

Ein Service der Bundesanstalt für Wasserbau

Article, Published Version

Nestmann, Franz; Bachmeier, Guido Anwendung von Luftmodellen im strömungsmechanischen Versuchswesen des Flußbaus

Mitteilungsblatt der Bundesanstalt für Wasserbau

Verfügbar unter/Available at: https://hdl.handle.net/20.500.11970/102875

Vorgeschlagene Zitierweise/Suggested citation:

Nestmann, Franz; Bachmeier, Guido (1987): Anwendung von Luftmodellen im strömungsmechanischen Versuchswesen des Flußbaus. In: Mitteilungsblatt der Bundesanstalt für Wasserbau 61. Karlsruhe: Bundesanstalt für Wasserbau. S. 65-98.

Standardnutzungsbedingungen/Terms of Use:

Die Dokumente in HENRY stehen unter der Creative Commons Lizenz CC BY 4.0, sofern keine abweichenden Nutzungsbedingungen getroffen wurden. Damit ist sowohl die kommerzielle Nutzung als auch das Teilen, die Weiterbearbeitung und Speicherung erlaubt. Das Verwenden und das Bearbeiten stehen unter der Bedingung der Namensnennung. Im Einzelfall kann eine restriktivere Lizenz gelten; dann gelten abweichend von den obigen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

Documents in HENRY are made available under the Creative Commons License CC BY 4.0, if no other license is applicable. Under CC BY 4.0 commercial use and sharing, remixing, transforming, and building upon the material of the work is permitted. In some cases a different, more restrictive license may apply; if applicable the terms of the restrictive license will be binding.

Dr.-Ing. Franz Nestmann und cand.-Ing. Guido Bachmeier

ANWENDUNG VON LUFTMODELLEN IM STRÖMUNGSMECHNISCHEN VERSUCHSWESEN DES FLUSSBAUS

Application of air models in fluid dynamic research of river engineering

Franz Nestmann, Dr.-Ing., Heferatsleiter in der Bundesanstalt für Wasserbau (BAW)

Geboren 1951, Landau/Niederbayern. Studium des Bauing. an der Techn. Universität Karlsruhe von 1972 bis 1977. 1978 bis 1980 Assistent am Institut für Hydraulik (IfH) und Mitglied der Beratergruppe des IfH. 1981 bis 1984 Projektleiter des BMFT-Projekts Wasser-Luft-Gemische. 1984 Promotion über Lufteintrag und Sauerstofftransport im Wasser. 1984 bis 1985 Forschungsgruppenleiter am IfH. Seit 1986 Referatsleiter in der BAW.

Guido Bachmeier, cand.-Ing., Bauingenieurstudent an der Techn. Universität Karlsruhe, Vertiefungsgebiet Wasserbau

Geboren 1958, Studium des Bauingenieurwesens an der Technischen Universität Karlsruhe seit 1981.

Inhaltsangabe

In aerodynamischen Modellen können hydraulische Probleme auf der Grundlage der Analogie zwischen Wasser und unterkritischen Luftströmungen untersucht werden. Dies gilt auch für Strömungsvorgänge in Flüssen, bei welchen insbesondere der Feststofftransport entlang der Sohle von besonderem Interesse ist. Hier bietet die Luftmodelltechnik spezielle Möglichkeiten. Die physikalischen Grundlagen dieser Luftmodelltechnik werden umfassend erläutert und anhand eines Beispiels ausführlich dargelegt.

Summary

On the basis of the analogy of water- and subcritical airflows, hydraulic problems can be examined in aerodynamic models. This involves also the fluiddynamics within rivers where the transport of solid material is of special interest. Here the air-model-technique offers special possibilities of flow visualization. The physical basis of the technique is explained and the application of this technique is illustrated with the help of an example.

IN	HALT	Seite
1	Einleitung	67
2	Methoden der Strömungssichtbarmachung	68
3	Anwendung des Erosionsverfahrens im Luft- modell	71
4	Physikalische Grundlagen	76
5	Aufbau und Betrieb eines Luftmodells	83
6	Ergebnisse	85
7	Zusammenfassung	92
8	Literatur	93
9	Symbolverzeichnis	87

1 Einleitung

Zur Beschreibung von Feststofftransportvorgängen in Wasserströmungen, insbesondere in Flüssen, gibt es eine große Anzahl von teils experimentellen und teils theoretischen Untersuchungsmethoden. Die theoretisch abgeleiteten Feststofftransportgleichungen erlauben zwar eine grobe Abschätzung des Wechselspiels zwischen Flußbettform und Feststofftransportintensität auf rechnerischem Wege, die Genauigkeit dieser Vorhersagen reicht für die Praxis jedoch meist nicht aus. Zur Bearbeitung komplexer flußbaulicher Aufgabenstellungen wird daher meistens eine hydraulische Modelluntersuchung durchgeführt. Solche Modelle sind jedoch aufwendig und teuer. So ist beispielsweise ein hydraulisches Modell zur Optimierung von Regelungsbauwerken wegen vieler erforderlicher Umbaumaßnahmen recht ineffektiv, wenn es bei der Behandlung von Detailproblemen zunächst nur darum geht, einzelne Regelungsbauwerke hinsichtlich ihrer Wirkung auf die Strömungsvorgänge an der Flußsohle zu untersuchen.

Wegen der Schwierigkeiten einer quantitativen Erfassung und Beschreibung von räumlichen Strömungsvorgängen in Flüssen tragen Modellversuche zur Sichtbarmachung der Strömung entscheidend zu einem besseren Verständnis dieser komplexen Vorgänge bei. Hierbei wird vor allem an Strömungs- und Transportvorgänge entlang der Flußsohle gedacht, welche durch Regelungsbauwerke beeinflußt werden sollen. Für eine Sichtbarmachung solcher Sohlströmungen muß in einem naturähnlichen physikalischen Modell die Einleitung von geeigneten Tracern in die Strömung lokal und global möglich sein, wobei das Verfahren der Strömungssichtbarmachung vom Modellmaßstab abhängt.

Die Erfüllung solcher Anforderungen bereitet im hydraulischen Modell große Schwierigkeiten und insbesondere ist die globale Sichtbarmachung von Sohlenströmungsvorgängen dort nicht möglich. Zur Vordimensionierung und Gestaltung von Regelungsbauwerken wurde von den Autoren die Luftmodelltechnik eingesetzt, um die dargelegten Probleme zu überwinden. In Luftmodellen können wasserbauliche Problemstellungen auf der Grundlage der Analogie zwischen Wasserströmungen und unterkritischen, inkompressiblen Luftströmungen untersucht werden. Mit Hilfe einer geeigneten Methode können dabei einerseits die sohlnahen Strömungsverhältnisse sichtbar gemacht werden und andererseits kann eine relativ einfache Strömungsquantifizierung unter dem Einsatz geeigneter Meßmethoden erfolgen.

Die Anwendung dieser Untersuchungsmethode für die strömungsgünstige Gestaltung von Regelungsbauwerken in der Rheinstrecke bei Bonn-Beuel, vgl. Bild 1, resultierte in einem sehr schnellen Fortschritt der parallel laufenden hydraulischen Untersuchungen. Nachfolgend wird über die Grundlagen der Luftmodellkonzeption und die Ergebnisse dieser Untersuchungen für das ausgewählte Beispiel berichtet. Es ist beabsichtigt, diesen Aufsatz durch einen weiteren zu ergänzen, in welchem die theoretischen Grundlagen über die Strömungsvorgänge in solchen Modellen vertieft werden.

