der Mitgliederversammlung sind zu protokollieren. Das 

Protokoll ist vom Vorsitzenden und dem Protokollführer zu unterzeichnen. 

§ 6 Vorstand 

(1) Der Vorstand wird von der ordentlichen Mitgliederversammlung für die 

Dauer von fünf Jahren gewählt und bleibt bis zum Ablauf der ordentlichen 

Mitgliederversammlung zur Neuwahl im Amt. 

 (2) Der Vorstand besteht aus vier gewählten ordentlichen Mitgliedern  

�  dem Vorsitzenden, 

�  dem stellvertretenden Vorsitzenden, 
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�  dem Geschäftsführer und 

�  dem Schatzmeister. 

Der Vorsitzende vertritt den Verein mit jeweils einem weiteren 

ordentlichen Mitglied des Vorstands gemeinsam. 

(3) Vom Vorstand kann ein Ehrenvorsitzender bestellt werden. 

(4) Die Mitgliederversammlung kann durch einfache Mehrheit beschließen, 

darüber hinaus noch bis zu zwei Mitglieder als Beisitzer zur Vertretung des 

Vereins in den Vorstand zu bestellen.  

(5) Der Vorstand kann einzelnen Personen Vollmachten für Zweige der 

Geschäftsführung erteilen.  

(6) Dem Vorstand obliegt die Vertretung des Vereins nach § 26 BGB. Er ist 

mit der Führung aller laufenden Geschäfte beauftragt und sorgt für die 

Durchführung der Beschlüsse der Mitgliederversammlung. Er kann 

selbständig Maßnahmen treffen, die dem Vereinszweck förderlich sind. 

§ 7 Aufnahme oder Beendigung der Mitgliedschaft 

(1) Die Aufnahme als ordentliches Mitglied oder als Jungmitglied ist 

schriftlich beim Vor-stand zu beantragen. Dieser entscheidet über die 

Aufnahme. Der Aufnahmebeschluss ist dem Antragsteller mitzuteilen. Bei 

Zurückweisung des Antrages kann der Antragsteller eine Entscheidung 

durch die Mitgliederversammlung beantragen, deren Zustimmung ei-ne 

2/3-Mehrheit voraussetzt. 

(2) Die Mitgliedschaft kann beendet werden 

a) durch schriftliche Austrittserklärung eines Mitglieds gegenüber dem 

Vorstand mit einer Frist von drei Monaten zum Ende des laufenden 

Geschäftsjahres, 

b) auf Beschluss des Vorstandes, wenn 3/4 der Mitgliederversammlung 

dem Ausschluss zustimmen, 

c) bei Vereinigungen oder Gesellschaften mit deren Auflösung, 
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d) bei natürlichen Personen mit dem Tod oder 

e) durch Streichung aus der Mitgliederliste, wenn trotz Erinnerung 

durch den Vorstand in drei Folgejahren kein Mitgliedsbeitrag 

entrichtet wurde und kein erkennbarer Hinderungsgrund vorliegt. 

§ 8 Rechte und Pflichten der Mitglieder 

(1) Die Mitglieder des Vereins haben das aktive Wahlrecht, können Anträge 

an den Verein stellen und an den Veranstaltungen des Vereins teilnehmen. 

Das passive Wahlrecht haben nur Mitglieder, die natürliche Personen sind. 

(2) Juristische Personen müssen eine natürliche Person benennen, welche die 

Mitgliederrechte wahrnimmt. Ist eine derartige Person nicht benannt, so 

ruhen die Rechte der juristischen Person als Mitglied des Vereins. 

(3) Die Mitglieder des Vereins haben das Recht auf Information über die vom 

Institut durchgeführten und laufenden Arbeiten sowie zur Besichtigung des 

Instituts und seiner Versuchseinrichtungen soweit das betrieblich möglich 

ist und die Interessen der Auftraggeber nicht beeinträchtigt werden. 

(4) Die Mitglieder haben Anspruch auf Überlassung von geförderten 

veröffentlichten Materialien. 

