
Conference Paper, Published Version

Gisen, David
Generation of a 3D Mesh Using snappyHexMesh Featuring
Anisotropic Refinement and Near-wall Layers
Zur Verfügung gestellt in Kooperation mit/Provided in Cooperation with:
Kuratorium für Forschung im Küsteningenieurwesen (KFKI)

Verfügbar unter/Available at: https://hdl.handle.net/20.500.11970/99527

Vorgeschlagene Zitierweise/Suggested citation:
Gisen, David (2014): Generation of a 3D Mesh Using snappyHexMesh Featuring Anisotropic
Refinement and Near-wall Layers. In: Lehfeldt, Rainer; Kopmann, Rebekka (Hg.): ICHE
2014. Proceedings of the 11th International Conference on Hydroscience & Engineering.
Karlsruhe: Bundesanstalt für Wasserbau. S. 983-990.

Standardnutzungsbedingungen/Terms of Use:

Die Dokumente in HENRY stehen unter der Creative Commons Lizenz CC BY 4.0, sofern keine abweichenden
Nutzungsbedingungen getroffen wurden. Damit ist sowohl die kommerzielle Nutzung als auch das Teilen, die
Weiterbearbeitung und Speicherung erlaubt. Das Verwenden und das Bearbeiten stehen unter der Bedingung der
Namensnennung. Im Einzelfall kann eine restriktivere Lizenz gelten; dann gelten abweichend von den obigen
Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

Documents in HENRY are made available under the Creative Commons License CC BY 4.0, if no other license is
applicable. Under CC BY 4.0 commercial use and sharing, remixing, transforming, and building upon the material
of the work is permitted. In some cases a different, more restrictive license may apply; if applicable the terms of
the restrictive license will be binding.

1 INTRODUCTION

The standard tool for generation of computational meshes (also: grids) in the free, open source software
package OpenFOAM is called snappyHexMesh. Third-party mesh formats like e.g. FLUENT (.msh) or
I-DEAS (.unv) can be used as well. However, they need to be converted, which can produce compatibility
problems. The major disadvantage of snappyHexMesh is its non-intuitive operation by control files and
command line and the patchy documentation, which is replaced in practice by a combination of Internet
research, exchange with colleagues and troubleshooting using trial-and-error method. The present contri-
bution aims to mitigate these problems, providing detailed documentation of problems occurring through
the mesh generation process and thereby enabling solution transfer. As an example from the field of hy-
draulic engineering, the tail water of a hydropower plant including draft tubes is employed. Its dimensions
are about 133 m x 105 m x 12 m and it is needed to investigate the flow field within the tailrace, support-
ing the projection of a fishway. Knowledge of application and structure of both OpenFOAM and visuali-
zation tool ParaView is premised.

The workflow is split into seven steps including two optional ones (refineMesh and addLayers).
Names of files, paths, (sub-)dictionaries, variables and program options are written in italics. Terminal
commands within the text are printed in Courier. File excerpts are bordered in addition.

2 METHODS

For computations, OpenFOAM 2.2.2 (Weller et al., 1998) including the tools snappyHexMesh and re-
fineMesh is applied on a Linux cluster. For 3D visualization, ParaView 4.0.1 is run locally on
openSUSE 12.3.

Some filters in ParaView cannot handle arbitrary polyeders. Hence, every mesh loaded is split by de-
fault into tetrahedra and pyramids (checkbox Decompose polyhedra in ParaView). That causes deceptive

Generation of a 3D Mesh Using snappyHexMesh Featuring
Anisotropic Refinement and Near-wall Layers

D. Gisen
Federal Waterways Engineering and Research Institute, Karlsruhe, Germany

ABSTRACT: A workflow for 3D mesh generation in hydraulic engineering using the tool snappyHex-
Mesh is delineated in this article. snappyHexMesh is the standard mesh tool of the free CFD software
package OpenFOAM®. 3D hydraulic engineering problems typically include scales ranging from the or-
der of decimeters to hundreds of meters, curved structure geometries, and a free surface, making it neces-
sary to apply multiple levels of local refinement in several regions. As a real-life example for the process,
a hydro power dam tailrace mesh is chosen. Its dimensions are about 133 m x 105 m x 12 m and it is
needed to investigate the flow field within the tailrace, supporting the projection of a fishway. Beginning
with geometry generation and completing with quality control, the workflow is split into seven steps that
are explained separately, including practice guidelines based on experience. Made decisions in the exam-
ple model in general as well as pros and cons of anisotropic refinement and layer insertion in particular
are discussed.

