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 Adaptive fishway design: a framework and  

rationale for effective evaluations 

Theodore Castro-Santos 
 

 

 

Introduction 

Scientific understanding of the effects of dams on fish and other aquatic organisms has been 

advancing rapidly in recent years (AGOSTINHO et al. 2005; MORITA & YAMAMOTO 2002; 

WAPLES et al. 2008). Humans have been building dams for millenia, and the first attempts to 

mitigate these effects date back centuries. It is only recently, however, that tools have become 

available to help us understand the extent to which dams and other anthropogenic barriers 

restrict movements, and the effects of these barriers on populations and ecosystems. This 

paper reviews developments in techniques of fishway evaluations and offers some sugges-

tions for standardized evaluation methods that can direct modifications and improvements to 

future designs. 

During the 20th century several factors arose that led to advances in fishway development and 

evaluations. The development of efficient hydro-turbines at the end of the 19th century cre-

ated an incentive to build ever-larger and taller dams. This led to a dramatic increase in con-

struction of large dams during the first half of the 20th century. Soon after, laws and treaties 

providing protection for migratory fish species were put into effect. This created a mandate to 

develop more effective fishways. At the same time, advances in hydraulic engineering made 

it possible to dissipate the head associated with high dams in ways that were shown to im-

prove passability. Hydraulic engineers working in Europe and North America made impor-

tant advances to fishway designs during this period (British Institution of Civil Engineers 

1942; DENIL 1909, 1937; MCLEOD & NEMENYI 1940).  

Biological understanding of the requirements of fishway design lagged behind these engi-

neering advances. Early studies of fishway performance were largely restricted to deter-

mining whether individuals of a given species could pass a short section of fishway 

(MCLEOD & NEMENYI 1940), and to largely qualitative descriptions of swimming and leap-

ing performance (DOW 1962; STRINGHAM 1924). Laboratory methods were eventually devel-

oped for quantifying swimming performance that provided the first theoretical rationale for 

fishway design (BRETT 1962, 1964, 1967). By this time, however, many fundamentals of 

fishway design had already been established, with some empirical (mostly laboratory-based) 

performance data to support them (COLLINS 1962; COLLINS & ELLING 1960; GAULEY & 

THOMPSON 1962; ORSBORN 1987). To a large extent, the effect of these developments in 

biology was to establish or confirm existing design thresholds. These thresholds largely  

consisted of criteria meant to ensure that flow velocities within fishways were below what a 

limited number of target fish species were able to traverse. 
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Quantifying performance 

Since the mid-20th century, advances in monitoring technologies and movement theory have 

provided a more nuanced view of the need for and purpose of fishways. Most recently fish-

ways have come to be employed as a tool in the greater effort to restore ecological connec-

tivity in riverine systems that have become highly fragmented and otherwise altered (BLOCH 

1999). To do this, fishways are expected to pass a range of taxa, including many species of 

vertebrates, as well as some invertebrates. Regardless of taxon, however, the goal of fish 

passage is the same: to expedite passage for native species. 

In order to expedite passage, three processes have to be optimized, each occurring in a differ-

ent location relative to the fishway: Fish must first find the fishway entrance (‘Approach 

zone’, for upstream passage this might be the tailrace of a dam); then they must enter the 

fishway (‘Entry zone’, an area near the fishway entrance where the entrance can be detected 

using hydraulic and other cues); finally, they must ascend (or descend) and exit the fishway 

(‘Passage zone’, within the fishway itself; Figure 1). The processes are sequential, and each 

can be completely quantified as time-dependent rates: 

 
1Pr( )Advancing dt
      (1) 

Where Pr(Advancing) is proportion of the available population moving into the next process 

in the sequence, and dt refers to a change in unit time. For each process, a countervening rate 

occurs as fish abandon the Entry zone, fishway, etc: 

 
1Pr( )Retreating dt

      (2) 

Where Pr(Retreating) is the proportion reversing direction or otherwise departing a given 

zone. Here, each proportion refers to movement from one zone to the next. As such, the units 

of Equations 1 and 2 can be thought of as representing distance time-1, the appropriate units 

for movement rate. 