(5) Die Mitglieder sind verpflichtet, den Verein entsprechend der Satzung bei 

der Erfüllung seiner Aufgaben nach besten Kräften zu unterstützen. 

(6) Die Mitglieder sind zur Zahlung eines jährlichen Beitrags verpflichtet. Die 

Höhe des jährlichen Beitrags, die Fälligkeit, die Art und Weise der Zahlung 

und zusätzliche Gebühren bei Zahlungsverzug oder Verwendung eines 

anderen als des beschlossenen Zahlungsverfahrens regelt eine 

Beitragsordnung, die von der Mitgliederversammlung beschlossen wird. 

(7) Ehrenmitglieder und korrespondierende Mitglieder sind beitragsfrei. 
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§ 9 Auflösung des Vereins 

(1) Der Verein kann nur auf Beschluss von 2/3 der anwesenden 

stimmberechtigten Mitglieder einer ordentlichen Mitgliederversammlung 

aufgelöst werden. Sind in dieser Mitgliederversammlung weniger als 1/3 

der stimmberechtigten Mitglieder erschienen, so muss eine neue 

Mitgliederversammlung einberufen werden, die dann entscheidet. 

(2) Im Falle der Auflösung oder Aufhebung des Vereins oder bei Wegfall 

seiner steuerbegünstigten Zwecke fällt sein Vermögen an das Institut für 

Wasserbau und Technische Hydromechanik der Technischen Universität 

Dresden, das es unmittelbar und ausschließlich für die Förderung von 

wissenschaftlichen Forschungsarbeiten zu verwenden hat. 

(3) Die vorstehenden Bestimmungen gelten entsprechend, wenn dem Verein 

die Rechtsfähigkeit entzogen wird. 

§ 10 Gemeinnützigkeit 

(1) Mittel des Vereins dürfen nur für die satzungsgemäßen Zwecke verwendet 

werden. Die Mitglieder erhalten keine Zuwendungen aus Mitteln der 

Körperschaft. 

(2) Die Mitglieder des Vorstandes erhalten keine Vergütung für ihre Tätigkeit. 

Auslagen im Interesse des Vereins werden auf Antrag ersetzt, wenn sie der 

Vorstand vorher genehmigt hat und der Verein dazu in der Lage ist. 

(3) Der Verein darf keine Personen durch Ausgaben, die dem Zweck des 

Vereins fremd sind, oder durch unverhältnismäßig hohe Vergütungen 

begünstigen. 

 

Die Satzung wurde in der Gründungsversammlung am 24. Mai 1991 in Dresden 

angenommen und am 18. März 2004 sowie am 6. März 2015 geändert.
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Bisher erschienene Dresdner 
Wasserbauliche Mitteilungen 

Heft 1 

(vergriffen) 

1989 Klaus Römisch 
Empfehlung zur Bemessung von Hafeneinfahrten 
Eberhard Lattermann 
Bemessungsgrundlagen für Dichtungen und 
Deckwerke im Wasserbau 
 

Heft 2 

(vergriffen) 

1990 Frank Krüger 
Schubspannungsverteilungen in offenen, geradlinigen 
Trapez- und Rechteckgerinnen 
Helmut Martin, Reinhard Pohl 
Überflutungssicherheit von Talsperren 
 

Heft 3 

(vergriffen) 

1990 Reinhard Pohl 
Die Entwicklung der wasserbaulichen Lehre und 
Forschung an der Technischen Universität Dresden 
Reinhard Pohl 
Die Berechnung der auf- und überlaufvermindernden 
Wirkungen von Wellenumlenkern im Staudammbau 
 

Heft 4 

(vergriffen) 

1991 Ellen Haufe 
Hydromechanische Untersuchungen von Mischungs-, 
Flockungs- und Sedimentationsprozessen in der 
Trinkwasseraufbereitung 
 

Heft 5 1994 Wasserbaukolloquium 1993 
Die Elbe - Wasserstraße und Auen 
 

Heft 6 

(vergriffen) 

1995 Wasserbaukolloquium 1994 
Wasserkraft und Umwelt 
ISBN 3-86005-154-7 
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Heft 7  1995 Wasserbaukolloquium 1995 
Hydromechanische Beiträge zum Betrieb von 
Kanalnetzen 
ISBN 3-86005-155-5 
 