Bild 1: Lageplan der zu regulierenden Flußstrecke (--- Grenze des hydraulischen Modells, M 1 : 100)

2 Methoden der Strömungssichtbarmachung

Durch die Weiterentwicklung von Untersuchungsmethoden in Niedriggeschwindigkeitskanälen, vor allem für die Auto- und Flugzeugindustrie, wurde die Reproduzierbarkeit und die Übertragbarkeit von solchen Strömungsvorgängen in der Vergangenheit als gesichert nachgewiesen, vgl. /1, 2, 3, 14/. Auf diesen Grundlagen wurde nach Möglichkeiten gesucht, Strömungsvorgänge in Flüssen entlang der Sohle sichtbar zu machen, unter Einsatz der nachfolgend beschriebenen Verfahren. Die damit erzielten Ergebnisse erweisen sich im Vergleich zu Naturmessungen als wesentlich aussageschärfer. Die Erfassung von solchen Vorgängen ist aufgrund des instrumentellen Aufwandes sowie der für das sukzessive Auflösen einer Realströmung notwendigen, aber nicht gegebenen Reproduzierbarkeit äußerst schwierig bzw. oft gar nicht möglich. Durch den Einsatz der Luftmodelltechnik sollen daher folgende Zielvorstellungen verfolgt werden:

- * Ein q u a n t i t a t i v e s Ziel besteht darin, durch die Anwendung eines geeigneten Meßverfahrens, aufgrund der Ähnlichkeit, die relativen Geschwindigkeitsverhältnisse und Geschwindigkeitsverteilungen (z.B. logarithmisches Profil in ungestörter, vollturbulenter Strömung) in entsprechenden Strömungsgebieten nachzuweisen.
- * Ein qualitatives Zielbesteht darin, durch die Zugabe geeigneter Partikel das Strömungsfeld sichtbar zu machen, um folgende Differenzierungen vornehmen zu können:
 - Wo fließt die Strömung relativ langsamer, bzw. schneller?
 - Wo entstehen bevorzugt Gebiete mit Erosion, bzw. Sedimentation?
 - Wo entstehen abgelöste Strömungsgebiete?
 - Welche Richtungen weisen die Sohlstromlinien auf?

Zur Erfüllung der ersten Zielvorstellung wurde im Luftmodell ein Hitzdrahtanemometer eingesetzt, vgl. Bild 2, auf dessen Anwendung hier nicht weiter eingegangen wird, vgl. /3, 4/. Die Erfüllung der zweiten Zielvorstellung soll hingegen nachfolgend kurz vertieft werden.

Bild 2: Geschwindigkeitsmessung im Luftmodell

Unter Sichtbarmachung von Strömungsvorgängen versteht man alle Verfahren, um die Bewegungsvorgänge eines normalerweise durchsichtigen Fluids (z.B.: Öl, Wasser, Luft etc.) für das Auge erkennbar zu machen. Hierbei ist folgende Differenzierung möglich:

- Sichtbarmachung des gesamten Strömungsfeldes,
- Sichtbarmachung eines begrenzten Bereiches in unmittelbarer Nähe der Strömungsberandung und
- Sichtbarmachung von Auswirkungen der Strömungsvorgänge auf die Oberfläche der Strömungsberandung.

Die angewendeten Methoden können hierfür grundsätzlich in zwei Kategorien untergliedert werden, von denen einige nachfolgend genannt werden:

ortsfeste Detektoren		von der Strömung fortbewegte Detektoren		
×	Wetterfahne	*	Wetterballon	
¥	Interferometrie	*	Teilchenzuführung	
¥	Schlierenverfahren	*	Farbstoffinjektion	
¥	Fadensonden		^o	
¥	Anathichmanfahnan			

* Anstrichverfahren

Die Auswertung eines Strömungssichtbarmachungsverfahrens kann auf mehrere Weisen geschehen, die je nach Methode mehr oder weniger qualitative Informationen liefern:

- Visuelle Beobachtung über einen längeren Zeitraum,
- Photographische Fixierung des Strömungsverlaufes,

Zeitaufnahme

- Computergestützte Auswertung von Filmen oder Einzelbildern.

Vollständigkeitshalber wird darauf hingewiesen, daß für eine physikalisch richtige Interpretation der erhaltenen Bilder folgende Begriffe unterschieden werden müssen /5/:

Stromlinie:	charakterisiert Momentaufnahme	durch	eine	fotographische	
Bahnlinie:	charakterisiert	durch	eine	fotographische	

Streichlinie: Verbindungslinie aller Partikel desselben Ursprungs

Für die stationäre Strömung resultiert ein übereinstimmender Verlauf dieser Linien.

Im vorliegenden Fall einer flußbaulichen Voruntersuchung besteht nun die Aufgabe darin, die "Auswirkungen der Strömungsvorgänge auf die Oberfläche der Strömungsberandung" (Flußsohle) sichtbar zu machen, um so eine Interpretation der Wechselwirkungen von Strömungsvorgang und Feststofftransport im makroskopischen Bereich vornehmen zu können. Hierbei kommen Sichtbarmachungsverfahren zur Anwendung, die auf folgenden Analogien beruhen:

Wärmeaustausch $\dot{q}_{w} = -(\lambda_{T} + v_{T}) \frac{dT}{dy}$ Stoffaustausch $\dot{q}_{M} = -(D + v_{p}) \frac{dc}{dy}$ (1) Impulsaustausch $\tau = -(v + v_{t}) \frac{d(gv)}{dy}$

Massenaustausch und Schubspannungswirkung sind einander proportional. Auf diese Weise können Gebiete mit Strömungsablösung, Erosion und Sedimentation sichtbar gemacht werden. Beispiele für Verfahren zur Strömungssichtbarmachung in der Nähe der Oberfläche der Strömungsberandung sind:

- Sichtbarmachung durch Wärmeaustausch

- * Flüssigkeitskristalle in Temperaturfeldern
- * Infrarot-Thermographie
- Sichtbarmachung durch Stoffaustausch
 - * Sublimationsverfahren
 - * Evaporationsverfahren
 - * Adsorptionsverfahren
 - * Absorptionsverfahren

- Sichtbarmachung durch Impulsaustausch

- Adhäsionsverfahren
- Erosionsverfahren

mit und ohne Bindemittel für die Partikel

Durch die Wirkung von Schwere-, Zähigkeits-, Trägheits- und Schubkräften werden die Suspensa zur Strömungssichtbarmachung durch das Fluid entlang der Oberfläche verschoben.

3 Anwendung des Erosionsverfahrens im Luftmodell

Das Erosionsverfahren kann in einem Luftmodell durch das Auftragen einer Suspension aus einem Öl-Pigment-Gemisch auf die Modelloberfläche realisiert werden.