Keywords: Mesh, Anisotropic, snappyHexMesh, OpenFOAM

ICHE 2014, Hamburg - Lehfeldt & Kopmann (eds) - © 2014 Bundesanstalt für Wasserbau ISBN 978-3-939230-32-8

983

visual output and an overstated number of volume elements. Since deactivating the split function can lead
to crashes (segmentation faults), it should be applied only for screenshot creation and with a previous
backup of the current view settings using Save State. The option Crinkle clip, which moves a given cut-
ting plane upon next local cell borders, is recommended for viewing Clips and Slices.

Figures shown in the following are exported in a width of 1890 pixels and their correspondent height.
This equals a printing width of 6.3 inch = 16 cm at 300 dpi (dots per inch).

3 MESH GENERATION WORKFLOW

3.1 General settings

Standard OpenFOAM folder structure is used for mesh generation. For clarity, the mesh is generated in a
separate directory and copied into the actual case directory at last. The following settings are written in
system/controlDict/ to save every grid generation step in sub-folders numbered in ascending order:

application snappyHexMesh; endTime 30;
startFrom latestTime; deltaT 1;
startTime 0; writeControl timeStep;
stopAt endTime; writeInterval 1;

Because the process is always based on the latest sub-folder present in the directory, this and every sub-
sequent sub-folder have to be removed before iterating a step using rm –r FOLDER_NAME .

3.2 Step 1: CAD drawings and export

To start with, the geometry is drawn using a CAD (computer aided design) program. For large scale hy-
draulic engineering models (dimensions in order of the river width or smaller), structures, banks, and bot-
tom are typically fixed. The position of flow boundaries such as upstream and downstream, atmosphere
(“lid”) and possible longitudinal in-stream boundaries, in contrast, needs to be chosen. It has proven to be
useful to draw the geometry always up to maximum positions of the river margins, since a reduction is
possible very easily by reducing the basic mesh (in the following step), whereas a later enlargement,
however, makes necessary re-work with the CAD program.

The model is drawn and later calculated in local (relative) coordinates. Shifting the model to e.g.
8-digit global coordinates would facilitate the comparison with field data, but increase either inaccuracy
or computational requirements massively. The local point of origin (circle in Figure 1a) is set at the inter-
section between the left (in flow direction) bank and a virtual plane at the end of the three draft tubes of
the hydropower plant. This makes it easy to find in situ and to read distances from the hydropower plant
on the longitudinal axis. As a convention, the x-axis is pointing in the main flow direction, and the z-axis
is pointing opposite to the direction of gravity. Hence the y-axis yields across the river. Z-coordinates are
initially left in sea level in order to simplify drawing based on the construction plans.

After finishing the drawing, geometry parts with identical properties are being exported together into
files in STL (STereoLithography) format. Typical criteria for sameness are type of boundary condition,
roughness, or wall layers. In the present example, turbine inlet 1–3, draft tube 1–3, weir inlet 1, sheetpile
walls with roughness, and other walls without roughness are exported to one file each. Binary is chosen as
data format, since ASCII tends to cause files significantly larger when dealing with complex geometries.
The bottom boundary is created on the base of echo sounding data using Janet 2.12.2. Finally, the STLs
are copied into the sub-folder constant/triSurface/.

3.3 Step 2: blockMesh

Using the OpenFOAM tool blockmesh, a basic mesh in the form of a rectangular box covering the entire
simulation domain is created. Its settings are stored and changed in the dictionary con-
stant/polyMesh/blockMeshDict/. As general refinement method, OpenFOAM applies uniform edge bisec-
tion in the three spatial directions. By choosing the basic edge length to Δ = 1.60 m in the sub-dictionary
blocks, a total of five refinement stages (up to (1.60 m)/2

5
 = 0.05 m) with an even centimeter digit are

available, which eases mental arithmetics during mesh generation. Cubes are chosen as cell form, since
they represent the optimum geometrical shape for node movements in a later step (OpenFOAM Founda-

984

tion, 2014) and for turbulence modeling with a Large Eddy Simulation (LES) in the simulation itself
(Spalart, 2001).