Heft 8 1996 Detlef Aigner 
Hydrodynamik in Anlagen zur Wasserbehandlung 
ISBN 3-86005-164-4 
 

Heft 9 

(vergriffen) 

1996 Wasserbaukolloquium 1996 
Wellen: Prognosen - Wirkungen - Befestigungen 
ISBN 3-86005-165-2 
 

Heft 10 1997 Wasserbaukolloquium 1997 
Sanierung und Modernisierung von 
Wasserbauwerken, aktuelle Beispiele aus 
Deutschland, Polen, der Slowakei und Tschechien 
ISBN 3-86005-185-7 
 

Heft 11 

(vergriffen) 

1997 Reinhard Pohl 
Überflutungssicherheit von Talsperren 
ISBN 3-86005-186-5 
 

Heft 12 

(vergriffen) 

1998 Reinhard Pohl 
Die Geschichte des Institutes für Wasserbau an der 
Technischen Universität Dresden 
ISBN 3-86005-187-3 
 

Heft 13 1998 Wasserbaukolloquium 1998 
Hydraulische und numerische Modelle im Wasserbau, 
Entwicklung - Perspektiven 
ISBN 3-86005-201-2 
 

Heft 14 1998 Uwe Müller 
Deformationsverhalten und Belastungsgrenzen des 
Asphaltbetons unter den Bedingungen von 
Staudammkerndichtungen 
ISBN 3-86005-213-6 
 



DRESDNER WASSERBAULICHE MITTEILUNGEN 

259 

Heft 15 1999 Wasserbaukolloquium 1999 
Betrieb, Instandsetzung und Modernisierung von 
Wasserbauwerken 
ISBN 3-86005-223-3 
 

Heft 16 1999 Dirk Carstensen 
Beanspruchungsgrößen in Fließgewässern mit 
geschwungener Linienführung 
ISBN 3-86005-236-5 
 

Heft 17 

(vergriffen) 

1999 Ehrenkolloquium Prof. Martin 
anlässlich des 60. Geburtstages von Herrn Univ. Prof. 
Dr.-Ing. habil. Helmut Martin 
ISBN 3-86005-237-3 
 

Heft 18 2000 Wasserbaukolloquium 2000 
Belastung, Stabilisierung und Befestigung von Sohlen 
und Böschungen wasserbaulicher Anlagen 
ISBN 3-86005-243-8 
 

Heft 19 2001 Seleshi B. Awulachew 
Investigation of Water Resources Aimed at Multi-
Objective Development with Respect to Limited Data 
Situation: The Case of Abaya-Chamo Basin, Ethiopia 
ISBN 3-86005-277-2 
 

Heft 20 2001 Stefan Dornack 
Überströmbare Dämme Beitrag zur Bemessung von 
Deckwerken aus Bruchsteinen 
ISBN 3-86005-283-7 
 

Heft 21 2002 Wasserbaukolloquium 2002 
Innovationen in der Abwasserableitung und 
Abwassersteuerung 
ISBN 3-86005-297-7 
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Heft 22 2002 Zelalem Hailu G. Chirstos 
Optimisation of Small Hydropower Sites for Rural 
Electrification 
ISBN 3-86005-304-3 
 

Heft 23 2002 Ehrenkolloquium Prof. Wagner 
Zur Emeritierung von Univ.-Prof. Dr.-Ing. habil. 
Harold Wagner 
ISBN 3-86005-307-8 
 

Heft 24 2003 Wasserbaukolloquium 2003 
Gewässer in der Stadt 
ISBN 3-86005-358-2 
 

Heft 25 2003 Toufik Tetah 
Numerische Simulation des dynamischen Verhaltens 
von Caisson-Wellenbrecher-Gründungen unter 
Einwirkung brechender Wellen 
ISBN 3-86005-363-9 
 

Heft 26 2003 Ehrenkolloquium Prof. Horlacher 
Zum 60. Geburtstag von Herrn Univ.-Prof. Dr.-Ing. 
habil. Hans-B. Horlacher 
ISBN 3-86005-376-0 
 

