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Abstract— Results are presented from a model study of the 

sediment transport regime and morphological evolution of the 

Sizewell-Dunwich Bank, a headland associated sandbank on the 

east coast of the UK North Sea. Offshore sandbanks play an 

important role in reducing storm wave energy at the shoreline 

and the Sizewell-Dunwich Bank may be of particular 

importance for the stability of the neighbouring shoreline. To 

gain insight into possible bank evolution, calculations of tides, 

waves and sediment transport were made using the finite 

element TELEMAC model suite, with the aim of understanding 

bank formation and maintenance mechanisms. The general 

pattern of tidally averaged total transport flux (bedload plus 

suspended load) indicated a zone of convergence at the location 

of the present Sizewell Bank and evidence of a weaker one at the 

location of the Dunwich Bank to the north. In common with 

previous studies tidal asymmetry was found to be oppositely 

oriented on the inshore and offshore sides of the banks. This 

suggest a plausible mechanism for the bank formation and 

maintenance with material from the north or the south having 

the potential to accumulate at the bank location. 

I. INTRODUCTION

Offshore sand banks can play an important role in influencing 
shoreline evolution and movement by attenuating the incident 
wave energy through the process of wave breaking and bed 
friction [1]–[6]. Assessing future shoreline stability in the vicinity 
of such sandbanks therefore requires taking account of possible 
changes to the sandbank position and morphology. Such a case 
study is presented here for the Sizewell–Dunwich bank located on 

the east coast of the UK North Sea. The working assumption is 
that the bank is a headland associated sandbank belonging to the 
nearby Thorpeness promontory. Explanations for the existence of 
headland associated sandbanks have focussed on the presence of 
tidal residual eddies [7]–[9], bedload convergences [10], and 
more generally with differing flood-ebb tidal asymmetry on the 
shoreward and seaward flanks of the bank [11]–[15]. Numerical 
modelling studies using idealised coastline geometry and tidal 
forcing typically show the formation of sandbanks on both sides 
of a headland [15], however in many cases sandbank formation is 
observed to be asymmetrical, with a larger bank forming 
preferentially on one side of the headland [11]. The Sizewell-
Dunwich Bank is an extreme case with a substantial bank to the 

north of Thorpeness, but no bank observed to the south. The 
shape of the bank, pear shaped with the broader end pointed 
toward the headland and with steeper sides on the seaward 
flank at the broader end, is in remarkable accord with the 
description given in [13] for type 3A headland associated 
banner banks. 
In this paper the mechanisms for formation and maintenance 
of the Sizewell-Dunwich Bank are investigated as a prelude to 
the eventual goal of predicting potential changes in bank 

Figure 1: TELEMAC-2D model domain and mesh. The Sizewell-
Dunwich Bank is indicated by the dashed box. Coordinate system is the British 
National Grid and elevations are in metres below ODN. Mesh resolution in 
the Sizewell-Dunwich Bank region is too high to discern individual elements 
but ranges from 30-50m elements on the bank increasing to 300m offshore.

morphology, evolution over decadal timescales. Results are 
presented for tidally averaged sediment transport fluxes both 
tidal and wave effects on the bedload and suspended load 
transport are considered and associated erosion and deposition 
patterns based on the recent bank configuration.

II. METHODS

Modelling in this study used the TELEMAC suite of models 

consisting of TELEMAC-2D, TOMAWAC and SISYPHE to 

simulate tides, waves and sediment transport respectively 

[17], [18],[23]. TELEMAC-2D and SISYPHE were run in 

fully coupled mode, so that bed elevation change calculated 

in the sediment transport model SISYPHE was feed back to 

the hydrodynamic model. TOMAWAC was run separately in 

non-coupled mode to provide surface wave amplitude and 

period. All models were run on a common finite element 

mesh and associated bathymetry covering the greater 



XXVth Telemac & Mascaret User Conference Norwich, UK, 10-11 October, 2018

46

Sizewell embayment (Figure 1). Depth data covering the 

region from the mouth of the Blyth River to Thorpeness, were 

obtained from high resolution (better than 10m horizontal 

resolution) surveys carried out between 2007 and 2009 [19]. 