A total of six boundaries of the basic mesh are declared as xmin, xmax, ymin, ymax, zmin and zmax in
the sub-dictionary boundary. If they reside within the borders of the STL geometry, they are recognized
as simulation boundaries in the next step automatically. If they do reside outside of the STL geometry,
they are cut and discarded. In the present case, height of the atmosphere (zmax) and position of the out-
flow boundaries (xmax and ymin) can be varied without changing the geometry.

The result of blockMesh (Figure 1b) is stored under constant/polyMesh/ differing from the results of
the next steps and can be viewed in ParaView as Time 0.

3.4 Step 3: castellatedMesh

Following the preparing steps, snappyHexMesh is called for the first time. The tool reads its settings from
system/snappyHexMeshDict/ (a template can be copied from the tutorial mesh/snappyHexMesh/ motor-
Bike/). The dictionary contains parameters for the three steps, castellatedMesh, snap, and addLayers, in
three correspondent sub-dictionaries. For space limitations only the most important parameters are dis-
cussed here. Besides descriptive comments in the dict, the presentation of Jackson (2012) is adjuvant for
understanding. For calling the first step only, it is set:

castellatedMesh true; snap false; addLayers false;

After executing snappyHexMesh | tee log1, the result is stored into the folder 1/polyMesh/. The
prompt output is sent towards the Linux system tool tee by the vertical bar (“pipe”), which stores the out-
put for possible later use into the text file log1.

castellatedMesh performs three actions on the mesh: (a) dividing all cells cut by STL geometries,
(b) refining cells within defined local domains, and (c) discarding cells outside of the STL borders. The
processes are explained in the following sections.

(a) The sub-dictionary refinementSurface (code excerpt below) contains all boundaries of the model.
The minimum and maximum number of bisection respectively refinement steps is given by two entries
behind level. Maximum refinement is applied to the cells at every bend in the STL file, whose featureAn-
gle φ ≥ resolveFeatureAngle φrFA (in degree). φ is the angle between two face normals sharing a common
edge. It is computed through the dot product of the unity normal vectors and resides always within the in-
terval [0°, 180°]. In other words, φrFA is exactly the angle an virtual face may bend towards in positive or
negative direction without causing maximum refinement at the resulting featureEdge (Figure 2). With the
code given in the excerpt, every cell cut by the STL walls is split into 2³

∙
² = 64 new cells minimum. Only

if the STL bends more than φrFA = 30° within a certain cell, it is split into 2³
∙
³ = 512 new cells.

Entered values φrFA outside of [0°, 180°] are automatically set to –1.0e+15 (refinementParameters.C),
resulting in maximum refinement for every bend.

nCellsBetweenLevels 2; // decrease cell count
refinementSurfaces
 { walls { level (2 3); }
 tube_1 { level (4 4); }
 ...
 }
resolveFeatureAngle 30;

(b) Isotropic refinement inside of the boxes defined in the sub-dictionary geometry is possible in the sub-
directionary refinementRegions. With mode inside, as chosen in the tutorial template, the first entry of
levels (not to confuse with level from above) is treated as a dummy value and the number of cell splits is
determined by the second entry. Another option is mode distance, which refines up to the distance from
the domain given in the first entry by the number given in the second entry.

It is useful for the definition of the box borders to create a castellatedMesh without refinement before-
hand and to load it in ParaView along with the STLs. Employing the filter slice, borders in x, y, and z di-
rections can be visualized and moved until they cut the exact cell needed. Cells are cut if a part of their
volume lies inside a refinement box. The respective spatial coordinate may then be read and copied from
ParaView to snappyHexMesh.

985

Figure 1: Steps of mesh generation: a) CAD drawings, b) blockMesh, c/d) castellatedMesh view and section, e) refineMesh

and snap, f) addLayers. Flow direction from right to left.

Figure 2: Principal sketch of featureEdge, face normals, and angles φ and φrFA.

986

(c) All dispensable cells that are part of blockMesh, but not inside the computational volume, are discard-
ed. They are not connected to the point locationInMesh, as one or more STL surfaces are blocking the
way. An occasional problem appears when some outer cells are still connected to this point through tiny
gaps between two STLs and therefore are not removed in the step (so-called “creeping” since the mesh
“creeps” through the gaps). The following countermeasures can be applied against creeping:

1. To make sure that all STLs needed are present in the folder, console output is showing no er-
rors, and all boundaries are defined in snappyHexMeshDict’s sub-dictionaries geometry and re-
finementSurfaces.

