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Preamble

In many parts of the world the water cycle is strongly affected by human activities. These

anthropogenic impacts are often difficult to estimate as data and information about water

management activities are rare. At the other side the interest in macroscale hydrology is

increasing as the regulating function of the water cycle has to be integrated in Global

Circulation Models. Other needs to have a look on large dimensions results from the

interactions of regional water activities. Uncoordinated regional water management causes

more and more adverse effects as it can be shown at the example of the Aral Sea.

Integrated Water Resources Management, which is oriented to the spatial scale of river

basins, cannot be implemented for large transboundary rivers if the overlaying impacts of

national and regional developments are not combined. This can be ensured by large scale

water management models only. In many parts of the world dramatic changes affects water

resources. These changes are often caused by an intensification of water uses which are

primarily caused by agriculture. Irrigation is the base for national economics in many parts

of the globe and indispensable for feeding the world. Reservoirs are often starting points of

irrigation systems providing water by temporal redistributions. They fulfill other tasks as

well (flood protection, hydropower utilization etc.). In summary irrigation and reservoirs

modify the water cycle in different aspects and scales. The consideration of their impacts

within global and regional hydrological models is a challenge which was accepted by

Dominik Wisser in his PhD-thesis. He started with a fundamental knowledge about

irrigation and reservoir management, applied and extended this information to large scale

river basins and demonstrated options and limits to describe these anthropogenic impacts at

the continental scales. One important result of his work is an overview about the

uncertainties of such estimations caused by limited data availability and problems of data

assimilation from remote sensing devices. In this way he followed up the tradition of our

institute in research activities dedicated to hydrological applications of remote sensing.

The work of Dominik Wisser was not feasible without an integration of the developed

simulation tools in a global water balance model. Here the Water System Analysis Group

of the University of New Hampshire gave invaluable support and fulfilled all expectations

I had when I recommended Dominik Wisser to continue the studies he started in Bochum

at the University of New Hampshire. In this sense not only the topic of this dissertation is a

global one but also its realization, based on a cooperation of two research institutes which

are interested in a common problem.

Bochum, den 05.05.2010          Prof. Dr. Andreas Schumann





Contents

List of Figures v

List of Tables vii

Abbreviations ix

1 Introduction and Objectives 1

1.1 Problem and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Objectives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Methodology and Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Irrigation Principles 5

2.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Water Sources for Irrigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Irrigation Infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.1 Surface Irrigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.2 Sprinkler Irrigation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.3 Microirrigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Drainage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5 Irrigation Water Demand .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5.2 Crop Water Demand .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5.3 Water Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5.4 Water Withdrawal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.6 Irrigation Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.7 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Remote Sensing Data 17

3.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Principles of Remote Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Sensors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3.1 AVHRR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3.2 MODIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3.3 Data Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.4 Vegetation Indices (VI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.4.1 Normalized Difference Vegetation Index (NDVI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.4.2 Other Vegetation Indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

i



3.5 RS-Based Data sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.5.1 Phenology Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.5.2 Land Cover Products. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.5.3 Global Irrigated Area Mapping Project (GIAM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.5.4 Paddy Rice Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.6 Conclusions and Selection of Appropriate Data Sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Agronomy Data 25

4.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2 FAOSTAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.3 AQUASTAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.4 Agricultural Census, USDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.5 FAO AgroMAPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.6 Atlas of Rice (IRRI). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.7 Global Map of Irrigated Areas (GMIA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.7.1 Comparison of GMIA and GIAM.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.7.2 Time Series of Irrigated Areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.8 Blended Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.8.1 Global Cropland Data Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.8.2 Distribution of Major Crops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.9 Conclusion and Selection of Appropriate Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5 Physical Data Sets 33

5.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.2 Precipitation Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.2.1 CRU Precipitation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.2.2 GPCC Precipitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2.3 GPCP Precipitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2.4 NCEP Precipitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2.5 Temporal and Spatial Differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.3 CRU Climate Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.3.1 Air Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.3.2 Number of Wet Days per Month . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.3.3 Vapor Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.3.4 Cloud Cover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.3.5 Wind Speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.4 Potential Evapotranspiration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.4.2 Penman-Monteith . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.4.3 Hamon Evapotranspiration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.5 Climate-Based Phenology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.6 Soil Hydraulic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.7 Global Hydrography Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.7.1 River Networks and Basins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.7.2 Selection of a river network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.7.3 Discharge Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

ii



5.7.4 Dams and Reservoirs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.8 Conclusions and Selection of Appropriate Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6 Macroscale Hydrological Modeling 47

6.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.2 Macroscale Hydrological Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.3 Existing Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.4 Irrigation and Reservoirs in MHM’s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.4.1 Irrigation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.4.2 Reservoirs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.5 Limitations of Macroscale Hydrological Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.6 Assessing Hydrological Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.7 Uncertainty And Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.7.1 One Dimensional Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.7.2 Uncertainty Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7 A Macroscale Model Accounting for Human Interventions 63

7.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

7.2 Rainfed Water Balance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7.2.1 Snowpack. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7.3 Irrigation Water Demand .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7.3.2 Modeling the Cropping Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

7.3.3 Irrigation Water Demand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

7.3.4 Water Withdrawal and Return Flows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7.4 Reservoirs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

7.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

7.4.2 Large Reservoirs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

7.4.3 Small Reservoirs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7.5 Horizontal Water Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

7.6 Model Integration and Water Sources for Irrigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

7.7 Temporal Downscaling of Climate Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

8 Validation and Uncertainty 83

8.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

8.2 Irrigation Water Use and Withdrawal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

8.2.1 Global, Long-term Withdrawal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

8.2.2 Inter-Annual Variability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

8.2.3 Uncertainty of Irrigation Parameters (Krishna Basin). . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

8.2.4 Global Data Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

8.2.5 Water Sources for Irrigation and Return Flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

8.3 Discharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

8.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

8.3.2 Global Assessments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

8.3.3 Parameter Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

8.3.4 Uncertainties Arising from Precipitation Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

iii



8.4 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

9 Applications 109

9.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

9.2 Development of Irrigation Water Demand 1901-2002 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

9.3 Reconstructing 20th Century Global Hydrography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

9.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

9.3.2 Spatial Trends in Hydrological Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

9.3.3 Global Simulations and Discharge to Oceans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

9.4 Impact of Reservoirs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

9.5 Assessing Unsustainable Abstractions for Selected River Basins . . . . . . . . . . . . . . . . . . . . 121

9.5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

9.5.2 Aral Sea Basin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

9.5.3 Krishna River Basin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

9.5.4 Danube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

9.6 Potential Impacts of Climate Change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

9.6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

9.6.2 Climate Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

9.6.3 Changes in Irrigation Water Demand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

9.6.4 Changes in Water Availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

9.6.5 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

10 Summary and Conclusions 141

10.1 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

10.2 Limitations and Uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

10.3 Research Needs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

Bibliography 147

Appendix 169

iv



List of Figures

2.1 Irrigated area and population forecast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Green and blue water (schematized) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Crop growing stages and crop coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Rice growth stages and water application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5 The basin efficiency concept (idealized) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.6 Beneficial and non-beneficial water use in irrgation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1 Reflectance curves of Earth targets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 cropland classification for the Indian subcontinent. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1 Comparison of GMIA and GIAM irrigated areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Time series of irrigated areas per continent. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.1 Number of CRU precipitation stations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.2 GPCP precipitation totals 2007 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.3 Computed onset of the first growing season 2002 based on CRU data. . . . . . . . . . 41

5.4 Runoff data holdings at the GRDC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.5 Accumulated reservoir storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.1 Scales in hydrology and climatology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

7.1 Schematic overview of theWBMplus Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7.2 Root zone depletion after precipitation and irrigation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7.3 Distribution of residence time for the set of reservoirs. . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7.4 Long-term mean inflow and outflow from reservoirs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7.5 Observed relationship between inflow and release . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7.6 Observed and modeled release for selected reservoirs . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

7.7 Modeled and observed release from reservoirs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

7.8 Modeled and observed release from reservoirs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7.9 Irrigation water abstraction flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

8.1 Long term irrigation water withdrawal (based on GMIA data) . . . . . . . . . . . . . . . . . . 85

8.2 Comparison of the estimated water withdrawal with reported values . . . . . . . . . . . 86

8.3 Variability of irrigation water demand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

8.4 Likelihood of irrigation parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

8.5 GLUE estimated uncertainty for irrigation parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 91

8.6 Likelihood of irrigation parameters for discharge predictions . . . . . . . . . . . . . . . . . . . 92

8.7 Latitude profiles of irrigation and precipitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

v



8.8 Modeled and reported water withdrawal for using different data sets . . . . . . . . . . . 93

8.9 Long term irrigation water withdrawal (based on GIAM data) . . . . . . . . . . . . . . . . . . 94

8.10 Water sources for irrigation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

8.11 Frequency distribution of model bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

8.12 Model performance as a function of basin size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

8.13 Model bias as a function of precipitation network density . . . . . . . . . . . . . . . . . . . . . . . 100

8.14 Bias distribution for 658 gauging stations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

8.15 Sensitivity of model components to parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

8.16 Likelihood plots of model parameters in the Mississippi river basin . . . . . . . . . . . . 103

8.17 Uncertainty bands for the Mississippi river basin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

8.18 Likelihood plots of model parameters in the Danube river basin . . . . . . . . . . . . . . . . 105

8.19 Uncertainty bands for the Danube river basin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

9.1 Time series of irrigation water demand per continent . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

9.2 Spatial trends in evapotranspiration 1901-2002 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

9.3 Spatial trends in runoff 1901-2002 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

9.4 Annual time series of discharge to the oceans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

9.5 Time series of discharge weighted water age . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

9.6 Overview of the Aral sea basin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

9.7 Modeled and observed discharge in the Aral Sea basin . . . . . . . . . . . . . . . . . . . . . . . . . . 125

9.8 Overview of the Krishna river basin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

9.9 Modeled and observed discharge in the Krishna basin . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

9.10 Overview of the Danube river basin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

9.11 Modeled and observed time series at Ceatal Izmail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

9.12 Water sources for irrigation for different resolutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

9.13 Mean monthly climate data for the Danube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

9.14 Modeled water withdrawal in the Danube basin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

9.15 Box-Whisker plot of simulated discharge in the Danube basin. . . . . . . . . . . . . . . . . . 139

A-1 Annual precipitation changes in the CLM domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

A-2 Changes in the mean annual temperature (CLM domain) . . . . . . . . . . . . . . . . . . . . . . . 178

vi



List of Tables

4.1 Comparison of GMIA and GIAM’s irrigated areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.1 Data requirements for Penman-Monteith equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.1 Comparison of macroscale hydrological models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

7.1 Estimated daily percolation rates for different soil drainage classes . . . . . . . . . . . . 68

7.2 Statistics of observed reservoir data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

8.1 WBMplus irrigation water demand compared with independent data . . . . . . . . . . . . 87

8.2 Variations in modeled irrigation water withdrawal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

8.3 Water withdrawal for combinations of different data sets. . . . . . . . . . . . . . . . . . . . . . . . 93

8.4 Summary performance statistics for 658 gauging stations . . . . . . . . . . . . . . . . . . . . . . . 97

8.5 Parameters in in theWBMplus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

8.6 Optimal parameter values for the Danube and Mississippi river basin . . . . . . . . . . 104

8.7 Mean values of simulated discharge for the Danube river basin . . . . . . . . . . . . . . . . . 107

9.1 Characteristics of ocean basins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

9.2 Fluxes to ocean basins 1901-2002 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

9.3 River volume and apparent aging of water . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

9.4 Modeled water balance terms for the Aral Sea basin . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

9.5 Modeled water balance terms for the Krishna basin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

9.6 Modeled and observed fluxes in the the Danube river basin . . . . . . . . . . . . . . . . . . . . . 133

9.7 Long-term climate data for the Danube basin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

9.8 Computed discharge in the Danube Basin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

A-1 Root depth for different land cover types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

A-2 Properties of major crops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

A-3 Irrigation efficiencies for world regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

A-4 Reservoir characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

vii





Abbreviations

AOGCM . . . . . . . . . . Atmosphere-Ocean General Circulation Model

AVHRR . . . . . . . . . . Advanced Very High Resolution Radiometer

CCR . . . . . . . . . . . . . Catchment Command Ratio

CLM . . . . . . . . . . . . . Climate version of the Local Model

CRU . . . . . . . . . . . . . Climate Research Unit, University of East Anglia

CWP . . . . . . . . . . . . . Crop Water Productivity

DEM . . . . . . . . . . . . . Digital Elevation Model

DSMW . . . . . . . . . . . Digital Soil Map of the World

DWD . . . . . . . . . . . . . Deutscher Wetterdienst

EPA . . . . . . . . . . . . . . Environmental Protection Agency

EPIC . . . . . . . . . . . . . Erosion Productivity Impact Calculator

EVI . . . . . . . . . . . . . . Enhanced Vegetation Index

FAO . . . . . . . . . . . . . . Food and Agricultural Organization

FC . . . . . . . . . . . . . . . Field Capacity

FrAMES . . . . . . . . . . Framework for Modeling of Aquatic Ecosystems

GAC . . . . . . . . . . . . . Global Area Coverage

GIMA . . . . . . . . . . . . Global Irrigated Areas Mapping

GIS . . . . . . . . . . . . . . Geographical Information System

GLCC . . . . . . . . . . . . Global Land Cover Characterization

GLUE . . . . . . . . . . . . Generalised Likelihood Uncertainty Estimation

GMIA . . . . . . . . . . . . Global Map of Irrigated Areas

GPCC . . . . . . . . . . . . Global Precipitation Climatology Centre

GPCP . . . . . . . . . . . . Global Precipitation Climatology Project

GRDC . . . . . . . . . . . . Global Runoff Data Center

ICOLD . . . . . . . . . . . International Commission on Large Dams

IGBP . . . . . . . . . . . . . International Geosphere-Biosphere Program

IPCC . . . . . . . . . . . . . Intergovernmental Panel on Climate Change

IRRI . . . . . . . . . . . . . International Rice Research Institute

IWMI . . . . . . . . . . . . International Water Management Institute

JRC . . . . . . . . . . . . . . Joint Research Center

LAI . . . . . . . . . . . . . . Leaf Area Index

LCCS . . . . . . . . . . . . Land Cover Classification System

ix



LGP . . . . . . . . . . . . . . Length of Growing Period

LR . . . . . . . . . . . . . . . Leaching Requirement

LSM . . . . . . . . . . . . . Land Surface Models

LSWI . . . . . . . . . . . . Land Surface Water Index

LU/LC . . . . . . . . . . . Land Use/Land Cover

MAE . . . . . . . . . . . . . Mean Absolute Error

MBE . . . . . . . . . . . . . Mean Bias Error

MHM . . . . . . . . . . . . Macroscale Hydrological Model

MODIS . . . . . . . . . . . Moderate Resolution Imaging Spectroradiometer

MVC . . . . . . . . . . . . . Maximum Value Compositing

NASA . . . . . . . . . . . . National Aeronautics and Space Agency

NASS . . . . . . . . . . . . National Agricultural Statistics Service

NCAR . . . . . . . . . . . . National Center for Atmospheric Research

NCEP . . . . . . . . . . . . National Centers for Environmental Precipitation

NDSI . . . . . . . . . . . . . Normalized Difference Snow Index

NDVI . . . . . . . . . . . . Normalized Difference Vegetation Index

NOAA . . . . . . . . . . . National Ocean and Atmospheric Administration

NSE . . . . . . . . . . . . . . Nash Sutcliffe Efficiency

PAL . . . . . . . . . . . . . . Pathfinder AVHRR Land DATA

POES . . . . . . . . . . . . Polar Orbiting Operational Environmental Satellites

PWP . . . . . . . . . . . . . Permanent Wilting Point

RCM . . . . . . . . . . . . . Regional Climate Model

RMSE . . . . . . . . . . . . Root Mean Square Error

RS . . . . . . . . . . . . . . . Remote Sensing

RU . . . . . . . . . . . . . . . Reflectance Units

SPOT . . . . . . . . . . . . Système Pour l’Observation de la Terre

SRES . . . . . . . . . . . . Special Report on Emission Scenarios of the IPCC

SRTM . . . . . . . . . . . . Shuttle Radar Topography Mission

STN . . . . . . . . . . . . . . Simulated Topological Network

SVAT . . . . . . . . . . . . . Soil-Vegetation Atmosphere Transfer

TRIP . . . . . . . . . . . . . Total Runoff Integrated Pathways

UNEP . . . . . . . . . . . . United Nations Environment Programme

USDA . . . . . . . . . . . . United States Department of Agriculture

USGS . . . . . . . . . . . . United States Geological Survey

VE . . . . . . . . . . . . . . . Volume Error

VI . . . . . . . . . . . . . . . . Vegetation Index

VIC . . . . . . . . . . . . . . Variable Infiltration Capacity

VIM . . . . . . . . . . . . . . Vegetation Monitoring Instrument

WBM . . . . . . . . . . . . Water Balance Model

WEI . . . . . . . . . . . . . . Water Exploitation Index

x



WGHM . . . . . . . . . . WaterGAP Global Hydrological Model

WMO . . . . . . . . . . . . World Meteorological Organization

WRI . . . . . . . . . . . . . . World Resources Institute

WTM . . . . . . . . . . . . Water Transport Model

xi



xii



1 Introduction and Objectives

1.1 Problem and Motivation

Irrigation of agricultural areas to secure food production has been applied as early as 6000

B. C. and has facilitated the development and settlement of humans along the Nile, between

Euphrates and Tigris, and along the Indus and Ganges river and other regions. The area

of irrigated land globally was relatively stable until the 1800’s but increased dramatically

during the 1970’s - the onset of the ’green revolution’ - to it’s current extent of 275 Mha

(Siebert et al., 2005). Despite this increase, irrigated areas constitute a relatively small area

of total crop land (17%), yet 40% of the world’s food comes from irrigated areas (FAO-

STAT , 2008). Therefore, providing adequate water to supply the irrigation needed to feed

the world’s growing population constitutes a major international security concern.