_Gebläseanschluß

Bild 3: Luftmodell im Betrieb (3 Varianten)

Die Luftströmung bewirkt, daß das Öl-Pigment-Gemisch, vgl. Bild 3, über die Modelloberfläche fließt. Hierbei entstehen streifenförmige Pigmentablagerungen, die den Stromlinien folgen. Diese Pigmentdeposition entlang beliebig orientierter Oberflächen hängt ab von:

- dem Strömungsfeld der Kontinuumsphase (Luft)
- der Teilchengröße und Form
- der Teilchenkonzentration
- den Stoffeigenschaften des Trägerfluids und der Partikel

Zur Vermeidung einer verzerrten Darstellung des Strömungsfeldes sollten die Teilchen einen Durchmesser d_n haben,

 $0, 1 < d_p < 20 \ \mu m$ (2)

vgl. /6, 7/. Zu große Teilchen entwickeln eine Eigendynamik, welche von derjenigen des Strömungsfeldes stark abweicht. Ebenso sollte zwischen den dynamischen Viskositäten der Kontinuumsphase μ_{Luft} und dem Trägerfluid $\mu_{Öl}$ die in Bild 4 dargestellte Relation Gültigkeit haben, dann bleiben die über der dünnen Öl-Pigment-Schicht vorhandenen Geschwindigkeitsprofile unverzerrt, d.h. es gelten über der Ölschicht näherungsweise die Bedingungen einer festen Berandung.

Bild 4: Eigenschaften der Öl-Pigment-Schicht

Zur Herstellung eines Öl-Pigment-Gemisches können folgende Stoffe verwendet werden:

Ö1:

- Kerosin
- leichtes Dieselöl
- Leichtöl (Transformatorenöl)
- Vakuumpumpenöl für Hochgeschwindigkeitsversuche

Pigment: - Titandioxid

- Magnesiumsilikat (Talkum)

- Kaolin

- Ruß
- Fluoreszierendes "Chrysene"

Zur Erläuterung der **Pigmentdeposition** wird auf die Analogie zwischen Stoff- und Impulsaustausch hingewiesen. Demnach besteht eine starke Wechselbeziehung zwischen Teilchentransport und Strömung dort, wo große Turbulenzen auftreten. Der Massentransport \dot{q}_m läßt sich hierfür folgendermaßen beschreiben:

 $\dot{q}_{m} = (D + v_{p}) \frac{dc}{dy}$ (4)

 v_{p} : Diffusionskonstante

der Teilchen

D : mol. Diffusionskonstante $\frac{dc}{dv}$: Konzentrationsgradient

Der molekulare Transport ist hierbei vernachlässigbar, wenn für die Teilchengröße d_n gilt:

$$d_p > 1 \ \mu m \qquad v_p \gg D$$
 (5)

Somit folgt:

 $\dot{q}_{m} = v_{p} \frac{dc}{dt}$ (6)

Unter der Berücksichtigung der bestehenden Analogie (Gl. 1) folgt:

$$v_p \simeq v_t$$
 (7)

und daraus für den turbulenten Impulstransport

$$T_t = g \cdot v_t \frac{dU}{dy} = g \cdot v_p \frac{dU}{dy}$$
(8)

Die Gleichung 8 ist eine Bestimmungsgleichung für die Schubspannung T_t als Funktion von v und dem zugehörigen Geschwindigkeitsgrädienten dU/dy.

Bei der Umformung der Navier-Stokes-Gleichung in die Reynoldsgleichung, durch eine Aufspaltung der Momentanwerte in Mittelund Schwankungswerte, erhält man für eine zweidimensionale, inkompressible Strömung für die turbulenten Schubspannungen:

$$T_{t} = -g \cdot \overline{u'v'} \tag{9}$$

Aus den Gl. (8) und (9) folgt somit:

$$v_p = \frac{-u'v'}{dU/dy}$$

73

(10)

Es besteht somit ein physikalischer Zusammenhang zwischen Partikelerosion und Deposition und den mittleren Geschwindigkeitsgradienten, sowie der Korrelation turbulenter Geschwindigkeitsschwankungen.

Der abgeleitete Zusammenhang gilt strenggenommen nur für parallel überströmte Flächen. Zur Beschreibung der Strömungsvorgänge entlang anderer räumlicher Hindernisse müssen zusätzlich die anderen Geschwindigkeitskomponenten berücksichtigt werden. Der Einfluß von senkrecht zur Hauptströmungsrichtung wirksamen Kraftkomponenten (Querkräfte) auf die Feststoffpartikel kann mit Hilfe der Geschwindigkeitsverteilung in Bild 5 und der Bernoulli-Gleichung erklärt werden.

Bild 5: Entstehung von Liftkräften an Partikeln

Infolge der Geschwindigkeitsverteilung entlang der Partikeloberfläche entsteht so eine Druckverteilung mit einer resultierenden Kraft F_L (Liftforce), die normal zur festen Berandung gerichtet ist. Beispielsweise werden durch diesen Einfluß in einem Wirbel die meisten Partikel dort abgelagert, wo die Zentripetal F_Z- und Querkräfte F_Q der Partikel im Gleichgewicht stehen, vgl. Bild 6.

Bild 6: Partikel in einem kombinierten Wirbelfeld

Mitt.bl.BAW (1987) Nr. 61

Ein fortgesetzter Ablagerungsprozeß der Pigmentpartikel entsteht in der Strömung durch das Zusammenklumpen. Dieser bleibt solange aufrechterhalten, wie durch die Strömung Partikel herantransportiert werden. Die Pigmentpartikel erzeugen auf diese Weise reproduzierbare Strömungsbilder entlang den festen Strömungsberandungen /8, 2/.

Mit Hilfe des Erosionsverfahrens können beispielsweise auch Sekundärströmungsvorgänge in gekrümmten Gerinnen sichtbar gemacht werden, obwohl das Verhältnis der mittleren Geschwindigkeit der Sekundärbewegung V und der mittleren Geschwindigkeit der Hauptströmung V

$$V_{s}/V_{o} \simeq 2\%$$
 mit $V_{s} = 1/V_{o}^{2} + W_{o}^{2}$ (11)

Wo: mittlere Querströmungsgeschwindigkeit

beträgt /9/. Solche Strömungsvorgänge, vgl. Bild 7 sind mit herkömmlichen Strömungsmeßmethoden (Pitot-Sonde, Flügel etc.) nicht detektierbar /10/.

Bild 7: Sekundärbewegungsvorgänge in einer Gerinnekrümmung

Als weiteres Beispiel für die Sichtbarmachung von Strömungsvorgängen ist in Bild 8 das komplizierte Strömungsfeld um einen Pfeiler mit Hufeisenwirbel dargestellt. Letzterer kann auch mit Hilfe des Erosionsverfahrens entlang der festen Berandung sichtbar gemacht werden. Auf eine Vertiefung des physikalischen Hintergrundes wird unter Hinweis auf die entsprechenden Literaturstellen, /5, 11, 12/, verzichtet.

Bild 8: Strömungsvorgänge um einen Pfeiler

4 Physikalische Grundlagen

Nachdem auf die Möglichkeiten hingewiesen wurde, in einem Luftmodell mit Hilfe geeigneter Meßmethoden (z.B.: Hitzdrahtanemometrie, Laser-Doppler-Anemometrie etc.) und einer geeigneten Sichtbarmachungsmethode ein gegebenes Strömungsfeld beschreiben zu können, sollen nachfolgend die physikalischen Grundlagen des Luftmodellbetriebs diskutiert werden. Aus der Literatur bekannte, ausgewählte Luftmodelluntersuchungen sind in der Tabelle 1 übersichtlich zusammengestellt.

