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ABSTRACT 

For spill-through bridge abutments adjoining waterways, practically all field 

cases of failure attributable to scour show a geotechnical failure of the spill slope of 

earthfill embankment associated with the abutment. The extent of scour and the 

maximum scour depth attainable at an abutment indeed are limited by the 

geotechnical stability of the earthfill embankment at the abutment. For a given design 

flow, the stability of the embankment limits scour depth. The actual region of scour 

leading to embankment failure is itself unremarkable. Typically, scour depths at 

spill-through abutments are modest, at least when viewed after the flood event 

producing the scour, and when other factors such as channel morphology effects are 

excluded. Though numerous illustrations of scour at spill-through abutments show 

failed embankment and channel bank, methods currently available for estimating 

scour do not address the geotechnical aspects of scour at spill-through abutments. 

This paper presents a method for relating scour depth to the strength properties of an 

abutment's compacted earthfill embankment. 

INTRODUCTION 

This paper discusses important geotechnical aspects of spill-through abutment 

scour (Figure la), and shows that as scour deepens it reduces the stability of the 

abutment's earthfill spill-slope. When the slope is exceeded, spill-slope material 

slides into the scour region and the flow transports it away. Further deepening leads 

to more slope instability and erosion, until eventually, the erosion extends to the 

abutment column (Figure 1 b). Still further erosion breaches the embankment, 

increasing the flow area, and relaxing flow velocities through the bridge waterway. 

In overall terms, scour at spill-through abutments can be characterized as being 

largely a geomechanics design concern, and less of a hydraulics concern. The paper 

outlines an approach to formulating the geotechnical limit to maximum scour depth at 

a spill-through abutment. The current investigation was conducted using a laboratory 

flume for three distinct scour conditions developed during the NCHRP 24-20 

program (Ettema, et al. 2010). 

LABORA TORY INVESTIGATIONS 

The laboratory experiments were conducted using a model channel fitted in a 

sediment re-circulating flume, 2l.3-m long, 4.0-m wide, and l.O-m deep . The flume 

accommodated the half width of a compound channel; i.e. , the flume width = 0.5S, 

where B is the entire width of the compound channel. The width of the floodplain 

was adjustable, and the floodplain surface could be erodible or fixed . The main 
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126 SCOUR AND EROSION 

channel had a bed of uniform medium sand. The variable erodible natures of 

floodplain and embankment at bridge sites were simulated by means of tests with the 

model channel configured in the following arrangements that bracket the variable 

erodibility of floodplain and embankment: 

l. Fixed floodplain and the embankment, both taken to be practically resistant to 

erosion, whereas the main-channel bed was erodible; 

2. Erodible floodplain and main channel bed (the two being formed of the same 

noncohesive sediment and equally erodible), with the embankment being 

erodible but armored with riprap stone; and, 

3. Erodible floodplain and main-channel bed, with the embankment unarmored. 

The abutment was formed of the same noncohesive sediment as the main­

channel bed. 

Figure 1. A spill-through abutment with earthfiU approach embankment on a 

floodplain (a); and observation of Scour Condition A for a spill-through 

abutment on floodplain, depicting bank and embankment failures (b). 

The following prototype considerations and dimensions were used in selecting 

the model layout, length scale, and dimensions for both types of abutments: 

• A road width of 12.0 m, in accordance with standard prototype two-lane 

roads. The road width includes 7.2 m plus 2.7 m-wide shoulders, a total width 

of 12.6 m; 

• Pile spacing of 2 m to 3 m; 

• Pile diameter of 0.3 m; 

• The base of the pile cap submerged approximately 1.0 m below the original 

level of the floodplain bed; 

• A 2-horizontal: I-vertical (2H: I V) constructed side slope of the earthfill 

embankment connected to the abutment; and, 

• A 2H: I V slope of the bank between the floodplain and the main channel 

Considerations of the flume's size led to selection of a geometrically 

undistorted length scale of I :30 for the experiments. The model spill-through 

abutments were formed around a "standard-stub abutment," which consists of a 
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concrete stub supported by a pile cap on two rows of circular pipes. The design and 

dimensions of standard-stub abutments commonly used by the Illinois, Iowa, and 

New York Departments of Transportation were used in the study. 