About 70% of the water abstraction globally is used for irrigation, but this rate is much higher

in developing countries, reaching 90% (Shiklomanov and Rodda, 2003; Cai and Rosegrant,

2002). In addition, the abstracted volume is expected to rise in future due to rising population

and increasing per-capita demand for food. Water availability may be a serious constraint to

achieving future food requirements, and the number of countries unable to sustain adequate

water supplies will likely increase (Postel, 1998).

Irrigation affects the hydrological cycle through a number of direct and indirect effects, in-

cluding the alteration of the flow regime of many of the world’s major rivers. The abstraction

of water for irrigation purposes lowers the volume of water entering river systems (Hadde-

land et al., 2006a). This has led to the transformation of large, mainstem rivers such as Syr

Darya, Huang He, Indus, Yellow River, and Colorado into ’losing streams’ with substantial

reductions in flow and declining groundwater tables (Foley et al., 2005). The abstraction of

irrigation water has also been shown to impact the seasonality of river flow by increasing

winter discharge via return flow from irrigated areas (Kendy and Bredehoeft, 2006).

Such alterations in the hydrological cycle do not only impact the spatial and temporal dis-

tribution of runoff, but have direct and indirect effects on the bio-geophysical state of water

and subsequently the sustainable use of water resources. Irrigated areas can also influence

atmospheric properties and processes through additional water in the atmosphere (Douglas

et al., 2006) and evaporative surface cooling (Kueppers et al., 2007). On a global scale,

these anthropogenic changes in global water vapor changes are equivalent to the decrease in

evapotranspiration associated with deforestation (Gordon et al., 2005).

Components of the hydrological cycle are not only affected by the abstraction of water but

also by the distortion of hydrographs through the storage of water in reservoirs. Today, river
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basins are more closely tied to the character of water resources engineering than to the be-

havior of natural systems (Vörösmarty et al., 2005;Meybeck, 2003). Globally, there are more

than 45,000 dams over 15 m high, representing an increase in the total number of nearly one

order of magnitude since 1950 (Vörösmarty et al., 1997, 2003) with an accumulated storage

volume equivalent to about 7% of the global terrestrial discharge. The temporal changes in

the flow of water in river systems as a result of those reservoir impoundments greatly af-

fect a number of biogeochemical processes such as the ability of the water to decompose

organic matter. Reservoirs impact the sediment retention of major rivers (Vörösmarty et al.,

2003), the emission of trace gas emissions (Soumis et al., 2004; Galy-Lacaux et al., 1999;

St.Louis et al., 2000) and the cycling of nutrients (Seitzinger et al., 2002). While the impacts

of reservoirs and irrigation on components of the hydrological cycle are well documented

for single river basins (e.g. Shibuo et al. (2007); Bouwer et al. (2006); Haddeland et al.

(2006a)), few studies have explicitly modeled the impact of water abstraction for irrigation

in continental and global hydrological models. The analysis of those changes on the global

scale using macroscale hydrological models does not only provide valuable information on

understanding the water and food nexus that is becoming more important with a growing

world population but also offers an opportunity for providing information for the calibration

and validation of atmosphere-ocean-general circulation models (AOGCM) that are becoming

increasingly realistic in modeling the biosphere-atmosphere interaction and the hydrology of

the terrestrial surface.

Unfortunately, quantifying the impacts of irrigation on global and continental water cycles

using macroscale hydrological models is constrained by a number of uncertainties. The

largest uncertainty arises from the uncertainty in the distribution of irrigated areas, that is

typically based on agricultural census data at scales ranging from 102 to 104 km2 for district

or county level data, to 103 - 105 km2 at provincial (state) level to some 104 to 107 km2

at national level and is typically not available for every year while the cropping pattern

and agricultural practices may change due to market or hydrological conditions faster than

the census can document (Frolking et al., 2005). Data sets that entirely rely on national

statistics cannot meet the needs of science and policy researchers who require geospatial data

at improved temporal and spatial resolutions that is updated regularly (Xiao et al., 2006). The

recent advances made in remote sensing instruments, sensors and derived data sets provide

an ideal tool for reducing the inherent uncertainties in estimates of irrigation water demand.

Remotely sensed data from a variety of sensors at different resolutions, temporal and spatial

coverage, in combination with statistical data sets can also provide a means to track changes

in the distribution of irrigated areas over time and the potential of such data products has

not been fully exploited. The simulation of reservoir operation and their impact on the flow

regime of a river is constrained by incomplete registers of reservoirs globally and by the lack

of detailed knowledge of reservoir operation rules for individual reservoirs.

1.2 Objectives

This study investigates the role of irrigation water abstractions and the operation of reservoirs

on regional and global water cycles and the implications of such alterations on the sustain-

able use of water resources. To accomplish this, an existing macroscale hydrological model

was modified to explicitly account for human interventions in the water cycle at a variety of

2
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spatial domains and at varying resolutions. More in detail, the model represents the interac-

tions of irrigated areas with non-irrigated areas both in terms of water abstraction and as a

source for recharge. To model the impact of irrigation water abstractions and reservoir op-

eration on routed streamflow, it is necessary to model the horizontal water flow at the same

time step as the vertical water balance calculations. Furthermore, the model is capable of

modeling the operation of reservoirs on a global scale with data sets available to date. As un-

certainties related to the distribution of irrigated areas can greatly be reduced using remotely

sensed data, the model should be flexible enough to accommodate such data at a variety of

different spatial and temporal resolutions. To this end, it is essential that the model is im-

plemented in a software modeling framework. Modeling frameworks have been designed to

increase the greater inter-operability and portability of software among developers, and to

increase the efficiency of software development through a set of shared software systems,

standards, and utilities, and the use of such frameworks have recently received considerable

attention for hydrological models as well as for more complex Earth system and climate

models (Dickinson et al., 2002; Gattke, 2006; Wollheim et al., 2008). Model simulated dis-

charge predictions must be validated against observed discharge and the uncertainties related

to model parameters and input data must be quantified.

1.3 Methodology and Outline

Following the objectives of this study outlined above, the methodology is described as fol-

lows: Chapter 2 introduces some basic principles of irrigation, existing approaches to model

irrigation water demand and consumption and the required geospatial data sets. Funda-

mentals of remote sensing, relevant sensors and instruments and derived data products are

described in Chapter 3 followed by a discussion of available statistical data sets related to

agriculture with relevance to water balance modeling (Chapter 4). This includes a discussion

on the spatial differences between remotely sensed information and data mainly based on

agricultural census data. The objective of Chapter 5 is to discuss time varying climate data

used as forcing data for the model and auxiliary data that is needed for the validation of the

model. An overview of existing implementations of macroscale hydrological models and

their limitations with regard to the representation of human interventions in the water cycle

is given in Chapter 6. In this context, methods for assessing hydrological models and un-

certainty in hydrological models are discussed. Based on these objectives and limitation of

existing models, Chapter 7 introduces a newly developed water balance model that is based

on the existing WBM model (Vörösmarty et al., 1998) with substantial modifications in the

structure and implemented in an existing modeling framework. The irrigation water module

of the model and the implications for discharge simulations are validated and assessed with

regard to the uncertainty in the model and in data sets for both individual river basins and at

continental and global scales. Chapter 9 discusses applications of the model. These include

global applications to reconstruct the hydrography of the last century that help understand

the role of irrigation and reservoirs as well as assessments of individual river basins that are

under stress as a result of irrigation water abstractions, both under contemporary and future

climate conditions.

Finally, based on the results presented in the previous chapters, important directions and

opportunities for future research needs are discussed.
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2 Irrigation Principles

2.1 Introduction

Irrigation is generally understood as ’the application of water to soil for the purpose of sup-

porting plant growth’ (Hargreaves and Merkley, 1998). A much broader definition is given

by Israelsen and Hansen (1962) who define irrigation as ’the application of water to the soil

for any of the following purposes: (1) to add water to soil to supply the moisture essential

for plant growth, (2) to provide crop insurance against short duration drought, (3) to cool the

soil and atmosphere, thereby making more favorable environment for plant growth, (4) to

wash out or dilute salts in the soil, (5) to reduce the hazard of soil piping, and (6) to soften

tillage pans’.

Globally, around one fourth (3.6 109 ha) of the Earth’s land surface are too dry for rain-

fed agriculture and have to be irrigated to grow crops (Fischer et al., 2002). Irrigation has

been applied for millennia to secure adequate food supply and has enabled civilizations to

develop residential sites in arid and desert areas. While the irrigated area in 1800 was just

about 8 Mha (Postel, 1999), it has increased since the beginning of the ’Green revolution’ in

the 1970’s from about 100 Mha to about 270 Mha (FAOSTAT , 2008). Figure 2.1 depicts the

development of irrigated areas since 1960. As can be seen, the rate of growth is declining

since the beginning of the 21st century and reflects the increasing scarcity of suitable areas,

rising cost of irrigation investment and losses of irrigated areas due to salinization and land

degradation. As most of the increase in irrigated areas will be achieved by converting rainfed

agriculture, the net increases in the total cropland area are expected to be marginal in future

(Postel, 1998, 1999; Falkenmark et al., 1998). As the population is expected to rise further,

the irrigated area per person is actually declining since the last two decades (Figure 2.1).

Although irrigated land constitutes only 17% of the global cropland area, 40% of our food

are derived from irrigated land (Postel, 1999) and providing adequate irrigation water to feed

the growing population consitutes therefore one of the major international security concerns

in the future (Vörösmarty et al., 2000a). The following section is aimed at briefly summariz-

ing basic principles of irrigation and its implications for estimating and allocating irrigation

water demand.

2.2 Water Sources for Irrigation

Of the estimated 3800 km3 that are diverted from the global hydrological cycle per year,

some 70 to 80% are used for irrigated agriculture (Postel, 1999; Shiklomanov and Rodda,

2003). The water supply for irrigation will have two grow in future for at least two reasons:

(1) the increased demand for a growing population and (2) changes in people’s diets (towards
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Figure 2.1: Development and forecast of population, irrigated areas and specific irrigated areas 1961-

2050. Population forecast from The Population Division of the Department of Economic

and Social Affairs of the United Nations Secretariat, World Population Prospects: The

2004 Revision and World Urbanization Prospects, Medium variant. Irrigated Area based

on FAO data (AQUASTAT , 2008)

more meat-rich diets). It is estimated that water abstraction for irrigation will rise by 14% in

developing countries from 2000 to 2030 (World Water Assessment Programme, 2002) while

Postel (1999) estimates that an additional 2,000 km3a 1 of water are to be abstracted to meet

the required food production levels in 2025.

Water for irrigation use can be abstracted from surface waters and groundwater. Being the

most reliable source of water, groundwater abstractions are particularly important in provid-

ing the water needed for irrigation. Irrigated areas based on groundwater produce signifi-

cantly higher yields than those that rely on surface water (Moench et al., 2003). This is due

to the fact that the application efficiency is higher, and that the water is available on demand.

Groundwater irrigation has become increasingly popular globally and exceeds surface water

irrigation in many parts of the world. Globally, groundwater is believed to supply some 30%

of the total water needed for irrigated areas (Foster and Chilton, 2003). The dependency of ir-

rigated agriculture on groundwater varies considerably. Groundwater-irrigated areas account

for 50% of the irrigated areas in India (Central Water Comission of India, 1998), about 50%

in China’s Henan province, 20% in Spain (Moench et al., 2003) and some 65% of the US

irrigated agriculture (Pimentel et al., 2004). A large fraction of irrigation water is obtained

from unsustainable use of water resources in general and groundwater resources in particu-

lar. Based on documented evidence from India, China, the United States, North Africa and

the Arabian Peninsula, Postel (1999) estimates that 200 km3a 1 are being abstracted unsus-

tainably from groundwater resources. As this amount is largely used for grain production

this estimate suggests that some 10% (about 180 million tons per year) of the global grain

harvest are produced by depleting aquifers. Although based on documented evidence and

highly uncertain, this first assessment has generated some discussions and has drawn the at-

tention to the importance of groundwater in world food production (Moench et al., 2003).
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Vörösmarty et al. (2005) used a geospatial framework of 0.5° to assess what fraction of the

demand can be met by locally produced runoff and river corridor discharge (if available).

Taking withdrawal values form national statistics, they concluded that the non-sustainable

water abstractions could be as high as 400-800 km3a 1. Some 20% of the irrigated areas

in the United States are supplied by groundwater that is abstracted in excess of the natu-

ral recharge (Tilman et al., 2002)1. The negative aspects and drawbacks of groundwater

development are well understood. Typical consequences of groundwater overuse include

(Custodio, 2002):

• Progressive decrease of groundwater heads

• Decrease in spring discharge, river base flow and surface area of wetlands

• Change in the groundwater flow pattern. This can subsequently lead to seawater intru-

sion

• Changes in the water quality due to mixing of waters of different depths as a conse-

quence of changing heads

• Decrease in pore pressure. This may lead to land subsistence when sediments are

unconsolidated.

Ample examples of groundwater overdraft and declining groundwater levels have been re-

ported for many regions in the world, such as for the North China Plain (Kendy et al., 2003,

2004), the Indo-Gangetic Plains (Shah et al., 2006; Postel, 1999) and many others.

Although non-conventional water sources such as desalinated water and reclaimed wastewa-

ter are increasingly being applied, the amount of water abstracted from those source is small

on a global scale. The World Water Assessment Programme (2002) estimates that some 20

Mha of irrigated land are irrigated with partially diluted or raw wastewater. Although being

an important source of water in arid and semi-arid areas (e.g. Cyprus, Israel) with increasing

importance, the total area irrigated with waste water in developing countries represents some

10% of the total irrigated area. The use of desalinated water for irrigation purposes is only

practiced for high value crops, particularly if water prices are subsidized.

Falkenmark et al. (1998) have conceptualized the water in a river basin into two compo-

nents. Blue water is renewable water in liquid form which is the water in rivers, lakes and

aquifers and is both accessible and inaccessible to humans. Green water is the water in the

soil and has two components: a productive part that is required for biomass production in

terrestrial ecosystems (transpiration) and a non-productive part that is evaporated (Falken-

mark and Rockström, 2006). Green water is required to keep natural ecosystems, and plants

functioning. The storage medium for green water is the root zone of the soil. The parti-

tioning of blue and green water is therefore strongly affected by land use changes and is

shown in Figure 2.2. Out of the estimated 110,000 km3a 1 of precipitation that are reaching

the Earth’s surface, some 40,000 km3a 1 are converted to runoff and aquifer recharge (blue

water) while an estimated 70,000km3a 1 is stored in the soil and eventually returns to the

atmosphere through transpiration and evaporation. Rainfed agriculture consumes only green

1An extended discussion on sustainable groundwater abstractions will be given in Chapter 9.5.1
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Figure 2.2: Partitioning of precipitation into the vertical green water branch, including the return flow

to the atmosphere and unproductive losses (Falkenmark et al., 1998)

water and irrigated agriculture uses blue water to meet the demand that exceeds the amount

of available green water.

2.3 Irrigation Infrastructure

Water abstracted from any of the water resources discussed above (surface water, ground-

water, re-used water, desalinated water) has to be conveyed into the root zone of the soil.

The methods of conveyance can broadly be classified into three main categories: (i) surface

irrigation, (ii) sprinkler irrigation and (iii) microirrigation. These methods will be briefly

described in the following section.

2.3.1 Surface Irrigation

Surface irrigation is the traditional way of intermittently applying the water to the soil. De-

pending on the way the water is controlled, surface irrigation may be further subdivided into

basin irrigation (confining the water to a given area), furrow irrigation (controlling the water

in furrows that are created between row crops) and level-basin irrigation (Replogle et al.,

1996). Surface water irrigation is applied on more than 90% of the total global irrigated area

(AQUASTAT, 2008).

2.3.2 Sprinkler Irrigation

Sprinkler irrigation is the application of water through a network of pipelines and sprin-

klers. Sprinkler irrigation developed mainly after light-weight aluminum pipes have been

introduced after 1950. Sprinklers are most applicable when supplemental2 irrigation is ap-

plied. Depending on whether the sprinkler is moving in the field or is fixed on a permanent

structure sprinkler irrigation can be further subdivided into permanent or moving systems.

Among the most commonly used moving irrigation systems are center-pivot systems where

water is supplied at a central point and a lateral line rotates around this center. The world

2Supplementary irrigation refers to a concept ’of providing additional water to stabilize or increase yields

under site conditions where a crop can normally be grown under direct rainfall, the additional water being

insufficient to produce a crop’ (AQUASTAT , 2008)
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total area irrigated by sprinklers is about 20 Mha (around 8% of the total irrigated area) with

the largest areas being found in the USA, Italy, France and other European countries (Shik-

lomanov and Rodda, 2003). Compared to surface irrigation, sprinkler systems have a high

energy consumption, high investment cost and require technical support.

2.3.3 Microirrigation

Microirrigation3 includes drip irrigation, trickle irrigation and subsurface irrigation and is

generally considered to be the most efficient irrigation method. Under this method the water

is applied directly to the crops’ roots through a network of perforated pipelines under the

soil or beneath the soil surface. Losses due to evaporation are thereby kept extremely low.