This survey data was integrated with data from the UK 

Hydrographic Office for the offshore region. The combined 

dataset was corrected to Ordnance Datum Newlyn (ODN) as 

an approximation to the local Mean Sea Level (MSL). The 

highest mesh resolution was approximately 50m in the 

shallow inshore region adjoining Thorpeness and the 

Sizewell-Dunwich Bank, increasing to around 300m for the 

offshore regions. Bathymetric smoothing was applied using a 

Fourier transform method [20] to the raw depth values. This 

procedure removed mesh scale noise in the calculated 

erosion/deposition patterns evident when calculations were 

performed on an unsmoothed bathymetry.

A. Hydrodynamics

Tidal forcing consisted of surface elevation specified at the 

northern boundary and depth average velocities at the 

southern boundary. The eastern offshore boundary was 

configured to follow the tidal stream and treated as a solid 

boundary with no transverse flow. TELEMAC-2D was run 

with a 10 second timestep and with a constant bed roughness 

coefficient corresponding to a rippled sand bed [21]. 

Measurements covering a 30-day period in 

November/December of 2013 provided the southern and 

northern hydrodynamic boundary forcing. A set of synthetic 

tidal forcing data was also generated from the measured 

velocity and elevations by applying a tidal analysis based on 

a least squares fit to a set of underlying harmonic constituent 

[22] to extract the M2 (largest semi-diurnal), M4 (first non-

linear harmonic) and Z0 (residual) constituents. These 

generally provide the leading order components important for 

tidal sediment transport, namely: correct overall magnitude of 

tidal bed stress provided by the M2 constituent and the first 

order contributions to tidal asymmetry provided by M4 and 

Z0 constituents [23], [24]. This forcing allowed exact M2 

tidal averages to be extracted in the simulations aimed at 

understanding the underlying transport processes.

Table 1: Wave forcing applied at the boundary of the TOMAWAC wave 

model. Hs values are those applied at the model boundary. Values measured 

at the bank are typically reduced by 20% compared to the boundary values 
due to attenuation by bed friction. Significant wave heights for given return 

periods were derived from a Weibull distribution fit to 30 years of hourly 

values at a location offshore of the Sizewell Dunwich bank taken from the UK 
Meteorological Office European Wave Model.

Case

No

Wave 

direction

(degrees 

from, 

North)

Hs

(m)

Peak 

wave 

period 

(s)

Notes

1 40 0.9 5.0 Annual average NE1 

2 40 2.2 7.7 1 week return NE1 

4 153 0.94 4.0 Annual average SE2 

5 153 2.2 6.0 1 week return SE2 
1 From northeast sector. 2 From southeast sector.

B. Waves

Significant wave height (Hs), peak wave period (Tp) and 

were calculated using the TOMAWAC spectral wave model 

run on the same mesh as the hydrodynamic calculation with 

a time step of 10 seconds, 22 frequency bins and 36 wave 

directions. Water depths in the wave model were fixed with 

respect to Mean Sea Level (MSL) and did not include tidal 

variations. Observations from a wave rider situated offshore 

of the bank showed a strongly bi-model distribution of wave 

directions clustered around north easterly and south easterly 

directions. A set of four wave model runs were created (Table 

1) by applying constant wave height and direction boundary

forcing using two different wave heights for each of the two 

dominant wave directions. The TOMAWAC wave model was 

then run to steady state and the final results stored for later 

input to the coupled TELEMAC2D-SISYPHE model. Within 

the coupled model, wave height, period and water depth were 

combined, using linear water wave theory, to estimate the 

near-bed orbital velocity for sediment transport calculations. 

C. Sediment transport

Information on sediments in the region was obtained from 

grab samples (grid resolution approximately 250m on the 

Dunwich Sizewell Bank and 500m off the bank), collected 

during March to April 2008. Surficial sediments in the region 

were found to be heterogenous, with areas of soft and 

compacted mud, fine to medium sands, gravels and regions 

of bare rock [25]. In contrast, the surface sediments of the 

bank were remarkably homogenous, consisting of well-sorted 

sands with median diameter 150 – 250 μm, straddling the 

boundary between fine and medium sands. No attempt was 

made to model the multi-particle size sediment dynamics of 

the entire region, instead the focus was on modelling the 

sediment associated with the Sizewell-Dunwich Bank. Model 

runs used a single size class of 250 μm. Sediment transport 

calculations used the SISYPHE model [26], [27]. This model 

allows the choice of a number of bedload and total load 

transport formulations, together with an option to calculate 

suspended load via an advection-diffusion transport equation. 