SCOUR CONDITIONS CONSIDERED 

Abutment scour may involve three distinct scour conditions (Ettema, et al. 

2008; Ettema et al. 2010), herein termed Scour Conditions A, B, and C. These scour 

conditions were observed in the flume experiments and as well as at actual bridge 

sites: 

• Scour Condition A occurs as scour of the main channel portion of a 

compound channel; 

• Scour Condition B is scour of the floodplain, and occurs for abutments set 

well back from the main channel; and, 

• Scour Condition C is a scour form that develops when breaching of an 

abutment's embankment fully exposes its abutment-column structure such 

that scour develops at the abutment column as if it were a pier. 

For Scour Condition A, a useful analytical framework with which to relate 

maximum flow depth (incorporating maximum scour depth), Y,vux, to flow conditions 

and boundary sediment or soil is to plot the dimensionless parameters Y,\1AX1YC and 

q]lq/. Here, Yc is the flow depth estimated for live-bed flow through a long 

contraction; q2 is the area-average unit discharge of flow through the bridge section; 

and, q / is the area-average unit discharge of flow through the main channel upstream 

of the bridge site. At lower values of q2Iq/, scour depth (and YM4XIYc) is governed by 

the local flow field around an abutment. However, for large values of q2Iq/, scour 

development is governed by flow contraction, so that Y,vL4X1YC asymptotically 

approaches about 1.1. The approximate 10 percent increase is attributable to local 

concentration of flow and turbulence generated by flow around the abutment. 

For Scour Condition B, a useful analytical framework with which to relate 

maximum flow depth (incorporating maximum scour depth), YM4X, to flow conditions 

and boundary sediment or soil is to plot the dimensionless parameters YiVuxlYc and 

qj2lq/ Here, Yc is the flow depth estimated for clear-water flow through a long 

contraction; qj2 is the area-average unit discharge of flow through the floodplain 

portion of the bridge section; and, qj is the area-average unit discharge of flow over 

the floodplain upstream of the bridge site. The trend for YiVuxlYc versus qj2kiJ is 

essentially the same for YM4XIYc and q2Iq/. 

For Scour Condition C, scour depths must be estimated in a semi-empirical 

manner similar to that used for estimating scour depth at a pier of complex geometry. 

Scour is governed by the highly three-dimensional flow field developed at an exposed 

pier-like column. 

GEOTECHNICAL LIMIT TO MAXIMUM SCOUR DEPTH 

The maximum scour depth attainable at an abutment is limited by the 

geotechnical stability of the earthfill embankment at the abutment. For a given design 

flow, scour cannot deepen below this limit. Figure 2 illustrates this limit in simple 
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terms for an embankment set back on a floodplain . As scour deepens, it reduces the 

stability of the earthfill embankment at the abutment, adjusting the embankment slope 

to its equilibrium slope. When the slope is exceeded, embankment material slides 

into the scour region (Figure 2a) and the flow transports it away. Further deepening 

leads to more slope instability and erosion, until eventually, the erosion extends to the 

abutment column. Because the cross section of flow increases (Figure 2b), additional 

erosion results in breaching of the embankment and relaxation of the flow around the 

abutment. 

It is possible to formulate the geotechnical limit to maximum scour depth. 