Ein Luftmodell kann zunächst einmal als ein Windkanal angesehen werden. Über die Anwendung von Windkanälen ist wegen des einfachen Betriebs bekannt, daß diese den offenen Wasserkanälen vorzuziehen sind, wenn immer dies physikalisch möglich ist /12/. Der Einsatz eines Luftmodells ist daher mit einigen Voraussetzungen verknüpft, die nachfolgend diskutiert werden:

4.1 Stationäre Strömungsverhältnisse

Durch die im Unterschied zu den Strömungsvorgängen in Wasser mit freier Oberfläche, im Luftmodell vorhandene feste Berandung, können Strömungsinstationaritäten, d.h. wechselnde Wasserstände und Welleneinflüsse (mit Ausnahme stehender Wellen /13/) nicht untersucht werden.

4.2 Kavitations- und Oberflächenspannungseinflüsse

Im Luftmodell ist aufgrund der physikalischen Eigenschaften des Fluides Luft und der nicht vorhandenen freien Oberfläche zu einem anderen Fluid nur die Untersuchung einer einphasigen Strömung möglich. Die genannten Effekte können daher mit einem Luftmodell nicht untersucht werden.

and the oralises of the second s		
UDSSR	: Makkaveev 1941 ^{*)} /27/	Erste Grundlagenunter- suchung
	Gilyarov 1959 ^{*)} /28/	Grundlagen
	Lyatkher und *) Prudovskii 1959 /29/	Ähnlichkeitskriterien
	Averkiev 1963 ^{*)} /30/	Gerinneströmungen
	Lapsin 1960 ^{*)} /34/	Modellüberhöhungen
Rumänien	: Kahan 1954 ^{*)} /31/	Grundlagen
	Hancu 1967 /25/	Grundlagen u.verschie- dene Anwendungen, Handbuch
Polen	: Juniewicz und*) Aulich 1958 /22/	Entnahmebauwerk
	Jacenkow und*) /32/	Maßstabsuntersuchungen
	Walczak 1959 /23/	Mäanderbildung und Erosion
Tschechos- lowakei	: Komora und Sumbal 1965 /24/	Sedimentation im Stauraum
Ungarn	: Jvcsics 1969 ^{*)} /33/	Flußregulierung
DDR	: Faulhaber 1986 /17/	Entnahmebauwerk
USA	: Rouse, Siao und Nagaratnam 1958 /13/	Wechselsprung
BRD	: Westrich und Kobus 1976 /18/	Entnahmebauwerk
	Nestmann und Bachmeier 1986 /4,35/	Untersuchungen im Fluß
Portugal	: Bau, Cunha und Rocha 1977 /21/	180° Krümmung
Italien	: Suppino 1951 /26/	Grundlagen
-a hlerbei -aodr 8	Adami, Alfonsi und Da Deppo 1981 /20/	Lagune von Venedig

Tabelle 1: Zusammenstellung der aus der Literatur bekannten Luftmodelluntersuchungen für wasserbauliche Maßnahmen

*) siehe Literaturliste

Mitt.bl.BAW (1987) Nr. 61

4.3 Der Zähigkeitseinfluß, gekennzeichnet durch die Reynoldszahl, muß im Verhältnis zu den Trägheitsreaktionen des Fließzustandes (laminar oder turbulent) berücksichtigt werden.

Der Schwerkrafteinfluß, gekennzeichnet durch die Froudezahl, muß

- entweder vernachlässigbar oder

- bekannt sein.

Formal kann das Geschwindigkeitsfeld \overline{U} { u (x, y, z), v (x, y, z), w (x, y, z) } durch folgende dimensionslose Funktion beschrieben werden:

 $\frac{U}{U_o} = f (Re, Fr, \frac{k}{r_{hy}}, Geometrie \dots)$ (12)

Re: Reynoldszahl

Fr: Froudezahl

 $\frac{k}{r_{hy}}$: relative Oberflächenrauheit (r_{hy} : hydraulischer Radius)

Geometrie: gemeint ist die Form aller festen Berandungen

Durch eine **geometrisch ähnl**iche Nachbildung der festen Ränder des Strömungsfeldes im Luftmodell wird der Einfluß der Geometrie vollständig berücksichtigt. Die **relative Oberflächenrau**heit k/r, ist nur näherungsweise modellierbar. Um diese Randeinflüsse auf das mittlere Geschwindigkeitsprofil vernachlässigen zu können, sollte der gesamte Druckverlust des Modells in etwa dem hydraulischen Verlust in der Natur entsprechen. Auf eine Modellüberhöhung n sollte nur soweit zurückgegriffen werden, als diese unbedingt erforderlich ist. Eine Notwendigkeit hierfür ergibt sich einerseits aus der für Luftmodelle großen Maßstabszahl L_r = L_N/L_M (Länge Natur/Länge Modell) und einer daraus resultierenden sehr geringen Modellhöhe, und andererseits aus der Notwendigkeit, im Modell genügend Platz für Meßsonden zu haben.

Die Erfahrung hat gezeigt /4/, daß in einem dreidimensionalen Luftmodell (hierbei werden auch die Querprofile geometrisch ähnlich nachgebildet) die Modellüberhöhung

n < 3 (13)

sein sollte. Bei zweidimensionalen Luftmodellen (auf eine geometrisch ähnliche Nachbildung der Querprofile wird hierbei verzichtet, die Modellränder werden vertikal, dem Grundriß entsprechend eingebaut, die Flußsohle ist horizontal) wird auf die Hinweise und Empfehlungen in /14/ hingewiesen. Bei der Untersuchung von Strömungsverhältnissen an Bauwerken ist für das dreidimensionale Modell eine Überhöhung unzulässig. Der Zähigkeitseinfluß spielt bei den hier diskutierten flußbaulichen Untersuchungen wegen der vollturbulenten Strömung eine untergeordnete Rolle. Im physikalischen Modell sollte daher die Reynoldszahl groß genug sein, um einen vollturbulenten Strömungszustand zu ermöglichen. Als untere Grenze gilt hierfür nach /15/:

$$Re = 4 \frac{V r}{V} hy \ge 5000$$
(14)

Die Reynoldszahlen im Luftmodell sind wie auch in Wassermodellen kleiner als diejenigen in der Natur. Die Strömungsturbulenz besteht aus einer Verteilung von Wirbeln unterschiedlicher Größe, und der Energietransport findet aus der Hauptströmung über die großen (Makrowirbel) zu den kleinsten Wirbeln (Mikrowirbel) statt, in denen die Energie dissipiert wird. Bei unterschiedlichen Reynoldszahlen findet dieser Transport im Modell in einer anderen Wirbelgrößenverteilung statt als in der Natur. Während die größten Wirbel durch die Modellberandung vorgegeben sind, werden die kleinsten Wirbel verzerrt dargestellt. Im relativ kleinen Luftmodell können daher nur diejenigen Strömungsvorgänge, die im Zusammenhang mit den Makrowirbeln (Hauptströmung) stehen, untersucht werden /16/. Daß im Luftmodell bei Erfüllung der Beziehung (14) tatsächlich ein vollturbulenter Strömungszustand erreicht wird, veranschaulichen zwei im Modell gemessene Profile und der Vergleich mit einem entsprechenden Profil nach der Theorie von Nikuradse, vgl. Bild 9.

Bild 9: Gemessene Geschwindigkeitsverteilungen im Luftmodell

Der Schwerkrafteinfluß der Froudezahl wird im Luftmodell durch die Abdeckung der im Wasser vorhandenen freien Oberfläche kompensiert, vgl. Bild 10. Bei Flußmodellen wird dabei angenommen, daß die Form der bekannten freien Wasseroberfläche näherungsweise einer Ebene entspricht. Welleneinflüsse werden im Modell nicht berücksichtigt.