In this study bedload was calculated using the bedload 

component of the total load formulation of Soulsby and Van 

Rijn [21]:

 
4.25.02

2
2

1 ])||[( crwb UUckQ UU    (1)

where U  is the depth mean current vector, Uw is the bed 

orbital velocity amplitude, Ucr is a grain size dependent 

critical erosion velocity and k1 is a grain size dependent 

coefficient, and c2 =0.0036/CD where CD is the 2D quadratic 

drag coefficient (set at a value appropriate for rippled sand 

[21]). This formulation was chosen as it includes both wave 

and current contributions. Note, the bedload vector is 

assumed to be aligned with the depth mean velocity. No slope 

correction was included in the sediment transport 

calculations. Tests with and without a slope correction made 

only a small difference to the overall prediction of bedload 

transport and associated erosion and deposition patterns. The 
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suspended load transport was calculated with the depth-

integrated advection-diffusion equation 

(2)

where C is the depth mean suspended sediment concentration, 

U  is the depth mean current velocity, h is the local water 

depth, Cb is the predicted bed concentration derived from the 

depth mean concentration assuming a Rouse vertical profile. 

The factor β < 1 is a correction for the greater concentration 

of sediment near the bed and weights the advection velocity 

to be closer to a near-bed value. It is calculated at each time 

step assuming logarithmic and Rouse type profiles for 

velocity and sediment concentration respectively [31]. The 

reference concentration Cref is calculated from the bedload 

transport rate as described in [28] with

)/( *uZbQC refbref       (3)

Here u* is the bed friction velocity calculated from the skin 

friction component of the total stress derived from the sand 

grain roughness, the reference level Zref is taken equal to the 

ripple roughness (Zref = kr) and b=6.34 is an empirical 

constant. Ripple roughness (kr) is calculated dynamically by 

SISYPHE based on the formulations of [29], [30]. Since Qb 

depends on both wave and current contributions (equation 1), 

the reference concentration and hence suspended load 

transport includes both wave and current forcing. Zero 

sediment flux for both bedload and suspended load was 

applied at the domain boundaries. 

III. RESULTS

For the results reported in this section, hydrodynamic 
boundary forcing was based on a tidal decomposition 
containing M2, M4 and Z0 (residual) constituents as described 
in Section 3.A. The coupled model was run for seven M2 tidal 
cycles. Time series plots indicated the model had reached a 
steady repeating state after two tidal cycles. The first two tidal 
cycles were discarded, individual bedload and suspended load 
vectors were summed and the net total load vectors were 
obtained by summing over five complete M2 tidal cycles. 
Associated net erosion and deposition was calculated over the 
same period. Off bank, the model was started with a uniform 
10cm layer of 250 μm sand above a rigid non-erodible base. A 
thicker (5m) layer was placed on the bank. This case 
corresponds to an unlimited supply scenario since, other than 
right at the shore, the 10 cm layer was generally not eroded 
down to the rigid bed and was available as a sediment source 
(limited only by hydrodynamic forcing) to other locations. 
Thus, for the given hydrodynamic forcing, the sediment 
transport vectors presented here represent the potential 
maximum rates.

Figure 2: Tidally average bed stress values. Also indicated are the sections 
along which bed evolution is shown (Figure 12) and the position marked 
with cross (+) used to plot sediment flux and bed change over time (Figure 
7).

A. Bed stress

The tidal bed stress distribution in vicinity of the Sizewell-
Dunwich Bank show a maxima just offshore of Thorpeness on 
the shallow platform and crag ridges, with a band of enhanced 
tidal stress extending along the southern and eastern faces of 
the bank (Figure 2).  In the results shown later, this region 
shows relatively large changes in bed level.  A minimum in 
bed stress occurs in the deeper ‘swale’ region between the 
Dunwich and Sizewell Banks and associated with relatively 
small morphology changes (see next section).

B. Erosion and deposition due to tidal forcing

Model runs were carried out to assess the contributions of 

bedload, suspended load and wave-induced mobility to the 

modelled sediment flux and erosion/deposition patterns. 

Results are plotted as tidal averaged sediment flux vectors 

normalised (for display) to a uniform length to allow the net 

direction to be more easily discerned at smaller transport 

rates. Northward and southward pointing fluxes are coloured 

differently so that flood (south) and ebb (north) directed 

transport paths can be discerned. 