2. To check if the point locationInMesh is inside the intended mesh, but not at an edge. The latter
can be ensured by adding arbitrary digits, e.g.:
locationInMesh (10.49 -10.01 83.003);

3. At concave surface joints: Extension of the STLs in outside pointing direction to allow them to
not only touch but intersect each other in the shared edge. This is employed here at the edges
between the bottom and the vertical walls.

4. Visual search for holes with ParaView. The mesh is opened, colored by vtkCompositeIndex or
cellLevel, and Surface with Edges is activated. It is viewed from the inside by zooming and re-
picking the camera center (Pick Center). The searching domain can be downsized systematical-
ly using blockMesh. Typical problems are at curved edges, because they cannot be represented
exactly by the triangle based STL mesh. If a hole is found, a local refinement box (see b)
around the problematic element can help. In case it is caused by two STLs not fitting perfectly
together, they should be re-exported from the CAD program with a higher resolution.

5. In some cases, creeping can be fixed by moving the basic mesh few centimeters in an arbitrary
direction, whereby the STLs cut the cells at slightly other positions. However, success of this
solution is random, hence it should be used as last resort only.

Following a visual check using ParaView, meshing is continued with anisotropic refinement.

3.5 Step 4: refineMesh (anisotropic, optional)

Inside every cell layer possibly containing a water/air interface during the simulation, sudden changes to
the z resolution should be avoided. So far, only cells inside the isotropic refinement box at the turbines
(see Figure 1c) have the uniform height of ∆z = 20 cm. For adjustment of all further cells close to the wa-
ter level, anisotropic refinement with refineMesh is deployed. It substitutes every affected cell just by 2

1

and not by 2
3
 new cells, making the computation faster. However, depending on the mesh volume and

number of simulations, it can be timesaving to refine just isotropic where needed, since the step refine-
Mesh requires a high effort.

At sudden resolution jumps, numerical-induced currents may arise from the Volume of Fluid method
used in the simulation. When the mesh resolution at the water/air interface increases by factor 2 as shown
in Figure 3, the three cells depicted receive three differing filling states: water (α = 1), air (α = 0), and a
mixture of both (α = 0.5). Due to gravity acceleration g, the fluids tend to order themselves according to
their density (here proportional to α), inducing balancing currents (arrows) without real influence.

Figure 3: Creation of balancing currents between cells filled up to different states.

refineMesh is a separate tool contained in OpenFOAM and not part of snappyHexMesh. Its application
makes most sense following castellatedMesh, as the cell splitting results are easier to predict for orthogo-
nal than for non-orthogonal cells, e.g. resulting from snap (step 5).

The tutorial multiphase/cavitatingFoam/les/throttle3D/ contains files Allrun, refineMeshDict, and
topoSetDict.X, which may be used as templates. The following settings are applied to refineMeshDict:

directions (tan3); useHexTopology yes; geometricCut no; writeMesh no;

987

Precedent calling snappyHexMesh, snap false and addLayers true are set. By setting relativeSizes false,
required length units may be set directly and are easier to envision. Edge length in the mesh far from the
wall amounts to 0.10 m in tube_1, to half of that (0.05 m) in the coarsest layer (finalLayerThickness), and
to 0.025 m in the layer closest to the wall (Figure 1f). minThickness is practically switched off by the
small value 0.001 m. For parameter featureAngle φfA, a high value is preferred contrary to re-
solveFeatureAngle φrfA (see castellatedMeshControls), because layers are only inserted if φ < φfA. De-
spite the equal name, featureAngle φfA must not be confused with featureAngle φ between the normal vec-
tors of two planes. According to own tests, in contrast to φrfA also values of φfA above 180° do influence
the result, therefore maximum value 360° is set. An explanation of this behavior has not been found yet.

nSmoothThickness and nLayerIter are both reduced to cut the mesh generation time. maxThick-
nessToMedialRatio is set to maximum value 1 to minimize thinning of two wall layers approaching each
other in a pointed angle between two walls.