This differs from a strict measurement of velocity, however, because the distance units refer 

to transition between zones (Approach, Entry, etc.). The scale at which distance and time are 

important will vary depending on context (open river movements vs. fishway passage vs. 

turbine passage). Also, these two rates should be thought of as competing with each other for 

a mutually exclusive outcome – a fish that advances is no longer available to retreat, and one 

that retreats can no longer advance. Each individual has the potential to realize either fate so 

long as they are present within a particular zone. This is referred to as a ‘competing risks’ 

scenario in the survival analysis literature, and has important implications for quantification 

of movement patterns (ALLISON 1995; CASTRO-SANTOS & HARO 2003; CASTRO-SANTOS & 

PERRY 2012;  See ‘Data Analysis Methods’ below). 

When evaluating passage within a fishway, it may be more useful to characterize passage 

explicitly in terms of distance: 

 
1Pr( )Passing dD
      (3) 

Where dD is the distance traversed or height ascended. 

It is important to understand, though, that the physiological and behavioral processes that 

lead to forward or backward movement are time-dependent, and distance of ascent is the  

result of rates of forward movement (Equation 1) and failure (Equation 2). Ultimately the 

goal of fishways is to maximize the first rate while minimizing the second. We must under-

stand the roles of each of these rates if we hope to improve passage. 
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Figure 1: Schematic of typical upstream and downstream fishways at a hydro plant. Zones of 

Approach, Entry, and Passage are marked. Entry zones are depicted as shaded areas at 

fishway entrances. Thin arrows indicate flow vectors (length corresponds to velocity). 

Note attraction flow provided for upstream guidance to left of powerhouse and angled 

bar racks for downstream guidance upstream of the powerhouse. Antenna arrays are 

also depicted showing how radio telemetry can be used to identify when individual fish 

enter and exit each zone (aerials are represented in bold black, ovoids are detection 

zones with dash-dot monitoring Approach zones and short dashes monitoring Entry 

zones). Black dots depict PIT antennas deployed for monitoring upstream and down-

stream Entry and Passage. 
 

Common practices for evaluating fishways 

Evidence of passage 

In the 19th century (and in many cases even today) managers viewed fishways as successful if 

they saw evidence of spawning upstream of the structure (PRINCE 1914; ROGERS 1892). The 

assumption was that if even a few individuals can pass a structure, then the structure must be 

passable to all individuals of that population. Evidence for this mindset can be seen today in 

fish passage design manuals, where specifications are provided for species and size classes, 

with little if any consideration of individual variability in swimming performance or migra-

tory motivation (BELL 1991; LARINIER 2002).   

Managers should not be criticized too harshly for this perspective: often the only evaluation 

tool available to them was surveys of upstream habitat – they had no way to monitor move-

ments of fish through the structures. Moreover, the objective for building these structures was 

to provide access to habitat, and if there was evidence that that was occurring then it was not 

unreasonable to consider that structure a success. 
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Counts 

Probably the most common method for evaluating fishways today is to count numbers of fish 

passing a structure. Various methods can be used to provide visual counts: many fishways are 

equipped with monitoring windows staffed with live counters. Video is also often used, and 

recent advances in image processing technology allow counters to view only those clips 

where fish are present. Hydroacoustics (SONAR and DIDSON) can also be effective for 

enumerating targets, sometimes even allowing automated species assignment (ENZENHOFER 

et al. 1998). Hydroacoustic techniques are of greatest value for downstream passage, where 

deep, quiescent forebay environments make it possible to monitor movements and quantify 

passage routes (SKALSKI et al. 1996; STEIG & JOHNSTON 1996). The shallow depth and 

highly air-entrained environments of many fishways, however, largely precludes the use of 

hydroacoustics in the vicinity of these structures (THORNE 1998; TREVORROW 1998).The use 

of visual counts and their acoustic analogues holds an intuitive appeal – the better a fishway 

performs the more fish it should pass. There is an important logical flaw in this thinking, 

however: the number of individuals passing a structure is a function of both the number try-

ing to pass and the passage rate. In order for fish counts to be an adequate measure of fishway 

performance the following criteria must be met: 1) the number attempting to pass must be 

known; 2) arrival timing for the population passing must be known; 3) individuals can only 

be counted once – fallback must be negligible. A corollary of criterion 3 is that movement 

must either be unidirectional, or the observer must be able to account for both upstream and 

downstream movements of individuals. Without the aid of tagging technology these three 

criteria cannot be met except perhaps for very small, closed populations. 