Hiernach werden zwei Luftmodelltypen unterschieden (Bild 10):

- Im Einfachmodell wird die bekannte freie Wasseroberfläche durch eine Modellabdeckung fixiert. Hierbei muß der Einfluß der zusätzlichen Grenzschichtentwicklung infolge der Abdeckung durch eine entsprechende Vergrößerung der Abdeckungshöhe um die Größe h₂ berücksichtigt werden. Eine Wasserspiegellagenneigung kann näherungsweise durch eine entsprechende Neigung der Modellabdeckung kompensiert werden.

Bild 10: Differenzierung der Luftmodelltypen

In /17/ werden für das Einfachmodell folgende Unterscheidungsmerkmale getroffen:

- 1. modellierender Teil, h₁
- modelliert wird das Geschwindigkeitsfeld des Untersuchungsgebietes
- nicht modellierender Teil, h₂
- liegt außerhalb des zu untersuchenden Geschwindigkeitsfeldes und ist infolge der wirksamen Grenzschicht entlang der Modellabdeckung für die Ausbildung des Geschwindigkeitsfeldes von besonderer Bedeutung.
- Im Doppelmodell wird die Modellgeometrie zusätzlich im Spiegelbild nachgebaut und mit der vorgegebenen Modellgeometrie /18/ kombiniert. Hierdurch wird der Grenzschichteinfluß des Einfachmodells eliminiert. Der Modellaufbau ist jedoch wesentlich aufwendiger, weswegen diese Methode besser für Geometrien mit ebenen Berandungsflächen (Bauwerke, zweidimensionale Luftmodelle) geeignet ist.

Zusammenfassend kann in einem Luftmodell durch das Fehlen der freien Oberfläche der Schwerkrafteinfluß nur dadurch berücksichtigt werden, daß die Abdeckung der den jeweiligen Froudezahlen zugeordneten Wasserspiegellagen angepaßt wird. Dies ist im Extremfall auch für stehende Wellen (z.B. Wechselsprung) möglich /13/, wobei die der jeweiligen Froudezahl zugeordnete Deckwalzenform durch eine entsprechende Abdeckungsform modelliert werden muß. Lediglich am Rande sei erwähnt, daß diese Untersuchungen signifikante Informationen für die physikalische Beschreibung des Wechselsprunges lieferten.

4.4 Kompressibilitätseinfluß

Unter Kompressibilität eines Fluides wird die Volumenänderung △♥ desselben infolge der Wirkung von äußeren Druckkräften bzw. der daraus resultierenden Druckdifferenz verstanden. Das Volumen-Elastizitätsmodul E ist hierfür ein Maß:

$$\Delta p = -E \ \Delta \Psi/\Psi_{O} \tag{15}$$

♥: Anfangsvolumen

A A /

Beispiele:

1. Luft: E = 0,981 . 10^{5} Pa bei T = 283 K (16) 2. Wasser: E = 19,620 . 10^{8} Pa

Luft ist daher ca. 20.000 mal kompressibler als Wasser.

17 /17

Ob die Kompressibilität im Luftmodell einen Einfluß hat, hängt davon ab, wie groß die Volumenänderung infolge des Strömungsdruckes Ap ist. Die Verknüpfung von Volumenänderung und Dichte ist hierbei die folgende:

$$(\Psi_{} + \Delta \Psi) \cdot (Q_{} + \Delta Q) = \Psi_{} Q_{}$$
(17)

bzw.

w.
$$\Delta g/g_0 = \psi/\psi_0$$

ist: $\Delta p = -E \cdot \Delta \psi/\psi_0 = E \cdot \Delta g/g_0$ (18)

Ein Strömungsvorgang ist inkompressibel, wenn

Nachweis:

2
 2

ist.

Somit

Desweiteren ist eine typische Größe einer wirksamen Druckdifferenz Δp zu bestimmen. Die durch einen Strömungsvorgang bewirkte maximale Druckdifferenz Δp ist von der Größenordnung des Staudruckes abhängig.

$$\Delta p_{max} = g V^2 / 2 \qquad \Delta g / g_0 \simeq \Delta p_{max} / E \qquad (20)$$

Mit der Definition der Schallgeschwindigkeit

$$c^2 = E / g_0 \tag{21}$$

und den Gleichungen (20) folgt:

$$\Delta g/g_{o} \simeq g_{o} V^{2}/(2E) = 0,5 \quad (V/c)^{2} \ll 1$$
(22)

(23)

Die Kompressibilität ist demnach vernachlässigbar, wenn folgendes Kriterium Gültigkeit hat:

Ma: Machzahl

0

Für die größtmögliche Strömungsgeschwindigkeit V in einem Luftmodell ergibt sich bei einer zu vernachlässigenden Kompressibilität:

Luft
$$c \simeq 330$$
 m/s bei T = 293 K

Angenommene maximale Strömungsgeschwindigkeit:

 $V = 100 \, \text{m/s}$

Daraus resultierende relative Dichteänderung:

$$\Delta g/g = 0,5 \text{ Ma}^2 = 0,05 = 5\%$$

Dieses Ergebnis wird als äußerste Grenze für die Vernachlässigung der Kompressibilität angesehen.

Bei allen durchgeführten Untersuchungen galt für die maximalen Strömungsgeschwindigkeiten

 $V_{max} < 60 m/s$

was einer relativen Dichteänderung

entspricht und als guter Grenzwert anzusehen ist.

5 Aufbau und Betrieb eines Luftmodelles

Der Anlaß für die Durchführung von Luftmodelluntersuchungen für Strömungsvorgänge im Fluß war die im Kapitel 1, Bild 1, angesprochene Aufgabenstellung. Nachdem für die gesamte Niederrheinstrecke im vergangenen Jahrhundert durch den Bau von Buhnen, Parallelwerken, Deckwerken, Durchstichen und dem Verbau von Nebenarmen ein relativ beständiges Gewässerbett geschaffen worden war, führten Kiesgewinnung und Kohleabbau zum Absinken der Stromsohle, und es traten Erosions- und Verlandungsprobleme vermehrt zum Vorschein. Infolge dieser Feststoffumlagerungen kommt es zur fortgesetzten Bildung von Fehlstellen in der Fahrrinne, welche die Schiffahrt behindern. In einem ersten Entwurf ist für den Rheinabschnitt Bonn-Beuel als Regelungsmaßnahmen der Bau von Parallelwerken vorgesehen. In einem hydraulischen Modell im Maßstab 1 : 100 und einer Höhenverzerrung n = 2 wurden in der Bundesanstalt für Wasserbau die Auswirkungen trapezförmiger Parallelwerke auf den Abflußvorgang untersucht. Da es genügend Gründe gegen einen derartigen, monoton aussehenden Verbau gibt, sollten in einem weiteren Projektabschnitt Parallelwerke untersucht werden, die in der Längsausdehnung Ein- und Ausbuchtungen, Erhöhungen und Vertiefungen aufweisen. Hierdurch soll eine bessere Eingliederung des Bauwerkes in die Landschaft erzielt werden, vgl. Bild 11.

Infolge der komplizierten Geometrie der Parallelwerke, die durch eine starke Unregelmäßigkeit der Berandung und durch etliche Durchlässe gekennzeichnet ist, muß zwischen dem Ufer und dem Parallelwerk mit Strömungsablösung und Totraumgebieten gerechnet werden. Solche Strömungsvorgänge müssen wegen der damit verbundenen Erosions- und Verlandungstendenzen weitgehend vermieden werden.