Although microirrigation systems have expanded rapidly since the 1970’s, the area that is

under microirrigation worldwide totals 3 Mha or one per cent of the total area under irrigation

(Postel, 1999). Compared to other irrigation methods, the requirement with regard to water

quality and skilled personell for maintenance as well as the capital cost are higher so that

microirrigation is particularly suitable for high-value crops.

2.4 Drainage

The sustainability of irrigated agriculture heavily depends on maintaining an adequate salt

balance in the root zone (Tanji and Kielen, 2002). Salt is accumulated in the soil root zone

through two mechanisms: The salt that is dissolved in the irrigation water remains in the soil

after the pure water has evaporated and salt enters the root zone from rising groundwater.

The latter occurs if the groundwater recharge induced by irrigation is greater than the natural

recharge and causes the water table to rise. The salt that enters the soil with the irrigation wa-

ter is unavoidable and predictable while waterlogging can be controlled by adequate drainage

systems. The amount of salt accumulated depends on (1) the quality of the irrigation water,

(2) the volume of the water evaporated and (3) properties of the soil (Replogle et al., 1996).

Globally, some 20% of the irrigated land (mostly in arid and semi-arid regions) suffers from

a buildup of salt in the soil.

2.5 Irrigation Water Demand

2.5.1 Introduction

Three measurements are typically used to characterize the use of water for agricultural pur-

poses (Gollehon and Quinby, 2000): Water withdrawal measures the total amount of water

diverted from surface water sources and extracted from groundwater aquifers, water applica-

tion refers to the portion of water withdrawn and delivered to the field, excluding conveyance

and delivery- system losses and gains. The amount of water that is actually consumed by

3sometimes referred to as localized irrigation
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evaporation and transpiration is referred to as consumptive use or crop water demand4. The

latter does not include losses to percolation and runoff and is typically estimated based on

plant-water-requirement models.

2.5.2 Crop Water Demand

The most commonly applied method for estimating crop water demand is the crop coefficient

method according to the procedure recommended in FAO’s Irrigation and Drainage Paper 56

(Allen et al., 1998). This method has received a wide acceptance in planning, designing and

operation of irrigation schemes as well as for water resources planning. It computes water

demand for crops assuming that they are disease free, adequately watered and not affected by

any kind of nutrient stress, pest, or water stress. The calculated value, therefore, represents

an estimate on the upper end of the actual range of consumptive water use.

The daily values for crop evapotranspiration ETc [mm] are calculated by multiplying the

evapotranspiration ET0 [mm] from a reference surface5 by a dimensionless crop coefficient

kc:

ETc kcET0 (2.1)

While ET0 incorporates various weather conditions and therefore represents an index of cli-

matic demand, kc varies predominately with the specific crop characteristics (Allen et al.,

1998). The method can therefore be applied in different locations and climates. The refer-

ence evapotranspiration ET0 is typically computed using the FAO Penman-Monteith equation

(Chapter 7.3) but other evapotranspiration functions may be used if the required data for the

Penman-Monteith function are not available. The crop coefficient kc represents an integra-

tive variable of four characteristics distinguishing crops from reference grass with regard to

the evapotranspirative demand (Chapter 5.4) : (1) the crop height which influences the aero-

dynamic resistance term, (2) the albedo of the crop-soil surface which, in turn influences the

net radiation of the surface, (3) the canopy resistance that controls the surface resistance, and

(4) the evaporation from the soil. As the crop develops, these characteristics will change and

kc will therefore vary over time. Allen et al. (1998) have parameterized the development of

the crop coefficient over time using four distinct phases of crop growth: (1) the initial sea-

son from planting to about 10% ground cover, (2) the development stage that extents until

the crop has reached its full ground cover, (3) the mid-season stage, lasting until the start

of maturity, and (4) the late season that runs from the start of maturity until harvest or full

senescence. The typical development of the crop coefficient over time and its expected val-

ues is given in Figure 2.3. As can be seen, the crop coefficient in the initial stage varies with

the frequency of wetting events. A high frequency of wetting events will increase the crop

coefficient and hence the crop water demand because evapotranspiration will be dominated

4The terms crop water demand and consumptive use are used to describe water that is removed from the

environment. Consistent with the terminology used in FAO’s manuals, they include crop transpiration and

evaporation from the soil that cannot be separated easily. After sowing, evapotranspiration is dominated

by evaporation from the soil, while at full crop cover 90% of the evapotranspiration comes from crop

transpiration (Allen et al., 1998)
5The reference surface is defined as ’a hypothetical reference crop with an assumed crop height of 0.12 m, a

fixed surface resistance of 70 sm1 , and an albedo of 0.23’ (Allen et al., 1998)
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by evapotranspiration from the soil. The crop coefficient is highest in the mid-season, when

the crop has reached its full cover and sharply decreases in the late season. The lengths of the

individual stages varies with crop type, planting date and climate. Typical values for major

crops are given in table A-2 the Appendix.

Figure 2.3: Schematized development of the growth stages and typical ranges expected in kc for the

four growth stages (Allen et al., 1998)

2.5.3 Water Application

The crop water demand calculated using Equation 2.1 can be met by rainfall or by apply-

ing irrigation water to the soil. The ability of the soil to store water has to be taken into

account when planning the timing and application depth of water. The rate of water uptake

by crops depends on the rooting density, the soil conductivity, and the difference between

average soil water suction and root suction (Hillen, 1980). Only a very small fraction of the

water absorbed by plants is used in photosynthesis (less than 1%) while the remainder of the

water is lost as vapour. The water extraction pattern is not uniform and generally follows the

distribution of roots with the greatest extraction near the soil surface. The classical concept

used in agronomy to describe the plant activity as a function of available soil moisture is the

soil-water availability concept. It is based on the assumption that soil water is available

to plants only within a defined range of soil wetness and only part of the stored water is

available to plants. The upper limit of this range is the Field Capacity (FC), the soil water

content when gravitational water has been removed, FC. The lower limit is the Permanent

Wilting Point (PWP) and refers to the soil moisture PWP at which plants permanently wilt.

The soil hydraulic parameters PWP and FC are dependent on the soil type and can be derived

using pedotransfer functions (Chapter 5.6). The concept of soil-water availability has been

modified to decrease available water with decreasing soil moisture, or by introducing a ’crit-

ical’ soil moisture at which crops experience stress because the soil water is more heavily

bound to the soil matrix. In practice, a simple soil moisture balance, taking into account

precipitation and crop evapotranspiration is typically kept and irrigation water Inet[mm] is

applied such that the soil water is refilled to its holding capacity whenever the soil moisture

drops below a crop-dependent critical threshold.
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Figure 2.4: Rice growth stages and water application in paddy rice fields (Brouwer et al., 1989)

Paddy Rice Irrigation

Rice (Orysa sativa L.) is one the most important crops, supplying 20% of the average per

capita human caloric intake (FAOSTAT, 2008) and contributing 10% to the total methane

emission into the atmosphere (Xiao et al., 2005). Paddy rice fields are also a major water

consumer because it is grown on flooded fields in most parts of the world. Paddy rice is

usually grown in level basins which are flooded throughout most of the growing season. The

following activities are usually carried out for growing paddy rice:

• Preparation of the rice nursery: Usually 5 - 10% of the total area to be planted is used

as nursey

• Preparation of the rice fields: To make ploughing easier paddy rice fields are usually

flooded about one month before the rice is transplanted

• Transplanting: About one month after sowing the rice seedlings are transplanted into

the wet soil. After transplanting a water layer is established. The depth of the the water

layer may vary during the growing season and is generally about 100 mm during the

mid-season stage (Brouwer et al., 1989).

These activities have substantial implications for the hydrology of paddy rice fields and for

the water demand of such fields when irrigated. The growth stages of paddy rice and the

application of water is illustrated in Figure 2.4.

An additional amount of water needs therefore to be applied to paddy rice fields to maintain

the water layer troughout the growing season and for land preparation. The rate of percola-

tion from the flooded rice fields into the soil is controlled by the ponding depth, the depth of

the water table and a variety of soil factors such as texture, bulk density and others (Chen and

Liu, 2002) as well as irrigation management practices (timing and frequency of irrigation)

and the condition in the underlying aquifer (Rushton, 1997). The percolation rate can greatly

be reduced by puddling the soil prior to transplanting (Chen and Liu, 2002; Ting et al., 2005;

Tuong and Bhuiyan, 1999).
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Percolation and Leaching

As mentioned in Chapter 2.4, the sustainability of agriculture depends on adequate leaching

procedures to control the salt water content in the root zone if the natural drainage is insuffi-

cient. The additional fraction of water needed is referred to as the Leaching Requirement LR

and is commonly expressed as a fraction of the water application. LR can be estimated as a

function of salinity of the soil, and depending on the crop type. Typical values for LR range

between 1 and 5% of the total demand but can reach 15 to 20% of the total water applied

under unfavourable conditons.

2.5.4 Water Withdrawal

The water withdrawal (or gross irrigation water requirement) takes into account losses in the

canals, pipelines, and other losses and refers to the amount of water that has actually to be

abstracted from the source. The gross irrigation water demand Igross [mm] is obtained by

dividing the net irrigation demand with the efficiency of water use E [-].

Igross
Inet

E
(2.2)

where Ee f f is the project efficiency that refers to the volume of water evapotranspired by

the crop related to the amount of water that has been abstracted from the source. At project

level, this ratio is relatively easy to determine. The concept of efficiency is discussed in more

detail below. Estimated values for E for a number of world regions are listed in table A-3

the Appendix.

2.6 Irrigation Performance

Any concept of efficiency is generally a measure of the output obtained from a given input. If

the output considered is the amount of yield, the term water productivity is used. Depending

on the intended purpose different efficiency concepts are used to describe the ’performance’

of irrigation systems. These include physical irrigation efficiency, economic irrigation ef-

ficiency, and others. Irrigation efficiency in this study will solely be based on the physical

efficiency of water6. With regard to the scale under consideration, a distinction can be made

between the project efficiency of individual irrigation projects and the overall irrigation effi-

ciency within a river basin (basin efficiency). The project efficiency is the classical indicator

to describe the performance of irrigation systems at project level and has been introduced

by Israelsen and Hansen (1962). It is generally used to estimate gross water withdrawal

(Chapter 7.3.4) as the ratio of the amount of water that is transpired by plants Wu [mm] and

the total amount of water abstracted from the hydrological cycle Wd [mm] in the same time

period:

E
Wu

Wd
(2.3)

6A comprehensive overview of other efficiency concepts is given in Cai et al. (2003a)
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Based on national statistics on water abstractions, Faures et al. (2003) estimated the global

overall efficiency in irrigated agriculture to be 38%. Efficiencies vary between 40% in arid

and semi-arid regions in North Africa and 25% in South America. Estimated project efficien-

cies for different world regions are summarized in table A-3 in the Appendix. Frequently,

the project efficiency Ep is defined as the product of the conveyance efficiency Ec, the field

canal efficiency Eb and the field application efficiency Ea:

Ep Ec Eb Ea (2.4)

where the single efficiencies are defined as follows:

Ec
Water received at the inlet to f ields

Water received at pro ject headworks
(2.5)

Eb
Water received at f ield inlet

Water received at the inlet to f ields
(2.6)

Ea
Irrigationwateravailabletothecrop

Water received at f ield inlet
(2.7)

While the project based efficiency is a straightforward concept that is relatively easy to mea-

sure, efficiency is not entirely independent of scale making it difficult to upscale efficiency

to larger scales. It has been argued that the classical approach may be misleading for under-

standing water resources systems (Perry, 1999). Keller et al. (1996) showed in their concept

of Integrated Water Resource Systems (IWS) that efforts to increase the project efficiency

of irrigation systems often lead to reduced irrigation efficiency at the macro level. While

losses in an irrigation canal are decreasing the project efficiency, these losses contribute to

the recharge of an aquifer and thereby to the efficiency of water in the basin as a whole. An

example of an idealized system of irrigation schemes where water is either evapotranspired

or lost to drainage is shown in Figure 2.5. In this idealized system, it is assumed that there

is no rainfall, the drainage water is salt- and pollution-free and there is no other loss than the

evaporation from the crops. The project efficiency in all irrigation sites is 50%, the overall

basin efficiency is much larger as drainage ’losses’ on one site become sources of water for

the subsequent irrigation sites.

To describe the efficiency at the macro (i.e. basin) level, Keller et al. (1996) introduced the

concept of effective irrigation efficiency EE that measures the amount of beneficially used

waterWu over the amount of water consumed during the process of conveying and applying

the waterW corrected for the net outflowWd. Formally:

EE
Wu

W Wd
(2.8)

In a perfectly closed idealized system such as the system depicted in Figure 2.5, the effective

efficiency for all cycles will be 100% and the overall efficiency increases as we go from

the micro (project) level to the macro (basin) level. For example, the global efficiency Ec
by the end of the second cycle when 50 25 of the initial 100 hm of water have been

evapotranspired, is 75%. Despite very low field efficiencies, the overall efficiency of a real-

world irrigation system (such as large systems in Egypt) may reach 80% (Wallace, 2000) if

this concept of basin efficiency is applied. Hafeez (2003) quantified water use efficiency at
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Figure 2.5: Example of an irrigation cycle (idealized) after Keller et al. (1996)

10 different spatial scales in an irrigation system in central Philippines and showed that both

water productivity and water use efficiency increased at larger scales.

While this is a valuable concept from a pure water quantity point-of view, it fails to address

some important aspects. Water quantity cannot be seen independently from water quality

and every re-use of the water will require energy to convey the water. The level of pollution

of the water will rise by every cycle. The concept neglects costs (especially if pumping is

involved) and the fact that ’losses’ are always undesirable to those bearing the costs (i.e. the

farmers). This is particularly valid if farmers have to spend considerable resources to irrigate

the field (Tuong and Bhuiyan, 1999). Furthermore, an application of the concept requires a

sound understanding of the flows in irrigation systems and in river basins as a whole. For

global scale, grid-based applications such knowledge is not available so that estimates of

irrigation water withdrawal have to rely on project efficiency estimates.

2.7 Summary and Conclusions

Irrigation water withdrawal represents a significant portion of the global water cycle and

therefore needs to be taken into account in continental and global hydrological models. To

illustrate the use of water in agriculture from a productivity point of view, a division is fre-

quently made between beneficial and non-beneficial uses. Beneficial use refers to the water

that is needed to increase the yield of the crop and includes water used for crop evapotran-

spiration, leaching, soil preparation, and weed control. Non-beneficial use includes evapo-

ration during storage of water, deep percolation and losses in the conveyance system. From

a hydrological balance perspective, the water abstracted may be divided into consumptive

and non-consumptive uses. The term consumptive is used in the sense that the water is not

immediately available in the hydrological cycle. The two concepts of beneficial and non-

beneficial and consumptive and non-consumptive use respectively are illustrated in Figure

2.6. The different components of the irrigation water requirements at the global scale can

be estimated using standard methods that have been developed at the project level for which
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Figure 2.6: Division of irrigation water into beneficial/non-beneficial and consumptive/non-

consumptive uses (Replogle et al., 1996)

data is available at the global scale. It is of crucial importance to consider the additional

water requirements for paddy rice. Given the low efficiency of irrigation globally, it is also

important to account for return flows from irrigated areas that become a source of water

downstream. However, the concept of basin efficiency is not applicable at the global scale

due to conceptual and data problems. An approach for modeling irrigation water demand in

a macroscale hydrological model will be introduced in Chapter 7.
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3.1 Introduction

The information needed to estimate irrigation water demand over large geographical domains

such as a representation of irrigated areas and crop types can potentially be derived using

remote sensing technologies. This chapter will briefly introduce some basic principles of

remote sensing as well as relevant sensors for monitoring agricultural areas and derived data

sets. Broadly defined, remote sensing is the science and art of obtaining information about

an object, area, or phenomenon through the analysis of data acquired by a sensor that is not

in direct contact with the target of investigation (Lillesand et al., 2003). In a narrower sense

relevant for this study, it is referred to monitoring the surface of the Earth using satellite

based systems. Monitoring the environment of the Earth and its temporal variations using

remotely sensed data is becoming increasingly important and remote sensing data is today

used for a number of operational land-surface applications such as monitoring of droughts,

flood and landslide analysis, and monitoring of precipitation. A comprehensive overview

and past, current and future observation missions and sensors are given in Kramer (2002).

3.2 Principles of Remote Sensing

Remote sensing is generally based on the principle that electromagnetic waves eventually

reaching the Earth’s surface interact with the surface materials on the Earth in three different

ways. The radiation reaching the surface must be reflected, absorbed, or transmitted and

proportions of each of those processes depend on the nature of the surface, the wavelength

of the electromagnetic energy and the angle of illumination (Campbell, 2002). Objects on

the Earth’s surface have characteristic properties with regard to reflection and absorption at

different wavelengths that can principally be used for their identification. A set of such re-

sponse patterns is sometimes referred to as spectral signature or spectral curves of an object.

A schematic diagram of relative reflectance of some objects is given in Figure 3.1. It must

be noted, however, that objects cannot be uniquely identified using spectral signatures as the

spectra change both over time and over space and depend on a number of other elements

(e.g. time of the year, atmospheric conditions, sensor conditions). It is therefore essential to

validate such reflectance curves with extensive ground truth data.