Where sequential fishways exist on river systems it may be possible to satisfy the first 2 crite-

ria for all but the first fishway. Without being able to identify individuals, however, the third 

criterion cannot be met. This may be acceptable if each fishway in a sequence rapidly passes 

the entire population of available fish. Such fishways might be deemed fully successful with 

no further monitoring required. Examples of this are rare, however, even among salmonid 

populations for which fishways are broadly thought to be effective. Also, the performance of 

the first fishway in the sequence cannot be known: even if estimates of populations below the 

dam are available (e. g. as might be provided with hydroacoustics), the duration of exposures 

and identity of individuals is typically not estimable. At best, video and acoustic monitoring 

should be thought of as a screening test: if the criteria can be met and passage meets manage-

ment goals then video can be a sufficient evaluation tool. If either the criteria or management 

goals are not met, however, other methods must be employed to evaluate passage. 

In addition to evaluating performance, fishway counts are also often used as population indi-

ces of migratory fish. This may be the greatest value of fishway counts, and many long-term 

datasets are available that document runs, especially of anadromous fish species. Although 

widely used, these indices should also be viewed with caution because they only indicate how 

many fish passed the structure, not how many were available to pass. If passage performance 

were constant across years, then this would be a reliable index. Performance can vary widely, 

however, with environmental conditions (temperature, discharge), hydroelectric facility  

operations, and physiological state of migrants (SULLIVAN 2004; ZABEL et al. 2008). Thus 

fishway counts are of greatest value for long-term monitoring and trends, but in order to  

understand annual variability in performance more reliable methods are required. 
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 Mark-Recapture  

Mark-recapture techniques are one of the best-established ways to estimate population size, 

and can be a very effective tool for measuring passage performance. Techniques of mark-

recapture include visual marks (e. g. external marking or tagging), biological marks (e. g., 

genetic identifiers, otolith marking, etc), and telemetry. Visual and biological marks can be 

useful, especially for batch marking large numbers of individuals. However they typically 

require that individuals be physically re-captured and handled, which can affect their be-

havior. More importantly, although successful fish can be easily captured in fishways, this 

may require obstructing passage of large numbers of untagged individuals. Finally, these 

methods do not provide ready estimates of how many tagged fish even approach the fishway. 

Telemetry, in contrast, allows monitors to detect fish as they approach and pass each struc-

ture, and so offers a far more appropriate set of tools for fishway evaluations. The following 

subsection describes the three most common forms of telemetry and describes their applica-

tion to fishway performance monitoring and evaluation. 
 

Radio and Acoustic telemetry 

The past two decades have seen dramatic advances in the field of wildlife telemetry, with 

many of the advances being developed specifically to address questions of fish passage. Both 

radio and acoustic telemetry allow users to tag individual fish and monitor their movements 

over a range of scales. Tags can be coded to transmit unique identifiers; some systems are 

able to discriminate among several hundreds of codes on a single frequency. A particularly 

useful feature of radio telemetry is that radio antennas and receivers can be tuned to manage 

detection range. This allows users to quickly and effectively identify movements among  

Approach, Entry, and Passage zones (Figure 1). A recent book documents details of the de-

velopment of this technology and offers many specifics on application (ADAMS et al. 2012). 

Radio telemetry tags fall into two broad categories: active and PIT (for passive integrated 

transponders). Active tags carry a battery and can be programmed to transmit their codes at 

user-specified rates. Signals from these tags can be detected over very large distances (even 

by orbiting satellites in some cases); range is correlated with power consumption, though, and 

to maximize battery life most transmitters have a maximum working range of < 1 km through 

air. One concern common to all telemetry methods is that when multiple tags are present 

within a detection range it is possible for signals to collide, causing missed reads. This can be 

avoided with tags and receivers that operate on more than one frequency. Some receivers are 

able to simultaneously monitor all frequencies within a fairly broad band (e. g. 1 MHz). Most 

receivers have to scan among frequencies, however, which means that detection efficiency 

decreases with increasing frequency number. 