Derartige Untersuchungen sind im hydraulischen Modell aus bautechnischen Gründen sehr aufwendig und zeitraubend. Deshalb wurde von den Autoren damit begonnen, Voruntersuchungen in einem Luftmodell im Maßstab 1 : 1000 durchzuführen.

Der Höhenmaßstab des Modells wurde anfangs nicht festgelegt. In einer Vorstudie sollte herausgefunden werden, auf welchen Maßstab die erforderliche Höhenverzerrung zu begrenzen ist, bzw. bis zu welcher Höhenverzerrung noch keine Änderungen der großräumigen Strömungsvorgänge entlang der Sohle eintreten.

Von der gesamten Breite des Rheins (bis zu 500 m) sollte nur derjenige Teil nachgebaut werden, der für die zwischen dem Beueler Ufer und dem Parallelwerk ablaufenden Strömungsvorgänge relevant ist, vgl. Bild 12. In Voruntersuchungen wurde die für den Modellbetrieb erforderliche Mindestbreite a der Fahrrinne festgestellt, welche zu den gleichen Modellergebnissen führte, als wäre die gesamte Flußbreite im Modell nachgebildet worden.

Bild 11: Beispiel eines Gestaltungsvorschlages der zu untersuchenden Parallelwerke im Grundriß unter Angabe von Höhenlinien

Das Gebläse war mit einem transistorgeregelten Motor ausgerüstet. Der Leistungsbereich betrug 0,11 bis 3,0 kW, wobei eine maximale Drehzahl von 2200 Upm erzielt wurde. Für die Versuche wurden maximal 2000 Upm eingestellt.

Zur Strömungssichtbarmachung wurde die Sohle mit einer Mischung aus Talkum und Petroleum eingestrichen. Beim Auftragen der Mischung wurde auf einen gleichmäßigen Anstrich geachtet, um die Wechselwirkungen zwischen Anstrich und Strömung zu minimieren. Das hierdurch sichtbar gemachte Strömungsfeld ist einerseits als ein Strömungsrichtungsfeld und andererseits als ein Energiefeld zu interpretieren. Infolge der unterschiedlichen Dichte der Talkumspuren erhält man auch einen qualitativen Eindruck über zu erwartende Erosions- und Verlandungstendenzen.

6 Ergebnisse

Für die in Kapitel 5 beschriebene Luftmodelluntersuchung konnte nicht auf Erfahrungen ähnlicher Untersuchungen zurückgegriffen werden, so wie sie beispielsweise für hydraulische Untersuchungen vorliegen. Somit waren zunächst Grundlagenuntersuchungen erforderlich, um die in Kapitel 5 dargelegten Randbedingungen des Modellaufbaus zu rechtfertigen.

Zusammenfassend ergeben sich aus den Grundlagenuntersuchungen folgende Einschränkungen, die in /4/ durch entsprechende Darstellungen belegt werden:

 Die Modellüberhöhung n sollte für die Untersuchung der Strömungsverhältnisse im Fluß n < 3 betragen. Für die hier diskutierten Untersuchungen wurde n = 2 gewählt.

- Längenmaßstabszahl. für die horizontale Ebene

 $L_{rh} = 1000$

- Längenmaßstabszahl für die vertikale Richtung

 $L_{u} = 500$

2. Als Höhe t der Abdeckplatte, vgl. Bild 12, wurde

t = GLW + 110 cm (GLW: gleichwertiger Wasserstand)

gewählt.

- Für kleinere Höhen t wird ab einem kritischen Wert der Einfluß der Grenzschicht entlang der Abdeckplattenoberfläche, vgl. Bild 10, auf das Strömungsbild sichtbar.
- Für größere Höhen t, abnehmender Verbauungsgrad h/t, wurde der Einfluß des Parallelwerks auf die Sohlenströmungsverhältnisse zwischen dem Parallelwerk und dem Beueler Ufer zunehmend geringer.

Mitt.bl.BAW (1987) Nr. 61

3. Die im Modell darzustellende Breite der Hauptströmung a betrug

 $a \ge 3 t$,

um eine Verzerrung des Strömungsbildes infolge der Wechselwirkung zwischen dem Strömungsfeld in der Fahrrinne und dem zu untersuchenden Strömungsfeld zu vermeiden.

Grundlage der Untersuchungen waren drei Gestaltungsvorschläge, von denen die Variante III exemplarisch in Bild 11 dargestellt ist. Für die im Luftmodell untersuchte Variante I resultierte anhand der Strömungssichtbarmachungsmethode nach dem Erosionsverfahren der in Bild 13 dargestellte Verlauf der sohlennahen Strömungsvorgänge. Es ist deutlich zu erkennen, daß unmittelbar hinter dem Landanschlußdamm infolge der im Damm vorhandenen Durchlaßöffnungen (kl. weiße Dreiecke in Bild 13), großräumige Wirbel im Strömungsfeld zwischen Ufer und Parallelwerk entstehen. Innerhalb dieser Wirbelzonen ist mit einem Wechsel von Erosion und Verlandung zu rechnen. Im Nachlauf der beiden großräumigen Wirbel wird eine strömungsberuhigte Zone (weiße Flächen in Bild 13) erzeugt, innerhalb welcher verstärkt Verlandungstendenzen auftreten.

Ein quasi paralleles Strömungsfeld entsteht weit unterstrom vom Landanschlußdamm. Die starken Querschnittsänderungen des Parallelwerkes bewirken im untersuchten Strömungsfeld einen deutlich erkennbaren gewellten Strömungsverlauf. Im unmittelbaren Bereich des Parallelwerkes sind der Wechsel von Erosion und Verlandung die Folge dieser geometrisch bedingten Strömungsinstabilitäten.

Im Rahmen der Voruntersuchungen zur Parallelwerksgestaltung im Luftmodell wurden insgesamt 17 unterschiedliche Varianten untersucht. Hierbei wurde schrittweise die Geometrie des Parallelwerkes und des Landanschlußdammes variiert. Letztere erwies sich zur Herstellung möglichst parallel ausgerichteter Sohlenstromlinien als maßgebend. Ausgehend von dem Variantenvorschlag III, vgl. Bild 14, bei welchem hinter dem Landanschlußdamm ähnliche Wirbel wie bei der Variante I auftreten, wurden Modifikationen der Geometrie entsprechend den Varianten III a und III b, vgl. Bild 14, durchgeführt. Der Ausführungsvorschlag resultierte in einer Parallelwerksgestaltung nach Variante III, vgl. Bild 11, und einer Gestaltung des Landanschlußdammes nach Variante III b, vgl. Bild 14.

Wegen unterschiedlicher Anströmrichtungen der Durchlässe im Landanschlußdamm genügt es nicht, die Öffnungen in den Landanschlüssen mit konstantem Querschnitt gleichmäßig zu verteilen, um eine wirbelfreie Durchströmung des Gebietes hinter den Parallelwerken zu erzeugen. Vielmehr müssen die Durchlässe in Richtung, Querschnitt und Abstand untereinander den Strömungsgegebenheiten angepaßt werden. Letztere sind mit dem Wasserstand und dem Abfluß verknüft, weswegen eine Optimierung nur als Näherung an eine möglichst ablagerungsfreie Strömung betrachtet werden kann.