The net bedload erosion and deposition are determined 

mathematically by the divergence of the net sediment 

transport flux vector. Although not exactly equivalent, 

broadly speaking deposition will occur when the average 

bedload magnitude decreases in the direction of net transport 

and erosion will occur when bedload magnitude increases in 

the direction of net transport. 
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Figure 3: Bedload only with tidal forcing. Normalised tidal average transport 

vectors superimposed on erosion deposition patterns (mm) over five M2 tidal 
cycles for. Light coloured vectors represent net northerly (ebb) transport and 

dark vectors net southerly (flood) transport. Note, for clarity vector positions 

are sub-sampled and the plotted value is an average taken over the 
surrounding region. The actual mesh spacing is much denser.

Figure 4: Bedload and Suspended load with tidal forcing. Normalised tidal 

average transport vectors superimposed on erosion deposition patterns (mm) 
over five M2 tidal cycles for. See Figure 3 for explanation of vectors.

Figure 5: Bedload and suspended load with tidal forcing and annual average 

waves (Hs = 0.9 m) from north-east sector. Normalised tidal average 
transport vectors superimposed on erosion deposition patterns (mm) over 

five M2 tidal cycles. See Figure 3 for explanation of vectors.

.

Figure 6: Bedload and suspended load with tidal forcing for 1 week return 

period waves (Hs = 2.2 m) from north-east sector. Normalised tidal average 
transport vectors superimposed on erosion deposition patterns (mm) over 

five M2 tidal cycles. See Figure 3 for explanation of vectors.
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Calculations with bedload transport only, (Figure 3) showed 

deposition occurring at the top of the banks (locations B and 

C) and erosion on the south flank (location A). An interesting

feature was the predicted convergence of opposing transport 

paths from the north and south at the top of the Sizewell Bank. 

Sediment moving inshore of the bank parallel to the shore was 

predicted to turn offshore at D, potentially joining material 

moving up from the south. Also marked is a possible path for 

material to move offshore from the eastern edge of the bank. 

Although not evident from the normalised vectors, this 

pathway is however very weak.

Calculations with bedload and suspended load gave a very 

similar distribution to the bedload-only case, but with a 

greater magnitude of erosion and deposition (Figure 4). As 

with the bedload case, erosion occurred on the southern face 

of the bank (location A) and the deposition at the top (location 

B) associated with the transport convergence in this region.

As indicated by the normalised vectors, a second (weak) 

convergence zone is suggested at location C at the northern 

end of the Sizewell – Dunwich Bank. Thus, under tidal 

conditions the model yields southward (flood) directed 

sediment transport in the channel inshore of the Sizewell 

Bank and northward (ebb) directed transport along the 

seaward flank of the bank. Over five tidal cycles the 

magnitude of bed change due to bedload plus suspended load 

transport is generally in the range from 0-10mm. The 

similarity in general erosion/deposition pattern is not 

unexpected as both bedload and suspended load vectors are 

aligned with the depth mean current, and suspended load 

magnitude is closely related to the bedload via the reference 

concentration (3).

C. Erosion and deposition with tide and wave forcing

When a constant annual mean wave forcing was included 

(Table 1, case 1) the broad scale pattern of erosion and 

deposition did not change significantly from the tide only 

case, but magnitudes increased (Figure 5). Note, the inclusion 

of waves here was as a ‘stirring mechanism’ i.e. increasing 

the quantity of sediment being transported but with no 

modification to currents. Tidal erosion/deposition patterns 

identified previously were preserved, with erosion occurring 

on the southern flank (location A) and deposition on the top 

of the bank at locations B and C.  With waves included, net 

erosion over five tidal cycles near location A for example, 

increased by a factor of four, from 2.5mm (tide only) to 

10.5mm (tide and wave). Similar proportional changes were 

seen elsewhere. Extrapolation at location A of this magnitude 

of erosion over a year would give a very significant bed 

change of around 1.5 m. Bands of erosion and deposition 

associated with the Coralline Crag (location D) show erosion 

on the raised ‘fingers’ and deposition in-between. In this 

simulation, the start condition had the ridges covered in 10cm 

of sand, which was completely eroded. This is consistent with 

observed fluctuations in ridge elevation [16] that suggest that 

sediment can cover and uncover the ridges. There is also an 

indication of a bedload parting zone at E, that was present in 

the tide only calculations, but is more prominent when waves 

.

Figure 7: Time series near the top of Sizewell Bank (see Figure 9 for position 
marked with ‘+’). a) Sediment flux for bedload, suspended load with and 

without waves; b) Change in bed elevation. Note the time axis in both graphs 

is the same so the relationship between the flux and bed response can be 

discerned.