PIT tags do not carry batteries; instead they are built with induction coils that are charged 

when the tag passes near or through an antenna. These tags are typically small (1 x 8 mm -  

3 x 32 mm) and hermetically sealed in glass or plastic capsules, which offers the advantage of 

nearly unlimited functional life. PIT detectors operate at very high rates (tens of reads per 

second). The tags only function over short ranges however: in most cases tags must be < 1 m 

of an antenna to be detected. Antennas themselves can be larger, however, and can be easily 

constructed to span slots and weirs of dimensions common to fishways; in some cases they 

can even span small rivers (FRANKLIN et al. 2012). This makes them ideal for documenting 
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entry into and passage through fishways (CASTRO-SANTOS et al. 1996; SULLIVAN et al. 2001; 

FRANKLIN et al. 2012; Figure 1). Moreover, their short detection range precludes detection 

outside the fishway, where signals from active tags can often penetrate through solid struc-

tures providing a false impression of entry. Also, the rapid read rate means that PIT detectors 

can monitor brief passage events, such as sprinting through a slot or downstream passage at a 

sluiceway. Active tags fire slowly, and have larger but typically less precise read range. 

While this makes them less effective for monitoring brief passage events, they are more ef-

fective at monitoring longer events, like Approach and Entry. Thus these two forms of radio 

telemetry complement each other and make an excellent combination for evaluating fish pas-

sage. 

One limitation of PIT and active radio telemetry is that both types are sensitive to radio-

frequency (RF) noise and interference. Interfering signals can be conducted along power  

cables and can be transmitted through air. With increasing use of radio bandwidths for com-

munications this issue promises to become an increasing problem. Those planning monitoring 

programs and experiments will do well to first survey the bandwidths in their study area. 

Tags can then be built that transmit on those bands with the least amount of noise for that 

location. 

A second important limitation for radio telemetry is that transmissions are rapidly attenuated 

in water. This problem is most severe in saltwater, where attenuation is almost complete even 

in very shallow depths. Attenuation is not a problem in riverine applications where fish swim 

within a few meters of the surface. Where fish swim near the bottom of deep rivers or lakes, 

radio may still be useful over short distances (10’s of meters), especially if receiving antennas 

can be placed below the water surface. This technique can also help eliminate problems of 

transmitted RF noise. Where long detection distances are required for fish moving at depth, 

however, radio telemetry may not be an effective tool for monitoring movements. 

Acoustic telemetry can work well in those very environments where radio is ineffective. 

Similar to radio, acoustic tags can transmit unique codes. Some systems are able to detect 

signals over multiple frequencies. Under optimal conditions, acoustic tags can be detected 

over a range of 100’s of meters – appropriate distances for broad-scale monitoring of move-

ments. Some manufacturers have developed methods for triangulating position of tags based 

on the different arrival times of signals to hydrophones arranged in carefully designed arrays. 

In some cases the position of the tag can be resolved to within a few centimeters. This ability 

helps to counter a significant weakness of acoustic systems: sensitivity and detection range 

can vary widely at a given location depending on water chemistry, turbidity, and presence of 

acoustic noise (e. g. from wind, currents, boat traffic, etc.). In the absence of multiple redun-

dant receivers that can triangulate position or similar methods, precision of these instruments 

can be poor, limiting the value of the data they provide. 

Where fine-scale positioning is possible, significant time investments are typically necessary 

to ensure that only reliable transmissions are used. The data this method provides can be used 

to characterize approach, and even entry into fishways, although these metrics really do not 

require the level of resolution that can be achieved, and most of the information provided by 

acoustic triangulation falls outside the scope of quantifying passage performance. Also, 

acoustic telemetry does not work in confined spaces with high amounts of entrained air, such 

as is found within fishways. These issues limit the value of acoustic telemetry technology for 

monitoring fish passage. 
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 Perhaps the greatest promise of acoustic telemetry (and the same can be said for fine-scale 

radio applications) lies in the ability to couple detailed movement data with information on 

hydrodynamics and how complex flow patterns influence orientation and navigation. Fish 

possess highly specialized mechanosensory structures that allow some species to detect small 

fluctuations in flow. How fish respond to these fluctuations and how this relates to other sen-

sory and environmental stimuli (e. g. vision, smell, etc.) remains poorly understood and 

represents one of the greatest research needs in understanding how to best to locate and de-

sign fishways relative to dams, powerhouses, and riverbed morphology. Predictive models 

developed coupling computational fluid dynamics models (CFD) with acoustic and other 

forms of telemetry and hydroacoustics suggests that this may provide a very powerful tool for 

improving both upstream and downstream passage (GOODWIN et al. 2006; NESTLER et al. 