Bild 12: Details zum Aufbau des Luftmodells, vgl. auch die Bilder 2 und 3

Da der Rhein in diesem Streckenabschnitt nach den Baumaßnahmen eine nahezu ebene Sohle haben soll, wurden nur die markanten Erhebungen, wie das Parallelwerk und das Beueler Ufer aus Plastilin auf einer 19 mm dicken Glasplatte modelliert. Die Größe des Modelltisches von 1,8 m x 3,2 m ermöglichte den gleichzeitigen Aufbau von jeweils drei Modellvarianten. Zur Erzeugung gleicher Anströmungsbedingungen, wurden in den Varianten zusätzlich zu dem zu untersuchenden Parallelwerk noch ca. 500 m des oberstromigen Flußabschnittes im Modell nachgebildet, vgl. Bild 3. Hierdurch konnte ein voll entwickeltes, turbulentes Geschwindigkeitsprofil gewährleistet werden, das sich nach einer Anlaufstrecke von 25r hy bis 40r (rhy: hydraulischer Radius) ausbildet, vgl. Bild 9 und /19/.

Die Modellabdeckung bestand aus einer 12 mm dicken Plexiglasplatte. Durch Abstandshalter wurde eine definierte Höhe zwischen Abdeckplatte und Flußsohle eingehalten, und ein Verformen der Platte wurde durch Versteifungsrippen verhindert.

Das Luftmodell wurde im Saugbetrieb gefahren, d. h., das Gebläse war saugseitig an das Modell angeschlossen. Hierdurch wurden die Störungen des Gebläses nicht auf das Modell übertragen. Im Bereich der Luftzuführung zum Modell wurde so eine gleichmäßige Potentialströmung erzeugt, wodurch eine störungsfreie Modellanströmung sichergestellt wurde.

Bild 14: Gestaltung des Landanschlußdammes der Varianten III, III a, III b

Nes tmann/Bachmeier Anwendung von Luftmodellen

68

Bild 15: Im Luftmodell sichtbar gemachte Sohlenströmungsvorgänge für die Variante III

90

Mitt.bl.BAW (1987)

Nr.

61

Blick vom "Langen Eugen" stromab auf die "Kennedy-Brücke"

Blick von der "Kennedy-Brücke" stromauf zum "Langen Eugen"

Bild 16: Hydraulisches Modell der Rheinstrecke Bonn-Beuel, Regelungsvariante 25, Wasserstand GlW (gleichwertiger Wasserstand), Parallelwerksvariante III b

Für die Variante III b ergab sich das in Bild 15 dargestellte Bild des Stromlinienverlaufs entlang der Sohle im Luftmodellversuch. Im Vergleich zur Variante I, vgl. Bild 13 und den anderen, hier nicht dargestellten Untersuchungen, vgl. /4/, stellte sich ein nahezu paralleler Stromlinienverlauf bis zum Landanschlußdamm ein. Hierbei wurden die Welligkeit der sohlennahen Stromlinien und die Größe der Wirbel unmittelbar hinter dem Landanschlußdamm stark reduziert. Letztere können infolge der für die Nebenströmung bei Niedrigwasserabflüssen erforderlichen Einzelöffnungen im Landanschlußdamm nicht ganz eliminiert werden.

Die durch die Luftmodellversuche erarbeitete Variante III b konnte bereits nach 3 Monaten seit Beginn dieser Untersuchungen in das hydraulische Modell (Modellmaßstäbe: $L_{rh} = 100$, $L_{ry} = 50$) eingebaut werden, vgl. Bild 16. Im Hinblick auf die Strömung zwischen dem Beueler Ufer und dem Parallelwerk resultierte im hydraulischen Modell ein dem Luftmodell entsprechender Strömungsverlauf. Im Hinblick auf die Entwicklung der Wasserspiegellagen bei Hochwasser, hierbei ist auch der Bereich zwischen Parallelwerk und Ufer abflußwirksam, resultierte im Vergleich zu anderen, nicht voruntersuchten Parallelwerksformen die kleinste Wasserspiegelhöhe oberstrom des Parallelwerkes. Diese ist auf die Vermeidung der großräumigen Wirbel und die Verringerung der Strömungsinstabilitäten, gleichbedeutend mit einer Reduzierung von Energieverlusten, vgl. Bilder 13 und 15, zurückzuführen.

7 Zusammenfassung

Im Luftmodell können wasserbauliche Aufgabenstellungen wegen der Analogie von Strömungsvorgängen im Wasser und unterkritischen, inkompressiblen Luftströmungen untersucht werden. Für diese Methode wurde im vorliegenden Beitrag eine ausführliche Beschreibung der Modelltechnik an einem konkreten Beispiel behandelt. Die hierzu erforderlichen Voraussetzungen und die Möglichkeiten und Grenzen dieser Untersuchungsmethode wurden diskutiert.

Nachfolgend werden in einem kurzen Überblick die Vor- und Nachteile dieser Methode zusammenfassend angegeben.

Vorteile der Luftmodelltechnik:

- Relativ geringer Platzbedarf
- Vergleichsweise geringer Arbeits- und Materialaufwand
- Einsatz von wenigen, jedoch erfahrenen Laboranten
- Anschauliche Darstellungsmöglichkeit von Makrostrukturen in großräumigen Strömungsgebieten
- Ermöglicht den Einsatz vieler Strömungssichtbarmachungsund Strömungsmeßmethoden
- Ermöglicht bei parallelem Betrieb mit einem hydraulischen Modell einen raschen Arbeitsfortschritt

Nachteile der Luftmodelltechnik:

- Genauigkeitseinschränkungen durch einen relativ kleinen Modellmaßstab
- Beeinflussung der Strömung durch die Modellabdeckung
- Wasserstandsunterschiede entlang der freien Oberfläche sind nicht modellierbar
- Keine Untersuchungsmöglichkeit von instationären Strömungsvorgängen
- Wechselwirkungen zwischen den Phasen sind wegen den Maßstabseffekten bei der Untersuchung von Mehrphasenströmungen nicht quantifizierbar

Abschließend wird nochmals darauf hingewiesen, daß der Stellenwert der Luftmodelltechnik derjenige einer Voruntersuchungsmethode ist, wobei quantifizierbare Aussagen nur hinsichtlich makroskopischer Strömungsvorgänge erhalten werden können. Im Planungsstadium wasserbaulicher Maßnahmen und bei der Gestaltung der Randgeometrie von Strömungsfeldern erweist sich die Luftmodelltechnik jedoch als sehr effizient.

8 Literaturverzeichnis

/1/	Van Dyke, M.	: Net Xilua Presson	An Album of Fluid Motion. The Parabolic Press, Stanford, California, 1982.
/2/	Yang, W.J.	natory I: Mechanics of Hydra ished by t 1951	Flow Visualization III, Proc. of the third Int. Symp. on Flow Visualization, University of Michigan, USA, Springer-Verlag, 1985.
/3/	Goldstein, R.J.	ulence C: Aynesulte Aynesulte	Fluid Mechanics Measurements. University of Minnesota, Springer- Verlag, 1983.
/4/	Bachmeier, G.	erbaulis: tel Kob a, Kapitel so, kal elo, B. ften 39,	Aerodynamische Voruntersuchung für die flußbauliche Gestaltung eines Parallelwerkes im Rheinab- schnitt Bonn-Beuel. Vertieferar- beit am Institut für Hydromecha- nik, Universität Karlsruhe, WS 1986/87.
/5/	Rouse. H.	:	Elementary Mechanics of Fluids.

York, 1946.