Heft 27 

(vergriffen) 

2004 Wasserbaukolloquium 2004 
Risiken bei der Bemessung und Bewirtschaftung von 
Fließgewässern und Stauanlagen 
ISBN 3-86005-414-7 
 

Heft 28 2004 Reinhard Pohl 
Historische Hochwasser aus dem Erzgebirge 
ISBN 3-86005-428-7 
 

Heft 29 

(vergriffen) 

2005 Wasserbaukolloquium 2005 
Stauanlagen am Beginn des 21. Jahrhunderts  
ISBN 3-86005-461-9 
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Heft 30 2005 Nigussie Teklie Girma 
Investigation on Sediment Transport Characteristics 
and Impacts of Human Activities on Morphological 
Processes of Ehiopian Rivers:Case Study of Kulfo 
River, Southern Ethiopia 
ISBN 3-86005-483-X 
 

Heft 31 2006 Matthias Standfuß 
Druckwellenausbreitung in erdverlegten 
Rohrleitungen aus PE-HD  
ISBN 3-86005-495-3 
 

Heft 32 2006 Wasserbaukolloquium 2006 
Strömungssimulation im Wasserbau 
ISBN 3-86005-473-2 
 

Heft 33 2006 Antje Bornschein 
Die Ausbreitung von Schwallwellen auf trockener 
Sohle unter besonderer Berücksichtigung der 
Wellenfront 
ISBN 3-86005-523-2 
 

Heft 34 2007  Torsten Frank 
Hochwassersicherheit in sielbeeinflussten 
Gewässersystemen am Beispiel des Bongsieler Kanals
ISBN 978-3-86780-019-8 
 

Heft 35 2007 Wasserbaukolloquium 2007 
Fünf Jahre nach der Flut  
ISBN 987-3-86005-571-7 
 

Heft 36 2008 Aktuelle Forschungen 1993 – 2008 
Zum 65. Geburtstag von Herrn Prof. Horlacher 
ISBN 978-3-86780-083-9 
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Heft 37 2009 Dirk Carstensen 
Eis im Wasserbau - Theorie, Erscheinungen, 
Bemessungsgrößen 
ISBN 978-3-86780-099-0 
 

Heft 38 

(vergriffen) 

2009 Reinhard Pohl, Antje Bornschein, 
Robert Dittmann, Stefano Gilli 
Mehrzieloptimierung der Steuerung von Talsperren 
zur Minimierung von Hochwasserschäden im 
Unterwasser 
ISBN 978-3-86780-100-3 
 

Heft 39 

(vergriffen) 

2009 Wasserbaukolloquium 2009 
Wasserkraftnutzung im Zeichen des Klimawandels, 
angepasste Strategien - neue Technologien 
ISBN 978-3-86780-101-0 
 

Heft 40 

(vergriffen) 

2010 Wasserbaukolloquium 2010 
Wasserbau und Umwelt - Anforderungen, Methoden, 
Lösungen 
ISBN 978-3-86780-101-0 
 

Heft 41 2010 Ralf Tackmann 
Erosion 2008 - Ein numerisches Modell zur Prognose 
des Bodenaustrages von kohäsiven Böden unter 
Berücksichtigung der Rillenerosion 
ISBN 978-3-86780-158-4 
 

Heft 42 2010 Ulf Helbig 
Tragverhalten und Berechnung von mehrschichtigen 
Verbundrohren 
ISBN 978-3-86780-159-1 
 

Heft 43 2010 Stefano Gilli 
Die Wirkung von Flussaufweitungen auf 
Hochwasserwellen - Parameterstudie einer 
Deichrückverlegung im Flussmittellauf 
ISBN 978-3-86780-160-7 
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Heft 44 2010 Negede Abate Kassa 
Probabilistic Safety Analysis of Dam - Methods and 
Applications 
ISBN 978-3-86780-161-4 
 

Heft 45 

(vergriffen) 