2008). 

Data analysis methods 

The fact that fish may either advance or retreat from a given zone (Equations 1 and 2) com-

plicates analysis of telemetry data. When presence in a given zone can terminate in more than 

one way the researcher must calculate rates based on those individuals that are present and 

available to advance or retreat, regardless of which event terminates that presence. Once the 

individual leaves the zone, however, it must no longer contribute to rate calculations. A set  

of statistical tools developed for clinical trials, actuarial applications, and materials testing 

(collectively called ‘survival analysis’) is well-suited to accommodate this feature (see 

CASTRO-SANTOS 2004, 2011; CASTRO-SANTOS & HARO 2003; and ZABEL et al. 2008 for 

details on these techniques and their application to fish passage). These tools allow research-

ers to measure competing rates of advance and retreat, while eliminating the bias caused by 

the fact that both rates are acting on individuals simultaneously. Importantly, these methods 

allow for calculation of effects of covariates (velocity, turbulence, temperature) on those 

rates, thereby allowing managers and researchers to identify specific conditions that act to 

limit or enhance passage. 

Where detailed movement studies are available, they indicate that existing and widespread 

standards of fishway design are far from optimal for passage of a range of species, and  

that much more work is needed if we hope to provide passage for the multitude of aquatic 

organisms that use rivers as movement corridors. 

 

Case studies 

Recent work has called into question the effectiveness of fish passage and other river restora-

tion techniques. Perhaps more troubling is the fact that post-construction monitoring and 

evaluation are the rare exception, rather than the rule. This is true of river restoration pro-

grams generally (BERNHARDT et al. 2005), and also for fishways in particular. A recent meta-

analysis combed the peer-reviewed and gray literature to determine whether certain fishway 

types are more effective than others (BUNT et al. 2011). The authors identified more than 100 

published studies purporting to evaluate fishways, but only 19 of these provided enough in-

formation to determine what proportion of fish entered and passed the respective fishways. 

Among those fishways that had received this minimal level of evaluation performance ranged 
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widely, both within and among fishway types and species groups. The variability in perform-

ance was so great that the authors concluded that no compelling evidence yet exists to sup-

port any one fishway design; worse, those designs in common use cannot be expected to  

reliably pass any species (Figure 2). 

 

Figure 2a: Percent attraction (approach x entry) by fishway type.  

Reprinted with permission from BUNT et al. (2011) 

 

 

 

Figure 2b: Percent passage by fishway type. Note the broad variability  

in performance both here and in Figure 2a.  

Redrawn with permission from BUNT et al. (2011). 
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 The work by BUNT et al. (2011) required that fishway evaluations separate out passage for 

fish that enter fishways from the proportion entering. As stated above, however, there are two 

steps that must occur before fish even enter the fishway: they must first approach and locate 

the fishway entrance, and then they must actually enter the structure (Figure 1). 

Work that colleagues and I have performed at fishways on the Connecticut River has illus-

trated the importance of including all three steps in evaluations (CASTRO-SANTOS & HARO 

2010; CASTRO-SANTOS & LETCHER 2010; SULLIVAN et al. 2001). The Turners Falls dam and 

fishway complex (Connecticut River, USA, RKm 194) creates a serious barrier to passage of 

American shad (Alosa sapidissima). Because they have passed tens of thousands of American 

shad in some years, these fishways have been widely hailed as models of effective shad pas-

sage (LARINIER & TRAVADE 2002; MOFFITT et al. 1982; RIDEOUT et al. 1985). Those claims 

of effectiveness were entirely based on numbers of individuals passing, however. As dicussed 

earlier, this approach overlooks the important question of how many fish are actually entering 

the fishway. We began our evaluations of passage at Turners Falls using PIT telemetry in 

1999, later we coupled PIT and active radio telemetry, and that work continues today. In the 

case of Cabot Ladder – the first fishway in the system, and once thought to be a highly effec-

tive fishway – passage proportions range from 3 - 17 %. This failure was manifest in the dis-

tance that fish are able to ascend the ladder (Figures 3 and 4). The mechanism of the failure, 

though, can be better understood by considering the competing rates of success and failure: 

shad abandon the ladder at greater rate than they ascend (Figure 5), which produces a consis-

tently low passage rate. 