Dover publications, Inc. New

Mitt.bl.BAW (1987) Nr. 61

93

- /6/ Simpson, H.C.; : Brolls, E.K.
- /7/ Durst, F.; : Melling, A.; Whitelaw, J.H.
- /8/ Merzkirch, W. :
- /9/ Jansen, P.Ph.; :
 Van Bendegom, L.;
 Van den Berg, J.;
 Da Vries, M.;
 Zanen, A.
- /10/ Nezu, J.; Nakagawa, H.
- /11/ Naudascher, E. :
- /12/ Rouse, H. :
- /13/ Rouse, H.; : Siao, T.T.; Nagaratman, S.
- /14/ Kobus, H. :

/15/ Gessler, J. :

Droplet Deposition on a Flat Plate from an Air/Water Mist in Turbulent Flow over the Plate. Multi-phase flow systems, Symp.Inst.Mech.Eng. series 38, Glasgow, Scotland, 1974.

Principles and Practice of Laser-Doppler-Anometry. Academis Press, 1981.

Flow Visulization. Academic Press, 1974.

Principles of River Engineering. Pitman Publishing Ltd, 39, Parker Street, London, WC 2B 5 PB, 1979.

Cellular Secondary Cuments in Straight Conduit. J. of Hydraulic Engineering, Vol. 110, No. 2, 1984.

Hydraulik der Gerinne und Gerinnebauwerke. Springer Verlag 1987.

Laboratory Instrumentation in the Mechanics of Fluids. Iowa Inst. of Hydraulic Research. Published by the University of Iowa, 1961.

Turbulence Characteristics of the Hydraulic Jump. ASCE Paper No. 3006, Vol. 124, 1958.

Wasserbauliches Versuchswesen, Kapitel 1, Kobus, H.: Grundlagen, Kapitel 2, Knauss, J.: Flußmodelle mit fester Sohle, Kapitel 14.4, Westrich, B.: Luftmodelle. DVWK-Schriften 39, Verlag Paul Parey, 1984.

Modelling of fluvial processes. "River Mechanics" Shen, H.W. (Herausgeber) Vol. 2, 1971.

/17/ Faulhaber, P. :

/18/ Westrich, B.; : Kobus, H.

/19/ Nikuradse, J. :

/20/ Adami, A.; : Alfonsi, G.; DA Deppo, L.

/21/ Bau, J.; : Cunha, L.; Rocha, J.

/22/ Juniewiecz, S.;: Aulich, J.

/23/ Walczeak, P.

:

/24/ Komora, J.; : Sumbal, J.

/16/ Abraham, G. : Hydraulic Near-Field Modelling and Hydraulic Far-Field Modelling. European Course on Heat Disposal from Power Generation in the Water Environment, Delft Hydraulics Laboratory, 1975.

> Aerodynamische Modellierung hydraulischer Abflüsse mit freier Oberfläche. VEB, Forschungsanstalt f. Schiffahrt, Wasser u. Grundbau, Schriftenreihe Heft 50, 1986.

Untersuchungen am Luftmodell zur strömungstechnisch günstigen Gestaltung von Entnahmebauwerken an Flüssen. GWf-Wasser/Abwasser 117, Heft 7, 1976.

Strömungsgesetze in rauhen Rohren, entnommen aus Schlichting, H.: Grenzschicht-Theorie, 6. Auflage, G. Braun Verlag, 1982.

"Su un'applicacione di un Modello Aerodynamico in scala molto piccola". (Italienisch) L'Energia Elettrica, Studi e Richerche No. 345, Vol. LVII, 1982.

"Fundamentals of Aerodynamic Models for the Study of River problems". 17. IAHR-Congress, Baden-Baden, 1977.

"Application de l'analogie e'rohydrodynamique dans l'étude des construction hydrotechniques". Traduction No. 553 de EDF, Extrait de Archiwum Hydrotechniki, Polska Akademic Nauk. Vol. V. 1958.

"Air aplication on Modelstudies". (Polnisch) Archiwum Hydrotechniki, Vol. VI, Warzawa, 1959.

"Etude sur les modéles aérodynamiques de la sédimentation des débits solides en suspension dans les retunes". La Huile Blanche, No. 2, Grenoble, 1965.

/25/ Hancu, S. :

/26/ Supino, G. :

/27/ Makkavee

/28/ Gilyarov, N.P. :

/29/ Lyatkher, V.M.;: Prudovskii, A.M.

/30/ Averkiev, A.G. :

- /31/ Kahan, M.
- /32/ Jacenkow, B.I.;: Dembski, B.
- /33/ Ivicsics, L. :

/34/ Lapsin, G.N. :

"Modelaria Hidraulica in currenti sub presiune". (Rumänisch) Editura Academic Republicii Romanie, Bucaresti, 1967.

"La similitudine aria-acqua e lo studio dei modelli idraulici". (Italienisch) L'Energia Elettrica, Vol. XXVIII, 1951.

entnommen aus /20/ und /21/

"Emploi des modéles aérodynamiques dans l'études des cours d'eau". Traduction No. 779 de EDF, Extrait de Izdatel 'stvo Akad. Nauk, SSSR, Moscow, entnommen aus /21, 24/, 1959.

"Problémes divers concernant les modéles aérodynamiques en charge de cors d'eau". Traduction No. 780 de EDF, Izdatel 'stvo Akad. SSSR, Moscow, entnommen aus /21, 24/, 1959.

"Open channel water flow study by pressure air flow". Entnommen aus /20, 22, 24/, 1963.

"Contribution for hydrotechnical construktion studies by aerodynamic models". Entnommen aus /20, 22, 24/, 1963.

"Scale reduktion on aerodynamic models for hydrotechnical structure studies". (Polnisch) Geospodarka wodna, 10, Warszawa, entnommen aus /21/, 1962.

"The use of air flow models in river regulation". (Ungarisch) Entnommen aus /21/, 1969.

"O eometrceskom iskazenii mastabov prostranstvennych naporuych modelej". (Russisch) Iviniig Tom. 64. Moskva, entnommen aus /24/, 1960.

9 Symbolverzeichnis

- D Molekulare Diffusionskonstante
- E Elastizitätsmodul
- Fr Froude-Zahl
- F_L Liftkraft
- F₀ Querkraft
- F_Z Zentripetalkraft
- Langenmaßstabszahl in horizontaler Richtung
- L_{rv} Längenmaßstabszahl in vertikaler Richtung
- Ma Mach-Zahl
- Re Reynolds-Zahl
- T Temperatur
- ♥ Volumen
- a Breite der äußeren Stromröhre
- c Schallgeschwindigkeit
- d Partikeldurchmesser
- h Höhe der Modelleinbauten
- k Absolute Rauheit
- 1 Länge
- m Masse
- n Überhöhungsfaktor
- p Druck
- q_m Massentransport
- q_u Wärmetransport
- r_{hv} Hydraulischer Radius
- t Höhe des Modells

- u Geschwindigkeitskomponenten in x Richtung
- v Geschwindigkeitskomponenten in y Richtung
- w Geschwindigkeitskomponenten in z Richtung
- δ Grenzschicht
- λ_{T} Wärmeleitfähigkeit
- μ Dynamische Viskosität
- v Kinematische Viskosität
- v_n Turbulenter Massenaustauschkoeffizient
- V_T Turbulenter Wärmeaustauschkoeffizient
- v, Turbulenter Impulsaustauschkoeffizient
- g Dichte
- τ Impulstransport
- τ_t Schubspannung