Figure 2 illustrates this limit. As indicated in Figure 2a, and found in the flume 

experiments, the location of deepest scour, dsmax, was a radial distance, R, out from 

the abutment column. For the present study (and many abutment embankments), the 

constructed embankment slope was 2 horizontal to I vertical, such that the 

requirement for embankment slope stability, when the slope extends back to the 

abutment column, is 

e - I (EH +dsrroxJ s = tan 
R 

(1) 

where EH is embankment height. Adjusting Eq (I), gives an estimate for the limiting 

values of dsmax; 

(2) 

The flume experiments showed that R varied with the abutment length 

parameter LlBf (or essentially q/q,), as indicated in Figure 3, which includes data 

from similar measurements reported by Barkdoll et al. (2007) who studied the use of 

riprap aprons as an abutment-scour counter-measure. The two data sets are in 

reasonably good agreement. Barkdoll et al. (2007) suggest for R, 

~ - 4 (.l::...JO.2 (3) 

Y
f 

Y
f 

Consequently, the limiting scour depth can be estimated as 

dSmax = 4( ~ J 2 Yf tan Os - EH (4) 

In other words, the maximum scour depth at the abutment should not exceed 

the limit given by Eq (4). Note that this limit can actually be attained, especially 

when Bs is large, such as for an earthfill embankment formed of a compacted stiff 

clay. A larger scour depth leads to breaching of the embankment and flow relaxation 

through the bridge waterway (Figure 2b). The limiting scour-depth analysis should 

be further investigated for a range of earthfill materials, along with varying 

combinations of compacted embankment earthfill and floodplain soils. The present 

study was limited largely to uniform non cohesive sediment. The foregoing 

formulation of Eqs (I) through (4) is somewhat simplified, but is nonetheless 

indicative of how to estimate a limiting scour depth. 
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(a) 

EmbankDll:ntl 

(b) 

Figure 2. Deepening scour destabilizes the embankment face, causing the slope 

to fail geotechnically, and to erode back to a limiting condition. When the slope 

erodes back past the abutment column, the embankment breaches, and Scour 

Condition B attains an equilibrium state: the scour limit for an embankment 

face eroded back to an extent defined in terms of angle for embankment-slope 

stability, Os, and column position (a); and, embankment failure beyond this limit 

induces leads to embankment breaching and flow relaxation (b). 

It could be noted for an analysis of abutment geotechnical stability that rip rap 

presence does not enhance geotechnical stability. Riprap adds weight to the slope, 

but does not increase the shear strength of the earthfill forming the embankment. 

For abutments on footing foundations, a limiting maximum scour-depth 

coincides with the undermining of the footing and the possible geotechnical collapse 

of the earthfill embankment behind the abutment column. This limit also could be 

formulated, at least in approximate terms . A formulation is not given here, but the 

photo shown subsequently in Figure 4 for a vertical abutment illustrates such a 

geotechnical collapse, and directly indicates how the formulation might be 

formulated. 
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Figure 3. Definition sketch for distance, R, to deepest scour (a), and variation of 

RlYfversus LlBf(b)· 

CONCLUSIONS 

The new design approach replaces the old notion of treating abutment scour as 

a hydraulic erosion problem with the arguably more accurate notion that abutment 

scour essentially is a geotechnical problem. Most abutment failures are geotechnical 

failures, which limit the depth to which scour can develop. This paper offers a simple 

fonnulation for estimating scour-depth based on the geotechnical stability of the 

abutment spill-slope. Additionally, this paper presents photos of abutment scour 

illustrating the geotechnical failure of abutments. The limiting scour depth at bridge 

abutment for spill-through abutments is given by Eq (4). 

Moreover, the study shows that limiting scour depth does not depend on 

arbitrary assumptions about combining bridge-waterway contraction scour and local 

scour at the abutment structure, a notion that the study' s flume experiments do not 

support. Rather, the study shows that abutment scour is essentially scour at a short 

contraction, for which the combined influences of non-unifonn distribution of flow 

passing around an abutment, and the generation of large-scale turbulence in flow, 

passing around an abutment are intrinsically linked. 
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Figure 4. This photo illustrates the importance of embankment strength with 

respect to the development of abutment scour: the slope failure of the 

embankment immediately behind a wing-wall abutment founded on a spread 

footing. 
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