Figure 3: Cabot fishway, RKm 194 on the Connecticut River, Massachusetts USA. 

Constructed in 1980, this fishway has probably never passed shad effectively. 
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Figure 4: Results of 6 years of PIT telemetry at Cabot Ladder (Figure 3). Gray bars indicate 

turnpools, dots indicate individual PIT antenna locations and percent arriving to each 

antenna. 
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Figure 5: Time to pass (blue) vs. time to fail (red) of American shad in the Cabot fishway. Lines 

are modified Kaplan-Meier curves (KAPLAN & MEIER 1958) and are least-biased esti-

mates of cumulative distribution functions that would be expected if only one endpoint 

were available. Circles and triangles represent censored observations, i. e. for the pas-

sage curve they represent residence times for individuals that did not pass and for the 

failure curve they represent passage times of successful passers. Note that failure rate 

always much greater than passage rate – this is the cause of the poor passage success 

shown in Figure 2a. 
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 Despite multiple changes to this fishway improvements have been marginal, and plans are 

underway to replace it with a fishlift. This is an important lesson of the importance of per-

forming evaluations as part of fishway design: the fishway was completed in 1980 at a cost of 

about $10 million and operated for almost 20 years before its poor performance was docu-

mented in a way that managers could act on. Now it must be replaced at even greater cost. 

Mounting evidence suggests that poor performance at this and other fishways in the system 

have contributed to declines in the very populations they were intended to enhance (CASTRO-

SANTOS & LETCHER 2010).  

Although passage through Cabot Ladder is poor, approach and entry appear to be satisfactory 

(about half of the shad passed at the next dam downstream enter the fishway (SULLIVAN 

2004)). Other fishways in the complex have the opposite problem, however. At the upper-

most fishway in the system (Gatehouse Ladder) shad pass at in comparatively high propor-

tions (about 60 % of shad that enter successfully pass). However fewer than half the shad that 

attempt to pass Gatehouse Ladder ever encounter the original fishway entrance (low approach 

rate), and those that do often fail to enter (low entry rate). A series of modifications begun in 

2007 has yielded a greater than 4-fold improvement in passage rate at Gatehouse Ladder, and 

work is ongoing to improve this further. Thus at the Turners Falls we have examples of fail-

ure in each of the three steps: Approach, Entry, and Passage. Successful resolution of these 

problems is now being realized, but only because we were able to differentiate among the 

sources of failure. 
 

Conclusions 

Fishways are expected to restore ecological connectivity to fragmented riverine systems by 

expediting passage for a range of taxa. Several factors will determine the effectiveness of 

these structures. These factors include biomechanics (locomotion) and physiology (endur-

ance, motivation), as well as behavior (orientation, optimization; swimming, climbing, etc.). 

Limitations to any one of these factors can preclude successful fishway performance, and 

there is a pressing need to advance our understanding of all three factors with respect to fish 

passage.   

Expeditious passage requires that fish be able to pass a structure with a minimum of delay, 

stress, injury, or exposure to direct or indirect anthropogenic influences. In short, it means 

that fishways should eliminate the impediments to movement caused by dams and impound-

ments. Ultimately, any organism for which passage is provided must complete the three steps 

of fishway passage: Approach, Entry, and Passage. Biologists and engineers must collaborate 

to understand how well fishways are performing, and what solutions are likely to improve 

passage where problems occur. Available evidence has shown that existing designs cannot be 

expected to reliably expedite passage. Even so-called nature-like fishways have largely failed 

to deliver on their promise to expedite passage for a broad range of taxa (BUNT et al. 2011). 

Given that passage provisions remain a priority worldwide, it is all the more important that 

managers and engineers adopt an adaptive management approach to the design and construc-

tion of fishways. With widespread application of evaluations that measure performance stan-

dards with clear biological relevance it may become possible to better understand the rela-

tionship between design and performance – a relationship that at the moment continues to 

elude us. 
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