3.3 Sensors

Given the objectives of this study (global hydrological modeling and the study of changes in

human interventions in the hydrological cycle over time), the sensors that could potentially
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Figure 3.1: Schematic diagram illustrating the relative reflectance of some Earth targets (Campbell,

2002)

be used for the present study should provide global coverage and multi-year time series of

freely accessible data. Currently, these requirements are met by two sensors: The Advanced

Very High Resolution Radiometer (AVHRR) and the Moderate Resolution Imaging Spectro-

radiometer (MODIS).

3.3.1 AVHRR

The Advanced Very High Resolution Radiometer (AVHRR) is a scanning system that senses

the visible, near-infrared, and thermal infrared portions of the electromagnetic spectrum and

flies at a nominal altitude of 833 km. The sensor has a spatial resolution of about 1.1 km at

local area coverage and a resolution of 4 km for the global area coverage (GAC) product that

is formed by on-board sampling. AVHRR acquires global coverage data on a daily basis and

has five spectral channels recording the following wavelengths:

• 0.58-0.68 m (Channel 1): red (R)

• 0.725-1.10 m (Channel 2): near infrared (NIR)

• 3.55-3.93 m (Channel 3): mid-infrared (MIR)

• 10.3-11.2 m (Channel 4): thermal infrared

• 11.5-12.5 m (Channel 5): thermal infrared

3.3.2 MODIS

TheModerate Resolution Imaging Spectroradiometer (MODIS) is a sensor on board the two

satellites Terra (launched in 1999) and Aqua (launched in 2002) that fly on a near polar,

sun-synchronous orbit at an elevation of 705 km. Unlike the AVHRR, MODIS has been

explicitly designed for monitoring land resources and biological and physical processes with

a global coverage. The MODIS sensor senses 36 spectral bands, seven of which are designed

to study vegetation and land surfaces (Xiao et al., 2005):

• 0.62-0.67 m (Channel 1): red

• 0.841-0.875 m (Channel 2): near-infrared (NIR1)
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• 0.459-0.479 m (Channel 3): blue

• 0.545-0.565 m (Channel 4): green

• 1.230-1.250 m (Channel 5): near-infrared (NIR2)

• 1.628-1.652 m (Channel 6): shortwave infrared (SWIR1)

• 2.105-2.155 m (Channel 7): shortwave infrared (SWIR2)

Daily global imagery is provided at 250 m resolution (red and NIR1) and 500 m (blue, green,

NIR2, SWIR1 and SWIR2).

3.3.3 Data Processing

As the reflectance values sensed by the optical instruments described above cannot penetrate

the clouds and are sensitive to atmospheric effects, a considerable fraction of the daily images

is ’contaminated’ by clouds and atmospheric noise. This problem is usually addressed by a

compositing procedure that takes a given value for a period of days assuming that it has

been recorded during clear-sky-conditions. A widely applied method is the maximum values

compositing (MVC) that computes the composite values by taking the maximum value for a

given time period (e.g. 8 days, 16 days). The products contain also quality flags for image

artefacts such as clouds and cloud shadow.

3.4 Vegetation Indices (VI)

To use the raw reflectance data measured in different channels described above to map land

cover types, the data is typically converted to Vegetation Indices (VI). VI’s attempt to mea-

sure biomass or vegetative vigor based on digital brightness values from combinations of

spectral channels (Campbell, 2002). Band ratios are ratios of measurements in separate por-

tions of the spectrum and can generally be effective in revealing latent information from a

multispectral image. The most commonly used vegetation indices are described below.

3.4.1 Normalized Difference Vegetation Index (NDVI)

One of the most widely applied VIs it the Normalized Difference Vegetation Index (NDVI)

that is calculated as the difference between the reflectance values in the near infrared band

nir and the reflectance in the red band red over their sum:

NDVI
nir red

nir red
(3.1)

and hence ranges between +1 and -1. Growing and healthy vegetation has usually NDVI

values between 0.3 and 0.8 while negative values indicate no vegetation or snow, ice, and

clouds. Numerous studies have shown that the NDVI is proportional to several vegetation

properties such as the fraction of absorbed photosythetically active radiation (%fPAR), leaf

area index (LAI), vegetation fraction and net primary production (e.g. Maselli and Rembold

(2001)).
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Despite its wide acceptance, NDVI is limited by the fact that it tends to saturate under closed

canopy and its sensitivity due to atmospheric conditions and soil background (Xiao et al.,

2006).

3.4.2 Other Vegetation Indices

Although the NDVI has been the most widely used vegetation index since it was developed

in 1973, its application is severely constrained by a number of non-vegetation artefacts such

as atmospheric conditions (water vapour and aerosols), cloud contamination, soil and back-

ground reflection, and others. Partly to correct for such factors and partly to take advantage

of additional bands in more recent sensor systems, a number of different indices have bee

proposed; The Land Surface Water Index (LSWI) is a vegetation index that is sensitive to

equivalent water thickness in the plant tissue. It is defined as (Xiao et al., 2006):

LSWI
nir swir

nir swir
(3.2)

The Enhanced Vegetation Index (EVI) uses the blue band that is sensitive to cloud cover to

correct for atmospheric contamination and adjusts the reflectance in the red band depending

on the reflection in the blue band. It thereby accounts for residual atmospheric contamination

as well as variable soil and background reflectance (Xiao et al., 2006). Furthermore, some of

the influences of a mixed soil vegetation reflectance signal are also reduced (Fensholt, 2004).

The EVI is given by

EVI 2 5
nir red

nir 6 red 7 5 blue 1
(3.3)

The Normalized Difference Snow Index (NDSI) is not a vegetation index but has been de-

signed to mask areas that are covered with snow and ice. It takes advantage of the fact that

snow and ice have high reflectance in the blue, green, and red band, but very low relflectance

in the mid-infrared band. It is defined as

NDSI
green nir

green nir
(3.4)

3.5 RS-Based Data sets

3.5.1 Phenology Data

Based on time series of vegetation indices, a number of products have been developed that

depict the phenology of vegetation. Such products typically determine phenological events

(onset of vegetation growth, maturity, and senescence) based on the curvature of observed

time series of vegetation indices or fitted functions to those time series. An example is

the MODIS Global Phenology Product (MOD12Q2)1 that is based on 2 years of input data

(Zhang et al., 2003).

1NASA Data Set Name: MODIS/Terra Land Cover Dynamics Yearly L3 Global 1km SIN Grid; Detailed

description available at http://lpdaac.usgs.gov/modis/
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3.5.2 Land Cover Products

Classification of land cover2 has been one of the earliest and most important applications

of remote sensing. Early attempts to produce global land cover maps include the products

developed by DeFries and Townshend (1994) and Loveland and Belaward (1997) and oth-

ers who used metrics of AVHRR derived vegetation indices to map land cover globally at a

resolution of 1°.

Using the same set of vegetation indices, land cover products can be largely different as

a number of land cover classification schemes have been proposed, and there is no gener-

ally accepted global-scale classification system that has been recognized as an international

standard. The classification systems differ in purpose, resolution, number of classes, class

attributes and many others. Hansen et al. (2000) provide a comprehensive overview of the

differences between classification systems. Among the most commonly used classification

schemes are the FAO Land Cover Classification System (LCCS (Gregorio and Jansen, 2000;

Georgiou et al., 2006)), the University of Maryland classification (UMD (DeFries and Town-

shend, 1994)), and the International Geosphere-Biosphere Program (IGBP (Loveland and

Belaward, 1997)). Both, the UMD and the IGBP represent the most widely used classifica-

tion schemes during the early to mid 1990’s (Cardille et al., 2002). All of those land cover

classification systems have one or more category for cropland or cultivated land. However,

none has a distinct class for irrigated areas that could be used for estimating irrigation water

demand. It is also important to note that the differences in the classification system and the

source data may lead to large discrepancies in land cover classification. Areas defined as

cropland in one product may not be classified as cropland in another product. This is partic-

ularly true for non-homogeneous pixels that represent a number of land cover classes. Figure

3.2 shows exemplary a comparison of land areas classified as ’cropland’ in the GLC 20003

land cover product and the MODIS MOD12Q1 standard land cover product at 1 km spatial

resolution for the Indian subcontinent for the year 2000. Despite an agreement in the overall

pattern, there are significant differences between two land cover products.

3.5.3 Global Irrigated Area Mapping Project (GIAM)

As seen above, global attempts to map areas related to agriculture in general were lim-

ited to generic classification systems and a consistent definition of land cover types in the

agricultural category with regard to irrigated areas is missing. The most recent effort to sys-

tematically map irrigated areas globally has been made by the International Water Manage-

ment Institute (IWMI) in Colombo, Sri Lanka. The Global Irrigated Areas Mapping (GIAM

(Thenkabail et al., 2006)) project was aimed at producing a suite of remotely sensed products

of irrigated areas at the end of the last century at various spatial resolutions. It is based on a

variety of time series of remote sensing data as well as auxiliary data (such as global climate

2Although land cover is often used as a synonym to land use, they describe different concepts; Land use

describes the human activities carried out on land resources while land cover refers to the biogeophys-

ical cover of the Earth’s surface. Remote sensing provides land cover information rather than land use

information.
3GLC 2000 is based on data from the VEGETATION sensor on board the SPOT 4 satellite with a nominal

resolution of 1km and global coverage. For details see Hartley et al. (2006)
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(a) GLC 2000 (b) MOD12Q1

Figure 3.2: Comparison of the areas classified as ’cropland’ using two different global land cover

data sets at 1 km resolution for the Indian subcontinent. MODIS land cover (left) and

GLC 2000 (right)

data sets). The basic algorithm that has been used is unsupervised classification and decision

trees (details are given in Thenkabail et al. (2005)). Version 2 of this product4 reports areas

for a total of 28 crop-rotation and water use classes and for each growing season (growing

season 1, growing season 2, or continuous cropping) separately. The product has a nominal

resolution of 1 km.

3.5.4 Paddy Rice Maps

Using a combination of the MODIS derived indices NDVI, LSWI and EVI, Xiao et al. (2005)

developed an algorithm to map paddy rice and applied it to Southern China and later to

South East Asia (Xiao et al., 2006). The algorithm is based on a unique feature of paddy rice

agriculture that distinguishes flooded rice from other types of vegetation. As described in

Chapter 2.5.3, during the flooding and transplanting period, the paddy fields are characterized

by a mixture of water and vegetation. This leads to a temporarly inversion of the vegetation

indices: the LSWI is higher than the NDVI or the EVI. When adequate thresholds for the

vegetation indices and their temporal relationship over paddy rice fields are defined, these

unique characteristics in the reflectance of paddy rice fields can be used to identify them

using RS data.

4released in May 2007, available at http://www.iwmigiam.org
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3.6 Conclusions and Selection of Appropriate Data Sets

Remote sensing and classification of land use and land cover offers a unique set of advantages

over conventional techniques of land cover and land use mapping. Such advantages include

the repeatability of classification algorithms for data from different points in time that can

help track the development of land use over time, and the objectivity of the approach that

removes biases arising from user errors. Furthermore, remote sensing products can provide

a consistent classification of land use and land cover at a global coverage that is independent

of different definitions of land use within administrative boundaries.

Distinguishing irrigated from non-irrigated areas based on plant physiological parameters is

a challenging task that only recently has received increased attention. Most attempts focus on

the temporal characteristics of a vegetation index rather than the magnitude of the vegetation

index itself. In a recent study, Suyker and Verma (2009) found no differences in biomass pro-

duction, water use efficiency or transpiration efficiency between rainfed and irrigated crops.

Determining whether the cause for variability in biomass production (that is seen by spec-

tral indices such as the NDVI or the EVI) is rainfed plant growth or irrigation is therefore

difficult, particularly in areas with high rainfall and vigorous natural vegetation (Ozdogan

and Gutman, 2008). Approaches based on the temporal pattern of vegetation indices assume

that the greenness in rainfed areas is closely linked to the availability of soil moisture (and

hence the timing of precipitation) while the greenness in irrigated areas is more or less in-

dependent of rainfall. Despite the simplicity of this approach, there is enormous challenges

in mapping irrigated areas over large scales owing to the wide range of irrigated areas with

regard to timing of plant growth, vigor of vegetation, crop types and others. Ozdogan and

Gutman (2008) have recently presented a classification scheme that first determines the po-

tential for irrigation as a function of climate conditions and then combines this index with

a supervised classification of MODIS spectral indices. Their approach resulted in irrigated

area maps that agreed reasonably well with the reported overall pattern of irrigated areas in

the USA but showed significant discrepancies between reported and classified in some areas.

Furthermore, the approach focuses on dryland areas only and global applicability is a major

concern since most of the irrigated areas in Asia are paddy rice fields.

Remotely sensed data on rice paddies in Asia could potentially be used to supplement ex-

isting maps of dryland irrigation but are not yet available at the global scale so that IWMI’s

GIAM data set is the only approach that explicitly and consistently maps irrigated areas on a

global scale based on remotely sensed data. The advantage of this product over other efforts

to map irrigated areas, is that it has been validated using a large set of some 2000 ground

truth data points from missions in India, Central Asia, and Southern Africa. The product will

therefore be used to estimate irrigation water demand on a global scale and to compare those

estimates with country based water use statistics. The differences of the remotely sensed

product GIAM with national statistics will be discussed in Chapter 4.7.1.

With regard to tracking the development of irrigated areas over time, the classification

scheme based on remotely sensed data could potentially provide time series of irrigated areas

but is limited to the availability of satellite data of a reasonable quality. Despite being avail-

able since 1978 AVHRR derived data does not meet those requirements due to the quality

of the sensor, geometric and atmospheric correction, and spatial resolution. MODIS derived
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data is only available for the period since 2002 so that long-term trajectories in irrigation

development cannot be tracked based on remotely sensed data. Spatially explicit time series

data for irrigated areas will therefore have to rely on a combination of national statistics and

auxiliary spatial information. The availability of such data sets in national and international

statistical databases related to agricultural water use will be discussed in the next chapter.

24



4 Agronomy Data

4.1 Introduction

This chapter is aimed at introducing statistical data sets related to agriculture and data specif-

ically required to assess irrigation water demand and its impacts using large scale hydrolog-

ical modeling and to validate the developed model. It is important to note that some of

those data sets are derived from modeling approaches similar to the one presented in this

study so that a validation of model results using truly independent data can be sometimes

challenging. National and international statistics and agricultural census data typically hold

aggregated data for some administrative unit such as counties, provinces or countries. The

scale at which agricultural census data is usually reported at is generally coarse, ranging

from 102 to 104 km2 for district or county level data, to 103 - 105 km2 at provincial (state)

level to some 104 to 107 km2 at national level (Frolking et al., 2005). Furthermore, detailed

census data is typically not available for every year while the cropping pattern and agricul-

tural practices may change due to market or hydrological conditions faster than the census

can document (Frolking et al., 2005). It is important to note that data sets that entirely rely

on national statistics cannot meet the needs of science and policy researchers who require

geospatial data at improved temporal and spatial resolutions that is updated regularly (Xiao

et al., 2006). Also, statistics supplied by different agencies or countries may not be strictly

compared due to nomenclature problems, different methods of gathering data and others.

Such problems are even evident at the sub-national level. Census data sometimes does not

report an actual condition but rather a potential use. For example, fertilizer use is usually

determined from fertilizer sales rather than from records on the actual application of fertil-

izer in the field. Care must therefore be taken when comparing agricultural census data from

different agencies and when merging such data.

4.2 FAOSTAT

FAOSTAT, the database of the Food and Agricultural Organization (FAO) contains some 3

million time series of data related to food production, nutrition, prices, consumption, re-

sources, population, land use data and related data sets on a country level for some 200

countries (FAOSTAT, 2008). Although some data is related to irrigation, it does not specifi-

cally provide information for agricultural water management.
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4.3 AQUASTAT

The AQUASTAT program of the FAO has been launched in 1993 to provide a comprehen-

sive and reliable inventory of data on water resources with a global and regional perspective

and with a focus on developing countries and countries in transition. For each country, the

database contains some 50 variables grouped into different categories. The variables that are

most relevant to this study are (1) the irrigated areas per country, (2) irrigation efficiency,

(3), cropping intensity, and (4) water withdrawal per country. Irrigated areas refer to the

’areas equipped for irrigation’ rather than the actually irrigated areas for most countries but

the definition is not used consistently in all countries1 and is also constrained by nomencla-

ture problems within countries. Nickum (2003) illustrates such problems by analyzing the

statistics for irrigated areas in China. Irrigation efficiency describes the (project) irrigation

efficiency (Eq. 2.2 and Eq. 7.9) based on water balance calculations and reported values.

Cropping intensity in agriculture (both irrigated and rainfed) is defined as the total area of

harvested crops (where double or triple croppings are counted twice or three times) over the

total cropland area (land in use plus fallow). For example, if two crops are grown per year

on the same field, the cropping intensity is 200%. An intensity of 120% implies 20% of the

area has two irrigated cropping seasons per year, and 80% has one. Cropping intensity may

vary from sporadic cropping (once in a few years) to intensive cultivation of rice where it

can reach 300%. On a global basis, average cropping intensity for seasonal crops is about

80% for both irrigated and rainfed agriculture but varies greatly in different regions (Wood

et al., 2000). From a water resources point of view, the distribution and extent of cropping

intensities over irrigated areas is of utmost importance as it directly affects the amount of wa-

ter that has to be diverted from the hydrological cycle to meet the requirements of the crops

planted. Furthermore, multi-cropped fields generally receive higher fertilizer input and mul-

ticropping may therefore have significant impacts on the biogeochemical cycling of carbon

and nitrogen in agro-ecosystems (Froking et al., 2002; Xiao et al., 2005). Water withdrawal

for agriculture refers the quantity of water withdrawn for agricultural purposes, including

livestock. For some countries, the latter category is sometimes included in the statistics for

domestic water withdrawals. The information in AQUASTAT is primarily based on national

water resources and irrigation master plans, national statistics and yearbooks, reports from

FAO or other surveys and results from surveys made by national or international research

centers (AQUASTAT , 2008). While AQUASTAT provides the most comprehensive global

inventory of water use related to agriculture, and the figures have been critically reviewed

and checked for consistency, the accuracy and reliability varies greatly between regions and

categories of information, and the information is sometimes outdated (Gleick, 2003). Inher-

ent uncertainties in the data are not only related to the accuracy of values for a given country

but also related to inconsistent definition of variables in different countries, and different

time of reporting and nomenclature problems.