2011 Wasserbaukolloquium 2011 
Wasserkraft - 
Mehr Wirkungsgrad + Mehr Ökologie = Mehr 
Zukunft 
ISBN 978-3-86780-198-0 
 

Heft 46 2011 Torsten Heyer 
Zuverlässigkeitsbewertung von Flussdeichen nach 
dem Verfahren der logistischen Regression 
ISBN 978-3-86780-197-3 
 

Heft 47 2011 Wasserbaukolloquium 2012 
Staubauwerke - Planen, Bauen, Betreiben 
ISBN 978-3-86780-261-1 
 

Heft 48 2013 Wasserbaukolloquium 2013 
Technischer und organisatorischer Hochwasserschutz 
- Bauwerke, Anforderungen, Modelle 
ISBN 978-3-86780-318-2 
 

Heft 49 2013 Vinzent Sturm 
Simulation der Fluid-Struktur-Interaktion mit freier 
Oberfläche am Beispiel des Schlauchwehres unter 
Anwendung von Ansys/CFX 
ISBN 978-3-86780-348-9 
 

Heft 50 2014 Wasserbaukolloquium 2014 
Simulationsverfahren und Modelle für Wasserbau und 
Wasserwirtschaft 
ISBN 978-3-86780-349-6 
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Heft 51 2014 Holger Haufe 
Zwischenauslässe an Talsperren - Beispiele, 
Bemessung, Konstruktion, Nachrüstung 
ISBN 978-3-86780-393-9 
 

Heft 52 2014 Pohl/Bornschein u.a. 
Effect of very oblique waves on wave run-up and 
wave overtopping 
ISBN 978-3-86780-392-2 
 

Heft 53 2015 Wasserbaukolloquium 2015 
Messen und Überwachen im Wasserbau und am 
Gewässer 
ISBN 978-3-86780-420-2 
 

Heft 54 2015 Mohammed Abdallah 
Developing a Multi-purpose Reservoir operating 
Model with Uncertain Conditions: a Case of Eastern 
Nile Reservoirs - Sudan 
ISBN 978-3-86780-431-8 
 

Heft 55 

 

2015 Paolo Dapoz 
Reinigung von Abwasserkanälen mittels 
Niederdruckspülverfahren 
ISBN 978-3-86780-432-5 
 

Heft 56 2015 JuWi-Treffen 
17. JuWi-Treffen: Fachbeiträge zur Tagung vom  26.-
28. August 2015 
ISBN 978-3-86780-448-6 
 

Heft 57 2016 Wasserbaukolloquium 2016 
Gewässerentwicklung & 
Hochwasserrisikomanagement 
ISBN 978-3-86780-475-2 
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Heft 58 2017  Wasserbaukolloquium 2017 
Bemessung im Wasserbau - Klimaanpassung, 
Untersuchung, Regeln, Planung, Ausführung 
ISBN 978-3-86780-509-4 
 

Heft 59 2017 Roberto Tatis Muvdi 
A contribution to the hydro morphological assessment 
of running waters based on habitat dynamics. 
ISBN 978-3-86780-512-4 
 

Heft 60 2018 Wasserbaukolloquium 2018 
Wasserbauwerke im Bestand - Sanierung, Umbau, 
Ersatz-neubau und Rückbau 
ISBN 978-3-86780-556-8 
 

Heft 61 2018 Lydia Schulze 
Development of an Application-Oriented Approach 
for Two-Phase Modelling in Hydraulic Engineering 
978-3-86780-571-1 
 

 

Die Dresdner Wasserbauliche Mitteilungen können bezogen werden über: 

Technische Universität Dresden 

Bereich Bau und Umwelt 

Institut für Wasserbau und Technische Hydromechanik 

01062 Dresden   

Telefon: +49 351 463 34397 

Fax:   +49 351 463 37120 

E-Mail:  tagungsband@wasserbaukolloquium.de 

Ein großer Teil unserer Hefte ist digitalisiert und über das Fachrepository HENRY 

der Bundesanstalt für Wasserbau einzusehen. 

https://henry.baw.de/ 

Auswahl über „Browsen → Bereiche & Sammlungen“ 
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