Figure 8: Change in bed elevation for 12 M2 tidal cycles along sections (see 

Figure 3). a) Section X, N-S along bank, with EX marking the south face of 
bank; b) section Y, E-W over the Sizewell Bank, with EY marking the east 

(seaward) face of the bank; c) Section Z, E-W over the Dunwich Bank, with 

EZ marking the western (shoreward) face of the bank.

are included. It is interesting to note the formation of erosion 

and deposition bands close to and parallel to the shore, 

suggestive of the longshore bar that occurs along this stretch 

of coast. Simulations with waves from the south east sector 

(Table 1, case 3) shows very similar patterns of erosion and 

deposition and are not shown here.   

With larger waves (Table 1, case2) the overall patterns of 

erosion/accretion remained broadly similar but with erosion 

and deposition much intensified (Figure 6). However, the top 

of the Sizewell bank (location B) that previously showed 
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accumulation was eroded under stronger waves. Also evident 

are lateral regions of intense deposition/erosion seaward of 

the Sizewell Bank and shoreward of the Dunwich Bank. This 

appears to be a mechanism for removal of bank material in 

the model simulations. Simulations with waves from the 

south east sector (Table 1, case 4) showed very similar 

patterns of erosion and deposition and are not shown here. 

Note that these simulations neglect the effect of wave driven 

currents and these will be sensitive to wave direction.

D. Further analysis at specific locations along the Bank

The time series of transport flux magnitude and bed evolution 

at a location near the top of the Sizewell Bank (cross marked 

on Figure 2) shows suspended load flux to be about four times 

the magnitude of bedload flux (Figure 7). Including annual 

mean wave increased the absolute value of both suspended 

and bedload flux by approximately a factor of four. Without 

waves, the tidal transport flux was zero for almost half the 

tidal cycle, indicating that the average tidal M2 velocities 

were close to threshold conditions for movement of the 

sediment class used in the simulation (250 μm diameter). 

However, when the orbital velocity corresponding to an 

annual mean wave was included in the Soulsby van Rijn 

formulae (1), conditions were predicted to be above the 

transport threshold for most of the tidal cycle. For this 

location, accumulation of material occurs under both tidal and 

tide plus (average) wave conditions. Analysis based on the 

spatial plots (Figure 4 and Figure 5) would suggest the 

material deposited at the top of the Sizewell Bank is coming 

from erosion of the southern face.

To look in more detail at the individual effect of bedload, 

suspended load and wave stirring on bed morphology, the net 

changes in bed level after 5 tidal cycles were plotted along 

three transects (marked X, Y, Z Figure 2). Bed level change 

north-south along the Sizewell-Dunwich Bank system 

(transect X) in all cases showed erosion of the southern flank 

and accretion at the top of the Sizewell Bank (Figure 8a). 

Although hard to discern for the bedload and bedload + 

suspended load results, there is also some accumulation of 

material at the northern end on the Dunwich Bank. The effect 

of wave mobilisation was to enhance this general pattern. The 

wave-induced mobility also increased the rate of accretion at 

the Dunwich Bank, pushing it further to the south and 

removing material on the northern flank. The change in bed 

level east-west across the Sizewell Bank (transect Y) again 

shows the accumulation at the top of Sizewell Bank with 

average wave conditions significantly enhancing this (Figure 

8b). However, the wave activity also leads to adjacent bands 

of erosion and deposition on the eastern (seaward) flank as 

marked at EY. A similar pattern is also evident in transect Z 

on the western (shoreward) flank of the Dunwich Bank 

(Figure 8c). These correspond to the deposition patterns noted 

in Figure 6 and associated with steep bathymetric gradients 

with erosion at the top and deposition at the bottom of the 

slope.

IV CONCLUSIONS

The bedload and suspended load sediment transport 
regime of the Sizewell Dunwich Bank on the UK east coast 
was simulated for a range of tidal and wave conditions using 
the coupled TELEMAC-2D and SISYPHE hydrodynamic and 
sediment transport model and TOMAWAC spectral wave 
model. Net sediment flux directions and patterns of erosion 
and deposition were obtained for the present bank 
configuration. 

The general pattern of tidally averaged total transport flux 
(bedload plus suspended load) showed a well-defined 
convergence zone at the location of the present Sizewell Bank. 
This implies a likely mechanism for bank maintenance, with 
material moving from the north or the south having the 
potential to accumulate at the bank location. In particular, the 
model suggests that sediment transported southward by 
longshore drift could travel from the nearshore region at 
Thorpeness to the south end of the bank this providing a 
mechanism for bank maintenance.
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