1Irrigated Area in the AQUASTAT database is defined as Area equipped to provide water to crops. It includes

areas equipped for full and partial control irrigation, and equipped lowlands (wetlands and inland swamp

bottoms) and is sometimes reported as the area actually irrigated and sometimes as the area equipped for

irrigation which is usually bigger. It does not include other cultivated wetland and inland valley bottoms

or flood recession cropping areas (AQUASTAT , 2008)
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4.4 Agricultural Census, USDA

Arguably on of the most comprehensive surveys of agriculture is conducted once every five

years by the National Agricultural Statistics Service (NASS) of the United States Depart-

ment of Agriculture (USDA). The Census of Agriculture provides data on acreage, yield and

production of individual crops and livestock as well as data on economical and demographic

information related to agriculture on county level. The most recent census available is for

20022. Data and their definitions supplied by the census and relevant for this study are the

irrigated areas, harvested cropland, and water withdrawal. Although the data is not explicitly

given as geospatial data, the small average county size allows a fairly good representation of

the spatial distribution within the US.

4.5 FAO AgroMAPS

The Mapping of Agricultural Production Systems3 initiative was launched in 2002 by FAO,

the International Food Policy Research Institute (IFPRI) and the Center for Sustainability and

the Global Environment (SAGE). Its goal it to provide a database that holds national and sub-

national statistics and agricultural land use data for selected countries. The data is compiled

from a variety of sources, including national agricultural statistics, data from international

agencies and others. The subnational data is checked for consistency with the country data

supplied by FAOSTAT. Although AgroMAPS does not specifically provide geospatial data,

the small size of administrative units in some countries make the data a quasi-geospatial data

set that may be appropriate for various macroscale modeling applications.

4.6 Atlas of Rice (IRRI)

The Atlas of Rice provided by the International Rice Research Institute4(IRRI) illustrates

rice area by type of culture for South, Southeast, and East Asia and provides information

about the different rice ecosystems and relevant statistics of rice production. Non-spatial

time series related to rice are routinely collected in the World rice statistics (WRS) published

at IRRI. The primary source is the FAOSTAT database (Chapter 4.2), although for China and

India data is based on state and provincial level respectively. A web-based geographical data

set showing the rice areas by type of culture is available for South, Southeast an East Asia.

4.7 Global Map of Irrigated Areas (GMIA)

The Global Map of Irrigated Areas (GMIA) has been the first attempt to systematically map

irrigated areas on a global scale (Döll and Siebert, 2000). It shows the areal fraction of each

grid cell (5 min resolution (about 10 x 10 km at the equator)) that was ’equipped for irrigation

in the 1990s. The most recent version (Version 4.015) has been released in 2008. The map

2http://www.nass.usda.gov/census/
3Agro-MAPS; available online at http://www.fao.org/landandwater/agll/agromaps/
4http:www.irri.org
5available at http://www.fao.org/nr/water/aquastat
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was basically developed by combining two data sets: (1) national or subnational statistics

on irrigated areas provided by national statistics, statistics from FAO and other international

organizations (such as those described above), and (2) geospatial information showing the

location and extent of irrigated areas. Statistics on irrigated areas for some 10,000 adminis-

trative units have been combined with a number of digitized regional or local maps showing

the spatial information of irrigated areas. The methodology distributes the area as reported by

countries or smaller administrative units over the geospatial data on irrigated areas. Details of

the algorithm are described elsewhere (Döll and Siebert, 2000; Siebert et al., 2005) and only

a concise overview will be given here. The irrigation density in a grid cell (i.e. a cell mapped

as irrigated) is determined by comparing the sum of the areas of all irrigated cells within a

country (or other administrative units) to the total area reported for that unit so that the total

sum of all irrigated cells is equal to the reported irrigated area for the same unit. As the

map depends on the data supplied by countries its quality differs strongly between countries

and regions. Systematic uncertainties include the inherent inconsistencies in the underlying

statistical data (see above). Siebert et al. (2005) compared the GMIA with areas classified

as cropland in remotely sensed global land cover data that have been discussed in Chapter 3

and concluded that the overall accuracy of the GMIA is good and can generally be recom-

mended as input data for large-scale modeling and assessment of irrigated areas, although

large discrepancies have been found using a pixel by pixel comparison. The discrepancies

are believed to originate from the subpixel problem in remotely sensed data and the inability

of classification methods to classify cells as irrigated if the fraction within a sensored cell is

less than a predefined threshold. On the other hand, as GMIA is based on national statistics

it will most likely underestimate the extent of irrigated areas in regions where small-scale,

informal irrigation is practiced (Siebert and Döll, 2007). Conversely, GMIA overestimates

the actual irrigated areas, especially in regions where large infrastructure projects exist that

are no longer used due to market constraints, dysfunctional infrastructure or water resources

concerns. Despite these weaknesses and uncertainties, the GMIA is generally accepted and

widely used for regional and global studies on irrigation water demand (Döll and Siebert,

2002; de Rosnay et al., 2003; Alcamo et al., 2000; Haddeland et al., 2006a) and crop pro-

ductivity (Tan and Shibasaki, 2003), in part because it has been the only available map of

irrigated areas on a global scale until recently.

4.7.1 Comparison of GMIA and GIAM

Besides the remotely sensed irrigated area map GIAM (Chapter 3.5.3), GMIA is the only

global geospatial data set of irrigated areas today. As GIAM reports the irrigated areas for

each season separately while GMIA only reports the areas that could be irrigated regardless

of the number of times a crop is grown, a reasonable comparison of the two data sets must

be based on the harvested irrigated area. The harvested area in the GIAM product is given

as the sum of the area in season one and two and the harvested area in the GMIA can be

computed by multiplying the area equipped for irrigation with the cropping intensity in irri-

gated areas reported by AQUASTAT (2008) (Chapter 4.3). Assuming a cropping intensity of

one for countries that do not report cropping intensities, the total harvested area in irrigated

areas for GMIA is 322 Mha, whereas GIAMs estimate is around 438 Mha, representing a

difference of 36%.
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Figure 4.1: Comparison of harvested area based on FAO’s GMIA and IWMI’s GIAM for all countries

that have reported irrigated areas to AQUASTAT

While GIAM and GMIA agree in the total irrigated areas for North America (both have been

validated using USDA county statistics (Chapter 4.4)), considerable relative differences exist

for South America (GIAM area is 1.8 times larger), Australia (1.9), and Europe (0.78). The

largest absolute difference is found in Asia where GIAM reports 321 Mha versus 239 Mha

reported by GMIA (Table 4.1). This difference can largely be explained by the irrigated

areas for India and China alone. The GIAM numbers for China and India are 36% and 54%

higher than those derived from GMIA and this large deviation can partly be attributed by an

underreporting of areas in national statistics on which GMIA is based on (see above). On

the other hand, the sub pixel problem (the non-uniformity of pixels) in remote sensing may

lead to an overestimation of irrigated areas in the GIAM product. The irrigated area of a

remote sensing product can vary depending on the threshold that is used to classify a pixel

as irrigated.

Figure 4.1 shows a comparison of harvested irrigated area on a country-by country basis. For

countries with smaller areas, the spread in FAO harvested area is generally greater than for

IMWI harvested area data. This can be explained with uncertainties in the cropping intensity

that is only available for large regions and are even more uncertain for countries with smaller

areas. The implications of those spatial differences for estimating irrigation water demand

on the global scale will be discussed in Chapter 8.2.4

4.7.2 Time Series of Irrigated Areas

As the irrigated areas globally have grown by an order of magnitude over the last century

(Chapter 2), a time varying geospatial representation of those areas is essential to track the

impact of irrigation water abstraction on the water cycle over time. As such a geospatial data

set is presently not available, a scaling approach was used in this study to generate annual
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Table 4.1: Comparison of harvested irrigated areas reported by GMIA and GIAM for all continents

in Mha

Continent GMIA GIAM Season 1 GIAM Season 2 GIAM Total

Asia 239.9 180.4 140.8 321.3

North America 35.2 25.8 9.8 35.6

Europe 22.1 28.5 11.0 39.5

Africa 12.9 5.9 4.1 10.1

South America 8.1 13.5 8.9 22.3

Oceania 0.8 0.1 0.1 0.1

Australia 3.0 6.7 2.0 8.7

Total 322 261 177 438

geospatial time series of irrigated areas. Using the time series of irrigated areas per country

recently compiled from national statistics by Freydank and Siebert (2008), the fraction of

irrigated area A in each grid cell g for year y was rescaled using the total irrigated area in a

country, as

Ag y
Ac y

Ac 2000
Ag 2000 (4.1)

where Ag 2000 is fraction of irrigated area per grid cell taken from GMIA. Irrigated area ex-

panded from just over 53 Mha in 1901 to 285 Mha in today. Figure 4.2 shows the aggregated

irrigated areas per continent after applying the scaling approach. With the exception of Eu-

rope, irrigated areas have been growing monotonically over the last century but the rate of

growth has slowed down at the end of the century. Globally, about two thirds of the irrigated

areas are found in Asia.

4.8 Blended Data Sets

While data products derived from remotely sensed data are generally able to delineate im-

portant patterns of agricultural land cover, they are usually unable to distinguish the most

important features of agricultural cropping systems that are critically needed for understand-

ing the consequences of agricultural production on global cycles of matter (Leff et al., 2004).

Such critical information include crop varieties, agricultural inputs (irrigation, machinery,

fertilizer) and outputs (such as yield and production). The spectral and spatial resolution of

the sensors may not be adequate to identify agricultural areas, in particular if the individual

field sizes are small compared to the sensor resolution. National and subnational statisti-

cal data, on the other hand do not provide adequate geographic information to be used in

modeling efforts (Xiao et al., 2006). One possible solution to this problem is to take the

advantages of both, statistical data and remotely sensed data to derive an improved map-

ping and assessment by merging both data sets. The technique to merge satellite-based data

with administrative unit-level inventory data is sometimes referred to as fusion technique.

It implicitly assumes that there exists a statistical relationship between the census data and

the satellite derived data that can be used to ’blend’ the two data sources. The two data
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Figure 4.2: Time series of irrigated areas per continent after scaling the irrigated area map for the

year 2000 based on national statistics from Freydank and Siebert (2008)

sets described below will illustrate the method of deriving geospatial data sets from merging

statistical and remotely sensed data.

4.8.1 Global Cropland Data Layer

Ramankutty and Foley (1998) have combined satellite data with land cover data from a vari-

ety of national and sub-national inventory data to create a global map showing the distribu-

tion of cropland in the early 1990s. They used remotely sensed land use data and statistical

data form FAO, USDA and supplemented it with more detailed statistical information from

individual countries (where available). The statistical relationship between statistical data

and the RS based land cover map was explored using a simple linear regression. The map

has a spatial resolution of 5 min ( 10 km at the equator) and shows the fractional land cover

(i.e. the fraction of total area within one gridcell covered by cropland related to the total area

of the gridcell) in the yearly 1990s. An update of the data has recently been prepared by

Ramankutty et al. (2008).

4.8.2 Distribution of Major Crops

Physiologic characteristics of different crops may have drastic impacts on their water re-

quirements, nitrate export, and methane emissions. For understanding the environmental

consequences of cultivated ecosystems as well es for large scale models of matter (such as

carbon, nitrogen, water) it is therefore important to have geospatial information on the extent

and distribution of crops. Although the national statistical databases discussed above may

provide time series of harvested areas for a number of crops, they do not supply geospatial

information on the distribution and extent of those crops. Leff et al. (2004) used a fusion
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technique to produce a global data set of the distribution of major crops across the world.

Organizing crop categories by biogeochemical, food resource, and other characteristics, they

classified all crops into 17 major crop categories (barley, cassava, cotton, groundnuts or

peanuts, maize, millet, oil palm fruit, potatoes, rapeseed or canola, rice, rye, sorghum, soy-

beans, sugar cane, sugar beets, sunflower and wheat), one major crop group category (pulses

and beans, and peas) and 10 other minor crop categories (fibers, vegetables, and spices, and

others). The final product shows the average fractional cover of those crops at a spatial reso-

lution of 5 min for the period 1990 to 1995. The algorithm is similar to the method used for

creating the global cropland data layer and is based on two data sources: (1) average census

data for the period 1992 to 1995 from various census organizations and (2) the global crop-

land distribution data set by Ramankutty and Foley (1998) that shows the fraction of cropland

in each 5 min cell roughly around 1992 (Chapter 4.8.1). Building on the methodology de-

scribed above, Monfreda et al. (2008) have recently compiled a global data set depicting the

harvested area of 175 distinct crops in the year 2000 at a spatial resolution of 5 minutes based

on an updated global data set of croplands (Ramankutty et al., 2008).

4.9 Conclusion and Selection of Appropriate Data

Two products mapping the contemporary extent of irrigated areas at the global scale are

available. FAO’s GMIA has received a wide acceptance and has become a de facto standard

product of present-day global irrigated areas (Ozdogan and Gutman, 2008). IWMI’s recently

release GIAM product is based on a different approach and therefore shows significant dif-

ferences to the GMIA. Those differences have implications for irrigation water demand that

are discussed using a modeling approach (Chapter 8.2.4). Geospatial data sets showing the

distribution of crops are essential for estimating irrigation water demand. The differences

in water demand for rice and non-rice crops make explicit maps of individual crops or crop

groups a necessity. The blended data sets showing the distribution of major crops meet the

requirements from an irrigation water modeling perspective and have recently been updated

to reflect data for a period consistent with the irrigated area maps. Geospatially explicit data

sets showing the development of irrigated areas are currently not available. The yearly data

sets that were created by scaling the grid cell values in the GMIA for the period 1901-2002

may not be accurate in detail but adequately reflect the dynamics of irrigated areas on conti-

nental and global scales and can therefore be used to estimate the impact of the expansion of

irrigated areas on large scale water cycles.

Country based statistics on agricultural water use that could be used to validate modeling

results are available with a varying quality for 159 countries from FAO AQUASTAT and for

US counties from USDA.
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5.1 Introduction

Spatially interpolated physical data sets covering the Earth are required for a number of

applications in Earth systems modeling and there has been considerable progress in recent

years in compiling such data sets. This chapter will briefly discuss the global data sets

needed for modeling components of the hydrological cycle and its distortions induced by the

abstraction of water for irrigation and the construction of reservoirs. It is organized in three

sections. The first section will discuss commonly used global precipitation data sets and

their spatial differences. The second section focuses on the data available from the Climate

Research Unit (CRU) of the University of East Anglia (UK) for the description of other

climate data and methods to derive fields of reference evaporation from those data sets. The

last section will present data sets relevant to the application and validation of macroscale

models taking into account the operation of large reservoirs.

5.2 Precipitation Data Sets

Since precipitation is the ultimate source of water for the land surface water budget, it is one

of the most important climate variables for determing accurate water balance calculations

(Fekete et al., 2004). During the last two decades considerable progress has been made in

compiling global precipitation data sets based on various sources (satellite estimates, ground

observations, and climate model simulations). The methods and data sources used for deriv-

ing such fields will be discussed below for a set of four commonly used global precipitation

data sets1.

5.2.1 CRU Precipitation

Version TS 2.1 of the CRU data set (Mitchell and Jones, 2005) covers the period 1901-2002

and includes a number of climate variables, including precipitation at a spatial resolution

of 0.5°. The time series of monthly gridded precipitation have been created by applying a

two step procedure. First, a climatology of mean monthly precipitation from some 27,000

stations globally has been created for the period 1961-1990 (New et al., 2002). Based on this

climatology, the anomalies for each station reporting time series have been computed and

1Precipitation data from the Tropical Rainfall Monitoring Mission (TRMM) mission that was specifically

designed to monitor tropical rainfall between 35°N and 35°S is not part of this study as it does not provide

global coverage. Details are available at http://trmm.gsfc.nasa.gov/
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those anomalies have been interpolated using an angular distance weighting procedure to

interpolate monthly anomalies. The correlation decay distance (i.e. the distance at which the

correlation of annual values for neighboring stations is no longer significant) for precipita-

tion was assumed to be 450 km. The advantage of this method is that the number of stations

that provide climatological values (normals) is far greater than the number of stations that

report time series, so that the long-term mean values are applied in cases where no time se-

ries data from neighboring stations is available2. While this is a practical approach because

it minimizes the impact of the fluctuations in network station density, it may lead to unrea-

sonable results when the time series for data-poor regions is analyzed. The average number

of stations that inform the value in a given grid cell (i.e. the number of stations in the 450 km

range) gradually increased from 1901 to 1980 and declined after that. The average number

of stations for the CRU TS 2.1 data product is depicted in Figure 5.1. The highest number of

stations are found in North America, Europe, South Africa, and Australia. South America,

North and Eastern Africa, and regions in the high latitudes are generally poorly observed.