A common mistake is to use the STL names defined in geometry in addLayers, too. In fact needed are
the names from 5/polyMesh/boundary/ that often have additions like _OBJECT, _patch0, or _CADfix
from the first and last line of the STL. If ASCII STLs are being used, they can be removed optionally in
the STL file.

Especially when applied to multi-curved surfaces such as the draft tubes, addLayers with default set-
tings often generates not any or faulty layers. As a first counter-measure, near-wall isotropic refinement
should be increased in refinementSurfaces. If nevertheless, even with the settings given above, no contin-
uous layers arise, all entries in meshQualityControls may be deactivated by setting them to maximum re-
spective negative values for debugging purposes. Afterwards, they are activated again line-by-line under
observation of the results to find the cause of the problem. A lasting change of these parameters is dis-
couraged, as only symptoms, but no reasons for mesh problems can be fought through it and mesh quality
decreases.

In general, layers can be omitted in hydraulic engineering problems with little or no influence on the
bulk flow from boundary layer effects or roughness. Due to insertion of the layers, cell deformations may
form inside the computational domain depending on number and thickness of the layers, since additional
cells demanding space are created. As, in this case, the flow between two cells does not point through the
center of their shared face, interpolation gets necessary during the simulation causing inaccuracy. Other
mesh generators like e.g. that of StarCCM+ avoid this downside by reserving a volume close to the walls
for layers preceding to the generation process (CD-Adapco, 2013). This requires an integrated workflow
preventing selective re-iteration of single steps.

3.8 Step 7: checkMesh

After optional layer insertion, for a final check of the mesh, the command is executed:

checkMesh –latestTime | tee log.cm.6

From the output, cell count and agreement with predefined quality criteria are gained. Cells with quality
problems are stored into single sets, for instance in skewFaces for high skew cells (conceivable as geo-
metrical deviation from the ideal form, e.g. deviation from a rectangular cuboid in the case of a general
hexahedron). Using

foamToVTK –faceSet skewFaces –latestTime

a VTK file is generated, which can be opened with ParaView to determine the positions of the bad cells in
the mesh (view as Wireframe). It can be tried to improve the quality by global and local refinements. If
the cells reside in areas irrelevant for the task and/or are few by number, they can be tolerated as well.

After completion of the seven work steps, the final mesh is copied from 6/polyMesh/ in the mesh fold-
er to constant/polyMesh/ in the computation folder. From own experience, boundary conditions using free
water surface are more stable if this is close to z = 0, since hydrostatic pressure gets very small. There-
fore, the mesh, created in natural height, is translated at last in the computation folder by an even amount
in z direction using the command

transformPoints -translate '(0 0 -80)'

989

REFERENCES

CD-Adapco (2013). User Guide Star-CCM+ Version 8.02.
Jackson A. (2012). http://openfoamwiki.net/images/f/f0/Final-AndrewJacksonSlides OFW7.pdf (called 17.04.2014).
Menter F.R. (2009). Review of the shear-stress transport turbulence model experience from an industrial perspective. Int. J.

Comput. Fluid Dyn. 23, No. 4, pp. 305 – 316.
Spalart P.R. (2001). Young-Person’s Guide to Detached-Eddy Simulation Grids. NASA Technical Report NASA/CR-2001-

211032.
OpenFOAM Foundation (2014). http://www.openfoam.org/docs/user/ (called 17.04.2014).
Weller H.G., Tabor G., Jasak H. & Fureby C. (1998). A Tensorial Approach to CFD using Object Orientated Techniques,

Comput. Phys., Vol. 12, No. 6, pp. 620 – 631.

Legal information: OPENFOAM® is a registered trade mark of OpenCFD Limited, the producer of the OpenFOAM software.

990

	Mini-Symposium: CFD in the Nearfield of Structures
	Generation of a 3D Mesh Using snappyHexMesh FeaturingAnisotropic Refinement and Near-wall Layers
	1 Introduction
	2 Methods
	3 Mesh generation workflow
	3.1 General settings
	3.2 Step 1: CAD drawings and export
	3.3 Step 2: blockMesh
	3.4 Step 3: castellatedMesh
	3.5 Step 4: refineMesh (anisotropic, optional)
	3.6 Step 5: snap
	3.7 Step 6: addLayers (optional)
	3.8 Step 7: checkMesh