It is important to note that the CRU precipitation fields have not been corrected for gauge

biases, the most significant of which is undercatch of solid precipitation in colder areas (New

et al., 2000; Adam et al., 2006; Tian et al., 2007). Correcting the observed precipitation data

sets for those effects could increase the terrestrial precipitation by almost 12% (Adam et al.,

2006).

Figure 5.1: Average number of stations in the correlation decay range used to interpolate precipitation

at each 30 min grid cell for the period 1901-2002 (Mitchell and Jones, 2005)

2This method is referred to as relaxation to the climatology
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5.2.2 GPCC Precipitation

The Global Precipitation Climatology Centre (GPCC)3 at the German Weather Service

(Deutscher Wetterdienst (DWD)) provides free access to a suite of monthly gridded pre-

cipitation data sets for climate monitoring and related applications. A Monitoring product

based on quality-controlled gauging station data from 7,000 stations is available at spatial

resolutions of 1.0° and 2.5° and covers the period 1986 to present with a delay of 2 months

after observation. The Full Data Product (Rudolf et al., 1994) is based on a larger number

of stations (up to 43,000) with irregular coverage and covers the period 1951 to 2004 at a

spatial resolution of 1.0° and 2.5°. Other products include the First Guess product of precip-

itation anomaly (based on 6,000 stations) that is available 5 days after observation, and the

50-year Climatology for the period 1951 to 2000, based on 9,343 stations. GPCC gridded

precipitation data is not corrected for systematic biases arising from undercatch of solid pre-

cipitation, wind-related errors and others. However, GPCC provides estimates of that error

and the station density used to interpolate data at any given month that can be used to assess

the quality of the data and to correct for systematic biases.

5.2.3 GPCP Precipitation

The Global Precipitation Climatology Project (GPCP) has developed monthly time series

of rainfall for the period 1979 to present at a spatial resolution of 2.5°. Unlike the purely

gauge-based CRU and GPCC products, GPCP’s approach has been to combine precipitation

data sets from a number of different sources, including satellite based estimates and gauging

station data. Version 2 combines gauge-corrected GPCC data with precipitation estimates

from microwave (Special Sensor Microwave Imager (SSM/I), infrared sensors, and other

satellite data. The primary products are the One-Degree Daily Precipitation Data Set (1DD)

(Huffman et al., 2001) that provides daily, global precipitation fields at one degree resolu-

tion from 1997 to present, the combined Satellite-Gauge (SG) product (Adler et al., 2003),

that provides monthly gridded fields at 2.5° resolution from 1979 to present and the Pentad

product (Xie et al., 2003) that has a temporal resolution of 5 days and is a companion of the

SG data set. Since it is based on satellite data, the product covers the globe (i.e. not only the

terrestrial surface of the Earth). Figure 5.2 shows precipitation totals for the year 2007 based

on the SG product.

5.2.4 NCEP Precipitation

The NCEP/NCAR reanalysis project (Kalnay et al., 1996) uses a frozen state of the art global

data assimilation system to produce climate variables at high temporal resolutions. This re-

analysis product uses a data assimilation system that incorporates a number of measured

data and is unchanged for the entire simulation period. While the temperature data in the

NCEP/NCAR reanalysis product are influenced by the observations, the produced fields of

precipitation are not influenced by observations and represent modeled fields. NCEP/NCAR

3available at http://gpcc.dwd.de
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Figure 5.2: Precipitation totals in 2007 from GPCP data [mm]

data has a horizontal resolution of about 210 km and provides 6-hour integrals of the vari-

ables.

5.2.5 Temporal and Spatial Differences

The different data sources and methodologies used for the development of the data sets de-

scribed above lead to significant differences in the spatial distribution of precipitation on the

surface of the Earth. While the GPCP and CRU data largely agree in the low latitudes, there

are considerable differences in higher latitudes that can be attributed to the gauge undercatch

bias in the CRU data described above. The NCEP precipitation is generally higher (mean

annual precipitation over the terrestrial surface is 918 mma 1) than both GPCP (793 mma 1)

and CRU (785mma 1). The uncertainties related to the seasonal partitioning of precipitation

is generally higher in dry regions where the relative differences in the mean annual precipi-

tation are highest (Fekete et al., 2004). The implications of those differences for simulations

of irrigation water demand and global runoff will be discussed in Chapter 8.2.4.

5.3 CRU Climate Data

Besides precipitation, the CRU TS 2.1. data product contains monthly gridded values for

the period 1901-2002 at 0.5°x 0.5° for the variables mean temperature, diurnal temperature

range, wet-day frequency, vapor pressure, cloud cover, and ground frost frequency. Tem-

perature and the diurnal temperature range are primary variables that are directly based on

observed station data. Vapor pressure, the frequency of wet days, cloud cover, and frost day
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frequency are secondary variables, for which the station data was augmented with synthetic

estimates from temperature and precipitation (Mitchell and Jones, 2005). For interpolat-

ing the monthly fields of climate data, the same method that has been applied for creating

precipitation fields has been applied.

5.3.1 Air Temperature

As the station density required to capture the monthly variability of temperature is lower

than the density required for precipitation, the correlation decay distance for temperature

was assumed to be 1200 km.

5.3.2 Number of Wet Days per Month

The threshold above which a day is defined wet varies between 0 1 mm day 1 and

1 mm day 1 depending on the weather service providing the data. As the 0 1 mm day 1

threshold is typically applied to define a wet day, wet day frequencies that have been reported

for a greater threshold have been converted using an empirical relationship. The number of

wet days per month WD for the time series of precipitation was synthetically derived from

a conceptual relationship between monthly precipitation in cases where no station data is

available in the correlation decay distance (assumed to be 450 km) as (Mitchell and Jones,

2005):

WD a PRE
x

(5.1)

where

a
WD

1 x
n

PREn
(5.2)

where x 0 45 and WDn and PREn denote the mean monthly wet frequency and mean

monthly precipitation for the period 1961-1990.

5.3.3 Vapor Pressure

The spatial extent of vapor pressure ea fields was extended by converting fields of monthly

relative humidity RH[-] to vapor pressure at saturation that was derived from mean air tem-

perature T using the Shuttleworth relationship (New et al., 2000):

es 6 108exp
17 27T

237 3 T
(5.3)

and

ea RH es (5.4)

where es and ea[hPa] are the saturated vapor pressure and actual vapor pressure, and T [°C]

is the mean air temperature.
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5.3.4 Cloud Cover

Cloud cover observations were only available for a few regions outside of Europe, Asia,

and North America. Moreover, there have been difficulties with cloud cover data for the

period before 1950, so that the majority of monthly cloud cover data was derived by merging

observed data for sunshine duration and cloud cover using an algorithm by New et al. (1999).

5.3.5 Wind Speed

Wind speed is the least monitored climate variable globally and has been interpolated from

around 4,000 stations globally. Wind speed is generally measured between 2 and 20 m

above the ground surface with the majority of the stations measuring at 10 m height. Wind

speed interpolated in the CRU data therefore assumes the wind field at that height. Wind

speed is not part of the CRU TS data set but only given as a mean monthly value for the

1961-1990 period at a spatial resolution of 10’ (New et al., 2002). Windspeed measured at a

given height can be converted to the wind speed measured at 2 m (which is needed for some

evapotranspiration functions) using the following relationship (Allen et al., 1998):

u2 uz
4 87

ln 67 8z 5 42
(5.5)

where uz represents the windspeed at z in meters.

5.4 Potential Evapotranspiration

5.4.1 Introduction

Evaporation represents more than 60% of the precipitation input of the terrestrial water cycle

(Baumgartner and Reichel, 1975; Vörösmarty et al., 1998) and thereby conveys an impor-

tant constraint on water availability, that in turn controls the distribution of plant commu-

nities (Vörösmarty et al., 1998). The rate of evaporation is controlled by the availability of

energy and by the ease with which water vapour can diffuse into the atmosphere (Shuttle-

worth, 1992). Potential evapotranspiration is a concept that characterizes the environmental

demand for evapotranspiration and is a representation of the flux of vapor from a stand of

plants when the soil water supply is not limiting. Methods for determining potential evap-

otranspiration range from simple temperature dependent equations to physically-based ap-

proaches and can also be classified into methods that are dependent on the land cover and

those that are independent of land cover. The following section exemplifies the use of the

climate data described above for estimating fields of potential evapotranspiration using the

Penman-Monteith equation recommended by FAO, and for a simple temperature-dependent

function. An intercomparison of methods for calculating potential evaporation and the im-

plications for regional and global water balance models is given in Federer et al. (1996) and

in Oudin et al. (2005).
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5.4 Potential Evapotranspiration

5.4.2 Penman-Monteith

Penman-Monteith Combination equation

The Penman-Monteith method to compute evapotranspiration is based on both an energy

balance of the surface and empirical relationships describing the diffusion of energy from

the surface. It is therefore known as a combination equation which is given by (Allen et al.,

1998):

ET
Rn G acp

es ea
ra

1 rs
ra

(5.6)

where

ET mmd 1 = potential evapotranspiration

MJkg 1 = latent heat of vaporization = 2.45

Rn MJm 2d 1 = net radiation, Eq. A-15

G MJm 2d 1 = soil heat flux density, A-16

es kPa = saturation vapor pressure, Eq. A-18

ea kPa = actual vapor pressure

es ea kPa = saturation vapor pressure deficit

a Mgm 3 = mean air density at constant pressure

cp Jkg 1K 1 = heat capacity of the air = 1005

kPa°C 1 = slope of the vapor pressure curve, Eq. A-8

kPa°C 1 = psychrometric constant , Eq. A-6

rs sm 1 = surface or canopy resistance, Eq. A-3

ra sm 1 = aerodynamic resistance, Eq. A-2

A detailed description of the method and the variables is given in the appendix. Table 5.1

summarizes how global climate data sets such as the CRU data set can be used to compute

various terms in Eq. 5.6.

5.4.3 Hamon Evapotranspiration

The Hamon function (Hamon, 1963) to estimate potential values of evapotranspiration PET

[mmd 1] is based on an empirical relationship and is given as (Federer et al., 1996):

PET
715 5 es Tm

Tm 273 2
(5.7)

where Tm [°C] is the mean daily air temperature and is the daylength [-], computed as the

fraction of daylight hours N (Eq. A-13) in a 24 hours period, and es is the vapor pressure

at saturation, computed as a function of air temperature (Eq. A-17). For global application,

mean air temperature can be taken from gridded temperature data sets such as CRU or NCEP

(see above). Although the function is basically a function of latitude, day of the year, and

air temperature alone, it has been shown to give reasonable estimates of evapotranspiration
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Table 5.1: Overview of climate and radiation related variables and globally available data sets for the

Penman-Monteith equation

Variable Meaning Data required

es saturation vapour pressure max/min air temperature

Ra extraterrestrial radiation day of year, latitude

slope of the vapour pressure curve max/min air temperature

Rn net radiation vapour pressure, es, sunshine durationa, Ra

P atmospheric pressure elevation

uz windspeed at height z wind speed, transfer functionb

Rs solar radiation sunshine duration

asunshine duration can be derived from cloud cover, for example using Eq. A-20
bmaybe required to convert windspeed measured at different heights, for example Eq. 5.5

when used in a water balance model. Vörösmarty et al. (1998) used 11 commonly used

evapotranspiration functions for a water balance model applied to the conterminous US and

found that discharge estimates produced using the Hamon function had the lowest bias of

all tested reference evapotranspiration functions when compared to observed values. Similar

findings have been reported by Oudin et al. (2005) who tested a set of 27 evapotranspiration

functions over a large set of catchments around the globe and concluded that simple temper-

ature dependent functions produce the best results with regard to model efficiency and found

no advantage in using more complex methods. The mean air temperature required in Eq.

5.7 can be taken directly from the air temperature provided by CRU or any other globally

available data sets of air temperature.

5.5 Climate-Based Phenology

Modeling the phenology of crops is of utmost importance for assessing the water demand

as the timing of the growing season will largely influence the evapotranspirative crop water

demand and the fraction of that demand that can be met by precipitation. Whereas the devel-

opment of plant growth in high latitudes is usually limited by temperature, their development

in arid and semi-arid regions depends solely on soil moisture conditions. Linking available

soil moisture and temperature to phenological events of crop development has led to the con-

cept of Length of Growing Period (LGP) that is simply defined as the period in which both

temperature and soil moisture are conducive for crop growth (Fischer et al., 2002). A num-

ber of different thresholds have been defined to determine the onset of the growing season4

based on those criteria. In regions where the growing season is constrained by temperature,

the temperature threshold is typically set between 0 and 10°C (Chmielewski, 2003; Fischer

et al., 2002). In the present study, a temperature threshold of 5°C was used. In areas where

crop growth is not limited by temperature constraints, the onset of the growing season has

been determined based on the monthly values of the rainfall record and assuming that the

growing season starts one month before the month with the maximum rainfall in a given

4A survey of different criteria for soil moisture and temperature is given in Groten and Ocatre (2002)
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Figure 5.3: Computed onset of the first growing season 2002 based on CRU data

year. If multiple cropping is possible, the second season is assumed to start 180 days after

the start of the first season. Figure 5.3 shows the computed onset of the first growing season

for the year 2002 based on the CRU climate data set.

5.6 Soil Hydraulic Properties

To calculate the amount of water that can be hold in the soil in irrigated as well as non-

irrigated soils, the soil hydraulic parameters field capacity, wilting point, and the root depth

are required. A global data set of soil properties was compiled by FAO (2003) in the Digital

Soil Map of the world (DSMW). Version 3.6 of this product is based on the soil map of the

world published in 1974 but has been complemented with supplementary information and

more details since then and is available at a spatial resolution of 5 minutes. Hydraulic soil

parameters can be derived using pedotransfer functions that are mathematical relationships

between one or more soil parameters. If properties of the soil are based on modal character-

istics of soil units, the transfer function is often referred to as taxotransfer function. Based on

a set of more than 4,300 soil samples, Batjes (2002) has developed such functions for a num-

ber of soil parameters, including hydraulic properties that control water retention globally at

a resolution of 30 minutes5. The root depth controls the amount of water that can actually

be extracted from the soil by the vegetation cover. Estimated root depths for different land

cover types are given in table A-1 in the Appendix.

5Data sets are available online at http://www.daac.ornl.gov
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5.7 Global Hydrography Data

5.7.1 River Networks and Basins

Gridded river networks are needed to represent the horizontal linkages of the continental land

mass to the oceans and are typically derived from high resolution elevation data at various

resolutions and determine the flow direction in each grid cell relative to one of its eight

neighbors6.

As river networks are typically derived from high resolution digital elevation data at a much

finer resolution than macroscale hydrological models and AOGCM’s are usually operated,

scaling procedures are necessary to transform the river networks into coarser resolution (net-

work upscaling) while preserving the topology and key geomorphic properties of the network

(Fekete et al., 2001). Examples of such network upscaling algorithms are given in Olivera

et al. (2002), Fekete et al. (2001), and Döll and Lehner (2002).

STN River Networks

One of the earliest attempts to derive such networks globally has been the Simulated Topo-

logical Network (STN (Vörösmarty et al., 2000a,b)) that is based on an aggregated digital

elevation model (DEM) at 30’ resolution and manual editing of the resulting flow directions.

Drainage basins and sub-basins have subsequently been defined based on the Strahler stream

order7. In this way, 6,152 river basins have been identified with sizes ranging from a few

hundred km2 to 5 8 106km2. Out of these, 1,123 river basins have a catchment area of more

than 5 cells (10 000km2) which is considered the minimum size that can be represented by a

30 min network (Fekete et al., 2001). The 522 basins with areas larger than 25 000km3 drain

82% of the land mass (Vörösmarty et al., 2000c). Recently, a 6 min version of the STN was

prepared using the same input data and manually editing the derived flow directions.

DDM30

The Global Drainage Direction Map (DDM30 (Döll and Lehner, 2002)) is a global drainage

direction map at 30 min resolution that has been derived by network upscaling of existing

river networks and manual corrections using vectorized maps of rivers, wetlands, and com-

parison of discharge station attribute data.

HydroSHEDS

The Hydrological Data and Maps Based on Shuttle Elevation Derivatives (HydroSHEDS)

product (Lehner et al., 2008) is a suite of hydrography data with a level of quality and ac-

curacy that was previously unachieved. It is primarily based on elevation data obtained

from NASA’s Shuttle Radar Topography Mission (SRTM) in February 2000 with a coverage

6This method is commonly referred to as the D8 algorithm (O’Callaghan and Mark, 1984)
7A hierarchical ordering of streams based on their degree of branching
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from 56°S to 60°N and contains both raster and vector data of topography, watersheds, and

drainage networks of the Earth’s terrestrial surface that have been generated by applying a set

of standard procedures (including sink filling, stream burning, and deriving flow directions).

Details of the algorithm are given in Lehner et al. (2006a). Regions outside the SRTM cover-

age have been filled by using existing global elevation data (HYDRO1K8). HydroSHEDS is

available at resolutions of 3, 15, and 30 arcseconds (approximately 90, 500, and 1000 meters

at the equator).

5.7.2 Selection of a river network

The recently released HydroSHEDS data sets represent a significant improvement over STN

and DDM 30 with regard to draingage basin delineation, flow directions, and the representa-

tion of lakes and wetlands. Using the algorithms described above, the data could be upscaled

to the 30min resolution at which contemporary global models typically operate. However,

as most GRDC gauging stations and data on reservoirs (Chapter 5.7.4) has already been reg-

istered to the STN 30 river network, the simulations carried out in this study were based on

STN data.

5.7.3 Discharge Data

Discharge data provides the most accurate information about the terrestrial water cycle and

provides an integrated measure of all hydrological processes. The Global Runoff Data Center

(GRDC)9 is the digital world-wide repository of discharge data to which member states of

the World Meteorological Organization (WMO) contribute voluntarily. As of January 2008,

GRDC holds daily and monthly data for some 7,000 stations, some of which are regularly

updated. The temporal distribution of station data has a peak in 1980, partly because the

database was complemented with a UNESCO river discharge collection and partly because

the initial request to provide data has been very successful. Since the mid-1980s, however,

the number of stations reporting data is declining steadily (Figure 5.4). While this decline

is caused by a number of reasons (including legal considerations regarding the restriction of

data, privatization of services and others) and does not necessarily correspond to a decline in

the hydrological networks as such, it makes large scale assessments of water resources more

difficult. Since the network of gauging stations are the mainstay of monitoring and assessing

water resources, this lack of data continues to challenge water science (Vörösmarty et al.,

2005).

For the present study, a set of global gauging stations has been selected based on interstation

area, length of record, and quality of data. This selection has been used by Fekete et al.

(2002) and contains 663 stations. The selected stations monitor 52% of the continental land

mass (excluding Antarctica) and 70% of the continental discharge to oceans (Fekete et al.,

8A suite of topographically derived data sets including, streams,networks, and ancillary data at 30 arcseconds.

Available from the United States Geological Survey (USGS)
9available at http://grdc.bafg.de
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Figure 5.4: Time Series of Holdings in the GRDC database. Monthly data, based on the GRDC

station catalogue, version 2008-01-07. Data is available from 1850 to 2007

2002). The period of observation varies greatly between stations with a peak in data avail-

ability in the 1980’s. The number of observation months for the final selection of 663 stations

ranges from 120 to 1224 (mean 541, median 477) months.

5.7.4 Dams and Reservoirs

Globally, some 40,000 reservoirs with a dam height of more than 15 m are currently in op-

eration (ICOLD, 2003). The contemporary aggregate storage of those reservoirs listed in the

dam register of the International Commission on Large Dams (ICOLD) is about 6,700 km3

(ICOLD, 2003). The ICOLD register provides a number of attributes for each dam but does

not give the geographic coordinates, mean inflow to the reservoir, or detailed information

on the operation rules of those reservoirs. Based on a series of dam registers published by

ICOLD, Vörösmarty et al. (1997) have compiled and geo-referenced a time-varying global

database of 668 large impoundments with a a nominal storage capacity greater than 0 5 km3

and registered the locations to the STN-30 river network (see above), ensuring the dams are

located on the right tributaries. The residence time10 for more than 75% of the reservoirs

is under one year, with a median of 0.4 years (Vörösmarty et al., 1997). The combined

contemporary maximum capacity for those reservoirs is 4,653 km3 and represents 70% of

impoundments formed by dams over 15 meters.

The construction of large reservoirs has peaked in the 1970s and is declining since then.

Figure 5.5 shows the accumulated storage capacity of the 668 reservoirs since the beginning

of the last century. The ICOLD database also provides some information on the purpose(s)

of the reservoir. While large-volume reservoirs are usually designed for multipurpose needs,

smaller reservoirs typically serve one purpose (Nagy et al., 2002). More than 70% of the

10computed as reservoir capacity over mean annual inflow, computed from Fekete et al. (2002) and assuming

an utilization factor of 0.67. An extended discussion of the residence time of registered reservoirs will be

given in Chapter 7.4.2

44



5.8 Conclusions and Selection of Appropriate Data

referenced dams in the ICOLD database are classified as ’single purpose’ reservoirs of which

nearly 50% are exclusively used for irrigation, 17% for hydropower, 13% for water supply,

10% for flood control, and the remainder for recreation, navigation, and other uses (ICOLD,

2003). The primary use of multi purpose reservoirs is 25% for irrigation, 19% for hydropwer,

16% for water supply, 18% for flood control, 12 % for recreation and the remainder for

navigation and others (ICOLD, 2003).

Figure 5.5: Time series of accumulated reservoir storage using the data set of registered impound-

ments with a storage capacity larger than 0.5 km3 based on Vörösmarty et al. (1997)

5.8 Conclusions and Selection of Appropriate Data

Out of the global precipitation data sets described above, the CRU data set has certainly

received the widest acceptance. Furthermore, it has the longest record of all global precipita-

tion data sets which makes it the obvious choice to track impacts of reservoirs and irrigation

over time. The spatial and temporal differences in precipitation data sets have implications

for components of the hydrological cycle, including the use of irrigation water that are ex-

plored in a modeling context (Chapter 8.2.1).

The validation of continental and global scale hydrological models is severely limited by the

globally available discharge data. Both data availability and data quality tends to be lower in

regions with high irrigation water abstractions making it more difficult to validate the models

this study is concerned with. Similarly, the repository of registered reservoirs is incomplete

and covers only reservoirs with a capacity larger than 0.5 km3. However, those reservoirs

represent an estimated 70% of the global storage capacity so that the data can be used to

estimate the impact of reservoirs on continental and global water cycles.
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6.1 Introduction

This chapter will review some basic concepts of macroscale hydrological models. After

defining macroscale hydrological models and its interfaces and linkages to Atmosphere-

Ocean General Circulation Models (AOGCM), four macroscale hydrological models will

be introduced to exemplarily show the wide range of approaches for modeling vertical and

lateral components of the hydrological cycle at continental and global scales. Given the

objective of this study, the description will focus on approaches to account for human inter-

ventions in those models and their limitations. Finally, some commonly used measures for

assessing the performance of hydrological models, the causes for uncertainty in hydrological

models and approaches to quantify the uncertainty will be discussed.

6.2 Macroscale Hydrological Modeling

The definition of different scales in Earth Science in general is far from uniform and varies

greatly with different disciplines. In atmospheric sciences, for example, a clear definition

of different scales exists with interfaces at 2 km and 2,000 km and subdivisions for large,

medium and small sub-scales, denoted , , and . Scales in hydrology are typically subdi-

vided into the microscale, mesoscale, and the macroscale. Microscale is the scale at which

very localized processes such as pore-water processes take place and typically extends over

a few meters. The Mesoscale is typically attributed to more or less uniform landscapes or

catchments, and theMacroscale covers catchment areas larger than 100 km2. The definitions

of scale in hydrology and atmospheric sciences are depicted in Figure 6.1.

While the development in hydrological science has long been on the classic problems of

engineering works for supply and natural hazard reduction (Eagleson, 1986), there has been

a growing interest in the large scale hydrological and atmospheric processes starting in the

1980s that has resulted in the developed and application of Macroscale Hydrological Mod-

els (MHM) or Land Surface Schemes (LSM). There is no universally accepted definition of

MHMs and they may simply be defined as the application of hydrological models over a

large spatial domain (Xu, 1999). Vörösmarty (1991) defines MHMs as hydrological models

that simulate water fluxes in two or three dimensions, discretize the spatial domain at length

scales varying from 10 to 50 km and typically use a monthly time step. Vertically, the wa-

ter fluxes are simulated through precipitation, evapotranspiration and recharge to subsurface

storage, while the horizontal water flux is simulated using simulated network topologies that

route surface water and groundwater. The organizing concept for addressing hydrological

issues is the watershed (Vörösmarty, 1991) and the scale of application ranges from those
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Figure 6.1: The terminology of spatial scales in hydrology and climatology and their relationships to

actual spatial lengths or areas (Bronstert et al., 2005)

watersheds to continents and the globe. The basin allows a closure of the terrestrial mass bal-

ances and permits spatially aggregated observations of fluxes, such as runoff, sediments, and

river-borne biogeochemicals (Wood et al., 1997). Present-day global water balance models

typically simulate components of the hydrological cycle at a spatial resolution of 0.5 x 0.5°

latitude-longitude. Macroscale hydrological modeling was motivated by the need to answer

two main questions: (Wood et al., 1997; Xu, 1999):

1. What are the impacts of human activities on water resources, hydrology and biogeo-

chemical cycles and how are these systems affected by a potential climate change ?

2. How can improved representations of the land surface hydrology contribute to improve

the performance of climate models that use the terrestrial surface and its water fluxes

as a lower boundary condition ?

While the first question will be at the focus of this study and the discussion the the subsequent

chapters, it is worth mentioning the interactions and linkages of MHMs with AOGCMs that

are increasingly coupled with MHMs. AOGCMs numerically solve the fundamental equa-

tions governing the dynamics of fluid motion in the atmosphere and are typically run at a

fine temporal resolution, ranging from minutes to some hours while the spatial resolution

is generally coarse (~200 km) with a vertical discretization of the atmosphere through a set

of layers (typically 10 to 20). AOGCMs consist of several components (atmospheric, land,

ocean, and sea ice) that are interlinked to each other. While the atmospheric component of

AOGCM an is typically very sophisticated, the land-phase parameterizations do not agree

with most hydrological variables (Xu, 1999) and the representation of the terrestrial surface

fluxes and the link to the lower boundary has historically been the weakest part of AOGCMs
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(Feddes, 1995). Early implementations of AOGCMs treated the land surface as a passive

and weak participant and parameterized the hydrological process as a prescribed soil mois-

ture state (Eagleson, 1986).

The land surface component of climate models is a key component because it controls

the partitioning of water into evapotranspiration and runoff, and the fluxes of energy (Pit-

man, 2003). Runoff modeling, the traditional realm of hydrological models, is connected

to AOGCM simulations at two points (Bazzaz and Sombroek, 1996): (1) At the boundary

between atmosphere and land surface where the rainfall is partitioned into surface runoff and

evapotranspiration and (2) at the boundary between land and ocean where the simulated hy-

drographs provide the input for the ocean model. A better representation of the water cycle

in AOGCMs can thus facilitate the calibration and validation of such models (Vörösmarty,

1991; Arora and Boer, 2001) with regard to the water and energy balance. Kite (1995) has

formulated the following requirements to be met by macroscale hydrological models to be

integrated into AOGCMs:

1. MHMs must be applicable to large scales and different regions without recalibration,

2. they must be able to operate at a variety of different time scales,

3. they must include the effects of topography, land cover and meteorological variations,

and

4. the spatial coverage must range from the smallest hydrological element to the grid size

used in AOGCMs.

To accomplish these requirements, the model should be physically based, distributed, and

have some mechanism for aggregation and disaggregation of data. Furthermore, the model

should not be too detailed because the data needed is not available at a macroscale and mi-

croscale physics will not be applicable (Kite, 1995). Finally, it is necessary to adequately

consider the effects of human interventions in the water cycle in MHMs. Among the most

important impacts of such interventions are the impacts of irrigation activities on the energy

and water budget and the distortion of hydrographs due to the storage of water in impound-

ments. To represent the water cycle in AOGCMs using MHMs, both models can be coupled.

A fundamental problem in coupling hydrological models and AOGCMs is that spatial and

temporal scales are very different. Typical AOGCMs use short temporal scales (minutes

to hours) while hydrological models (MHMs in particular) are usually run at daily, weekly

or monthly time steps. The ’standard’ spatial resolution found in most contemporary hy-

drological models is 0.5° which is 25 to 100 times finer than the resolution typically found

in AOGCMs were a latitude-longitude element ranges from 2 5° 2 5° to 5° 5° (Harvey,

2000). These temporal and spatial mismatches require scaling techniques for which various

methodologies have been developed1.

6.3 Existing Models

MHMs generally differ in the representation of hydrological processes, the level of detail,

the required input data, and their spatial and temporal resolution. The following section will

1An overview of coupling methods is given in Mölders (2005)
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briefly summarize the main characteristics and process representation of four macroscale

hydrological models that have received a wide attention for regional, continental, and global

applications. The main characteristics and differences of the four models are summarized in

Table 6.1.

The core of the vertical water balance that is computed by MHMs is given by the water

balance equation that can be written as

R P E
W

t
(6.1)

where R[mm] is the runoff, P[mm] is the precipitation, E[mm] is the actual evapotranspiration

and W
t

[mm] is the change in storage. The soil moisture model in any MHM is the most crit-

ical component with regard to long-term water balances. The soil-atmosphere interactions

are typically based on physical principles where actual evapotranspiration E is modeled as a

function of actual soil water storage and potential evapotranspiration. The runoff formation

process is usually represented using a conceptual model with parameters that may be used

for calibration. The horizontal transport of computed runoff to the outlet of a river basin

(routing) is modeled using one of the river networks described in Chapter 5.7.1. Routing

methods differ in the parameterization of the delay in lakes, reservoirs, and river stretches.

Routing is usually done in the post processing of model simulations; vertical components

are computed for each time step and the runoff (corrected for water withdrawals in some

models) is routed through a river network.

The Water-Global Assessment and Prognosis Model (WaterGAP (Alcamo et al., 2003a;

Döll et al., 2003; Kaspar, 2004)) is an integrated global water model that was one of the

first models explicitly accounting for the use of water and its impacts on runoff and has been

applied in a wide range of applications (e.g. Döll and Siebert (2002); Alcamo et al. (2003b,

2000)). Runoff from land within one grid cell is modeled following the HBV2 approach as a

function of precipitation and actual soil moisture. The computed runoff is corrected for the

consumptive use of water before routing. Whereas irrigation water use is modeled, domestic

and industrial water use are disaggregated from national statistics.

The Variable Infiltration Capacity model (VIC (Liang et al., 1994, 1996; Haddeland et al.,

2006a)) is a grid-based MHM that has been developed at the University of Washington and

the University of Princeton. It has been applied at spatial scales ranging from 1 8° to 2°

and it stands out among most hydrological models because it also solves the energy bal-

ance at the land surface. The VIC model parameterizes the spatial subgrid variability of

the soil properties by a variable infiltration capacity and represents the subsurface by mul-

tiple (usually three) layers, the upper layer representing the dynamic behavior of the soil

to rainfall events and the lower layers representing the slowly-varying behavior of the soil

between storm events. The lateral transport of the runoff computed for each cell is modeled

by accumulating the grid-based runoff using the river network taking into account some sim-

ple assumptions with regard to travel distance and velocity, after convolving the grid based

runoff with a unit impulse response function (Nijssen et al., 1997).

2The HBV-model (Bergström, 1995) is a conceptual water balance model named after the abbreviation of

Hydrologiska Byrȧns Vattenbalansavdelning (Hydrological Bureau Waterbalance-section of the Swedish

Meteorological and Hydrological Institute)
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Table 6.1: Overview of the main characteristics of of contemporary MHMs

Model WaterGAP VIC TRIP WBM/WTM

Time step daily varying (hourly

to daily)

monthly monthly/pseudo-

daily

Spatial resolu-

tion (degree)

0.5;

irrigated/non-

irrigated

varying (1/8

to 2);mosaic

approach

1 0.5

Evapotrans-

piration

E f W subgrid vari-

ability of

soil proper-

ties: variable

infiltration

- E f W

Runoff forma-

tion

HBV-

approach;

surface runoff

and subsurface

runoff

3 soil layers input from

LSM

Fast/slow com-

ponents

Groundwater linear reservoir non-linear

reservoir from

deepest soil

layer

linear reservoir linear reservoir

Lakes linear reservoir - - -

Routing linear reser-

voir; constant

velocity; post

process

linearized

Saint-Venant

equation

linear reser-

voir; constant

velocity;post

process

linear reser-

voir;post

process

River network DDM30 various 1° TRIP net-

work

STN 30, STN 6

Water with-

drawal

Irrigation

(modeled),

domestic and

industry from

statistical data

Irrigation

(modeled)

Irrigation

(modeled),

domestic and

industry from

statistical data

-

Calibration 1-2 tuning

parameters,

multiple re-

gression for

regionaliza-

tion; river

basin

(river basin) - -
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Total Runoff Integrating Pathways (TRIP (Oki and Sud, 1998; Oki et al., 2001)) is not a

hydrological model itself but a method to estimate water availability by using offline data

from different Land Surface Models (LSMs). Computed runoff is routed through a river

network with a horizontal resolution of 1° 1° where the river bed parametrization uses

empirical discharge to width relationships. It has recently been modified to account for the

effects of irrigation water use on the vertical components (Hanasaki et al., 2008) and has

implemented a reservoir operation scheme in the routing module (Hanasaki et al., 2006).

The Water Balance Model (WBM (Vörösmarty, 1991; Vörösmarty et al., 1998)) is a physi-

cally based, one-dimensional model that has been developed at the University of New Hamp-

shire and has been used for a number of studies on the terrestrial water cycle (Syvitski et al.,

2005; Green et al., 2004; Fekete et al., 2002; Vörösmarty et al., 2000a,d; Sharma et al.,

2000). A modified version that models the distribution of permafrost and its dynamics has

been developed by Rawlins et al. (2002) for application in the pan-Arctic domain. The daily

soil moisture budget is given by

dWs dt

g Ws Ep Pa for Pa Ep

Pa Ep for Ep Pa Dws

Dws Ep for Dws Pa

(6.2)

where

Ws mm = soil moisture

Ep mm d 1 = potential evaporation

Pa mm d 1 = precipitation available for soil moisture recharge (rainfall Pr plus

snowmelt Ms
Dws mm d 1 = soil moisture deficit to fill soil to its capacity and satisfy Ep
g Ws = soil drying function (Eq. 6.3)

The unitless drying function of the soil is expressed as a function of the soil water as

g Ws
1 e

WS
Wc

1 e
(6.3)

where is an empirical constant (set to 5.0) andWc [mm] is the soil and vegetation-dependent

available water capacity. Estimated actual evapotranspiration Es[mm] is given by

Es
Pa dWs dt for Pa Ep

Ep for Ep Pa
(6.4)

The rainfall excess Xr[mm] that is available for runoff after the soil moisture deficit has been

filled is given by

Xr
0 for Pa Dws

Pr Dws for Dws Pa
(6.5)
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where Pr is the precipitation available for soil recharge as rainfall. Excess snowmelt Xs[mm]

is given by

Xs
0 for Ms Dws

Pr Dws for Dws Ms
(6.6)

where Ms[mm] is the snowmelt excess. Whenever rainfall exceeds the field capacity it will

augment the rainfall-derived runoff pool and generate runoff:

dDr

dt
1 Xr Dr (6.7)

Rr Xr Dr (6.8)

where Dr[mm] is the rainfall runoff detention pool, Rr[mmd
1] is the rainfall-derived runoff

from the grid cell, is an empirical parameter that controls the outflow from the runoff

pool and determines the fraction of excess rainfall that fills the pools or becomes runoff

instantaneously. The parameter has units of 1 T and has been set to 0.5 for monthly time

steps and 0 0167 for daily timesteps and is 0.5 for both daily and monthly time steps.

Snowmelt is modeled as a function of elevation and temperature. At elevations below 500

m, the snow dynamics are described by

dKs

dt

Ps Ep for T 1 0°C

Ms Ep for T 1 0°C
(6.9)

where Ks[mm] is the snowpack that accumulates at monthly temperatures below -1.0°C,

Ps[mm] is the daily snowfall. Snowmelt at elevations below 500 m is assumed to be equal to

Ks in the first month when T 1 0°C. Above 500 m, snowmelt proceeds over two months

with one-half of Ks lost within each month. Runoff derived from snowmelt is added to the

rainfall derived runoff Rr to form the total runoff on one grid cell. Similar to rainfall derived

runoff, a detention pool Ds[mmd
1] is tracked to generate runoff from snow Rs[mmd

1]:

dDs

dt
Xs Rs (6.10)

For elevations below 500 m, Rs is given as 0 1 Ds in the first month when T 1 0°C and

0 5 Ds thereafter. Above 500 m, the runoff is assumed to be 0 1 Ds in the first month when

T 1 0°C, 0 25 Ds in the second and 0 5 Ds thereafter.

Water Transport Model

The Water Transport Model (WTM (Vörösmarty, 1991)) is a dynamic model that computes

the horizontal transport of runoff computed using the WBM. It uses the STN river network

(Chapter 5.7.1) to route the runoff until it reaches the outlet of the basin. Channel flow is

represented by a linear reservoir model. The resulting flow and continuity equations for one

grid cell are

dSc

dt

n

1

Qu Qd Qg Q f (6.11)
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dS f

dt
Q f (6.12)

Qd KSc (6.13)

Qg A Xr Xs 1000 (6.14)

Q f

0 for Qd c fQdma

r f
n

1
Qu Qd Qg for Qd c fQdma

(6.15)

where

Sc m3 = Channel storage in a grid cell

S f m3 = Floodplain storage in a grid cell

K month 1 = Downstream transfer coefficient

A m2 = Area of the grid

Qu m3month 1 = Monthly upriver input

Qd m3month 1 = Discharge from cell exported downriver

Qg m3month 1 = Input from runoff generated within the cell

Q f m3month 1 = Exchange between channel and floodplain

Qdma m3month 1 = Mean annual downstream recharge

c f = Flood initiation parameter (0..1) defining the proportion of long-

term mean annual flow required to invoke floodplain exchanges

r f = Fraction of potential volume change assigned to flooplain stor-

age (0..1)

n = number of donor grid cells

6.4 Irrigation and Reservoirs in MHM’s

As mentioned above, irrigation and reservoirs have previously been overlooked in MHM

and only a few attempts have been recently made to represent such human interventions in

the hydrological cycle in MHMs. Although the amount of water withdrawn for agriculture

represents a small fraction of the global runoff, the regional impacts can be dramatic and have

been transforming rivers into ’loosing streams’ (e.g. Nile, Indus, Yellow river). As 83% of

the global runoff are affected by the operation of dams (Nilsson et al., 2005) it is equally

important to model the effect of reservoirs on the routed discharge. The following section

summarizes existing implementations of reservoir and irrigation schemes in WaterGAP, VIC,

and the TRIP model.

6.4.1 Irrigation

The implementation of agricultural water demand modules in WaterGAP, VIC, and TRIP is

based on the partitioning of the grid cell into an irrigated part and into a non-irrigated part.

WaterGAP and TRIP further subdivide the irrigated part into rice and non-rice crops for
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which the water demand is computed differently. Irrigation water demand for crops in the

VIC model is estimated using the FAO-56 approach3. VIC uses a soil moisture accounting

to determine irrigation water required to fill up the soil to its capacity whenever the soil

moisture drops below a given threshold. WaterGAP uses the same approach to determine

the evapotranspirative crop water demand but does not take into account the storage capacity

of the soil. Instead, the dampening effect of the soil water storage is taken into account by

averaging the (generated) daily precipitation over a period of 3 days (for rice growing regions

in Asia) or 10 days (for other regions). Hanasaki et al. (2008) determined water demand for

irrigation in the TRIP model as the volume of water required to maintain soil moisture at

75% of field capacity throughout the growing season and starting 30 days prior to the planting

data. The water requirement for rice paddies is conceptualized by assuming that soil moisture

is kept at saturation level throughout the growing season. Additional amounts needed for

land preparation and percolation in rice paddies are not taken into account. All models use

climate drivers to determine the onset of the growing season and national statistics to model

the number of growing seasons in a grid cell.

As those schemes are implemented in MHMs, the linking of the irrigation water demand

with the non-irrigated part of the cell is of crucial importance as it determines how irrigation

water abstractions and return flows impact the vertical water balance in the grid cell and the

horizontal flow of water through that cell. Water demand is met from the locally produced

runoff (i.e. from the storage components in groundwater or from surface water) in all mod-

els and additionally from lakes present in the same grid cell in the WaterGAP model. All

models only withdraw the consumptive crop water demand and do not explicitly account for

return flows from irrigated areas. To assess the impact of irrigation water abstractions on the

hydrological cycle it is also important to adequately represent the supply of water in periods

of scarcity. Clearly, an estimated demand can exceed the amount of water that is available in

the same grid cell and may reflect the mining of fossil groundwater for irrigation purposes,

in which case the amount of water available in a river basin would be larger than the amount

that would be available under natural conditions. Döll et al. (2003) have addressed this prob-

lem by delaying the reduction in local runoff caused by consumptive irrigation water use by

up to one year and by abstracting water from neighboring grid cells. The VIC model supplies

water from pre-defined points in the river basin and can optionally limit the irrigation water

needs to renewable sources so that irrigation water is only applied if it is available from local

runoff or transfer from other grid cells in the basin.

6.4.2 Reservoirs

The approaches implemented in MHMs calculate the distortion of the discharge routing

through the river network for single reservoirs and do not consider the simultaneous op-

eration of reservoirs in a river basin. Hanasaki et al. (2006) have recently modified the TRIP

routing scheme to model the impact of large storage reservoirs on discharge by parameter-

izing the operation of reservoirs based on the main purposes of the reservoir, the storage

capacity of the reservoir, and the demand that needs to be supplied from a given reservoir.

They used the geo-referenced database by Vörösmarty et al. (1997) (see Chapter 5.7.4) and

3This approach is described in Chapter 2.5.2

55



6 Macroscale Hydrological Modeling

modeled reservoirs as irrigation and non-irrigation reservoirs at a monthly time step. The

monthly release rm y[m
3 s] from a non-irrigation reservoir is assumed to be constant and

equal to the long-term mean inflow imean[m
3s 1] of the reservoir, i.e. rm y imean. The

release of reservoirs for irrigation shows a highly seasonal pattern and is parameterized as

follows:

rm y

imean
2

1 area
kalc dirg m y dind ddom

dmean
dmean 0 5 imean

imean
area

kalc dirg m y dind ddom dmean dmean 0 5 imean

(6.16)

where dm y [m3s 1] is the monthly demand from this reservoir and the subscripts irg, ind,

and dom indicate irrigation and industrial and domestic demand (assumed constant). The

allocation coefficient kalc is determined based on the number of reservoirs upstream of the

current reservoir and set to 1 if there is only one reservoir. dmean is the mean annual total

water demand for the reservoir [m3s 1] which is determined by adding the demand for all

sectors downstream of the reservoir:

dmean
area

kalc dirg mean dind ddom (6.17)

and area indicates the integration over all areas downstream of the reservoir (i.e. down to

the next reservoir, the river mouth, or a maximum distance for 10 grid cells4). The monthly

release is then calculated as

rm y
krls y rm y c 0 5

c
0 5

2
krls y rm y 1 c

0 5

2
im y 0 c 0 5

(6.18)

where c is the storage capacityC[m3] related to mean annual runoff volume (c C imean) and

krls y is a storage release coefficient that reflects water storage at the beginning the operational

year:

krls y
S f irst y

C
(6.19)

where S f irst y[m
3] is the storage at the beginning of the year and is set to 0.85. The storage

volume at month m of year y[m3 s] is calculated using the water balance equation:

Sm y Sm 1 y im y rm y dt (6.20)

where im y and Sm y [m3] and denote the reservoir storage and inflow in year y and month m,

subject to:

0 Sm y C (6.21)

The parameter was developed and tested using the operational data for some 20 reservoirs

globally.

The reservoir operation in the VIC model (Haddeland et al., 2006a,b) calculates the release

from individual reservoirs using an optimization algorithm based on the SCEM-UA5 algo-

rithm. Based on the purpose of the reservoir (taken from the ICOLD database, see Chapter

4Around 1100 km at the equator for the TRIP river network
5Shuffled Complex Evolution Metropolis (Vrugt et al., 2003)
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5.7.4), an objective function that defines an economic value depending on release from the

reservoir, is optimized. To define the topological relationships of irrigated areas for which a

demand has been computed and the reservoir that could supply this demand, it is assumed

that the dam can supply all areas downstream of the reservoir up to a distance of around 250

km. The model is retrospective, i.e. it assumes a complete knowledge of the future reservoir

inflows and determines reservoir releases based on these future inflows for one year.

The approach implemented in WaterGAP does not consider the operation of reservoirs but

computes the release of water from both reservoirs and lakes in the river network as

Qout krSr
Sr

Srmax

1 5

(6.22)

where Srmax[m
3] is the storage capacity (simply calculated as Alake h), and kr is an outflow

coefficient that is set to 0 01 1 d globally. Sr is the actual storage of the reservoir or lake and

h[m] is the maximum storage depth that is set to 5 and 2.5 for lakes and wetlands, globally.

6.5 Limitations of Macroscale Hydrological Models

With regard to a representation of the entire terrestrial water cycle, the main shortcoming

of contemporary MHMs is the inadequate representation of horizontal groundwater flow

(Lettenmaier, 2001). This has practical implications for the soil moisture storage and the

routed discharge as the groundwater storage can dominate the soil moisture storage and

groundwater can be recharged by river flow. Furthermore, most MHMs do not contain a

physically based description of glaciers and permafrost (Kite, 1995) which constrains the

application of such models in high latitude regions, although some attempts have been made

to explicitly model the dynamics of permafrost and its impacts on hydrological processes

(e.g. Rawlins et al. (2002)).

Although originally developed to estimate irrigation water demand at field scale, the ap-

proach to estimate irrigation water use implemented in WaterGAP and VIC (Chapter 2.5.2)

is generally independent of scale as it computes water demand per unit area and can there-

fore be applied at larger scales if the extend of irrigated areas and the distribution of crops

is known. The approaches to represent the interactions of irrigated areas with the hydrolog-

ical cycle discussed above lack a representation of return flows in storage components that

have been shown to substantially impact river flows (Chapter 2.5.3), in particular during low

flow periods. Given the large water demand for paddy rice and the high percolation rate in

flooded fields (Chapter 2.5.3) it is also important to geospatially represent rice paddies and

parameterize the water demand and the percolation adequately. Furthermore, the capacity of

the soil to store water available to plants needs to be accounted for.

The implementation of reservoir operating schemes in the MHMs described above are based

on topological relationships of demand sites for each reservoir. This information is derived

from digital elevation models, but global applicability is a major concern as the actual re-

lationship between reservoir location and irrigation demand site might be constrained by a

number of other local circumstances. In addition, they model reservoir release as a function
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of one purpose of the reservoir, taken from the ICOLD database (Chapter 5.7.4) although

reservoirs serve several purposes.

It has been argued that MHMs should be applied over large geographic domains without

calibration at the catchment level since a substantial part of the world is ungauged and cali-

bration is questionable when the model is used for climate change studies (Hanasaki et al.,

2008; Arnell, 1999; Kite, 1995). However, it is clearly impossible to reproduce observed

discharge within a reasonable margin of error for all river basins globally using the global

data sets that are available today and with one single model without calibration of the model

parameters. Döll et al. (2003) have addressed this problem by ’tuning’ the WaterGAP model

in a way that the model reproduces the long-term average discharge measured at 724 dis-

charge gauging stations globally. The ’tuning’ is done by changing a parameter in the runoff

formation module for each basin. Döll et al. (2003) found that the process of changing could

reproduce the long term discharge in 385 out of the 724 basins and that most of the deviations

in basins where the long-term discharge could not be reproduced are snow-dominated basins.

Fekete et al. (2002) used a set of 663 river gauging stations from the GRDC data set (Chapter

5.7.3) and corrected modeled discharge from the WBM model based on long-term monthly

climate forcings to create composite runoff fields that reflect the accuracy of measured dis-

charge and preserve the spatial and temporal distribution of simulated runoff. While both

approaches may lead to similar results, the approach used by Fekete et al. (2002) implicitly

acknowledges the imperfections of MHM simulations arising from inadequate process repre-

sentation and uncertainties in input data. It is important to note that the model performance of

MHMs does not necessarily increase with an increasing model complexity (Demaria et al.,

2007; Huang and Liang, 2006; Perrin et al., 2001) and that more parsimonious approaches

may lead to similar results but better identifiable models.

6.6 Assessing Hydrological Models

MHMs, like hydrological models in general are usually validated by comparing the observed

values of interest Oi and simulated values Pi at time step i. Most commonly, they are val-

idated against observed discharge, that can be measured more accurately than any other

component of the land water cycle and is routinely measured at a number of points. One of

the most important criteria for assessing the performance of hydrological models is a visual

comparison of both observed and simulated time series but a number of quantitative and ob-

jective criteria for assessing the performance of those models have been developed, partly to

assist automatic calibration procedures. A comprehensive overview of such criteria is given

in Krause et al. (2005). Most commonly, the error ei Pi Oi is statistically summarized for

the modeled time series. Generally, the model-estimation error can be written as (Willmott

and Matsuura, 2005):

e
n

i 1

wi ei
1
n

i 1
wi

1

(6.23)

where 1 0 and wi is a scaling factor assigned to each absolute value of the individual

error ei . The scaling factor wi reflects unequal time intervals in the time series and is
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most commonly set to 1.0. Setting 1 and wi 1 for all values, Equation 6.23 becomes

the equation for Mean Absolute Error (MAE) that measures the magnitude of the deviations

between Oi and Pi:

MAE
1

n

n

i 1

ei
1

n

n

i 1

Pi Oi (6.24)

When the mean absolute error is computed with the signs of the error not removed, the

average error becomes the Mean Bias Error (MBE), or ’bias’ that is usually computed to

assess the over- or under-prediction of a model compared to the observed values and to

indicate systematic biases (Willmott and Matsuura, 2005):

MBE
1

n

n

i 1

ei P O (6.25)

where P and O indicate the predicted and observed means respectively. With 2 and

wi 1 for all values, Equation 6.23 gives the Root Mean Square Error RMSE:

RMSE
1

n

n

i 1

ei
2

0 5

(6.26)

that removes the sign of the errors and is a frequently used indicator of model performance in

hydrological modeling. However, it has some disadvantages over the MAE and is therefore

not generally recommended as an unbiased error estimate6. The measures MAE , MBE, and

RMSE are ’dimensioned’ errors that are in the units of the variable of interest (e.g. discharge)

and are zero for a model that perfectly reproduces the observed values. However, as under-

predictions and over-predictions can cancel out in the calculation, these error measures alone

are not sufficient to assess the model performance. A commonly used relative measure of

error is the relative volume error VE that measures the difference of observed and simulated

discharge Oi and Pi as a fraction of observed volume:

VE

n

i 1
Pi

n

i 1
Oi

n

i 1
Oi

(6.27)

The volume error has a value of zero for an ideal model but since it ignores the temporal dy-

namics of the time series, the limitations described above apply. One of the most frequently

applied criterion to assess the performance of hydrological models is the model efficiency

criterion R2 proposed by Nash and Sutcliffe (1970). It is a dimensionless transformation of

the sum of squared errors and is defined as

R2 1

n

i 1
Oi Pi

2

n

i 1

Oi O
2

(6.28)

6Willmott and Matsuura (2005) show that RMSE tends to become increasingly larger than MAE as the dis-

tribution of error magnitudes becomes more variable, and that it grows larger than MAE with n1 2 and

therefore generally discourages the use of this measure.
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where O is the mean value of observed values. R2 has a value of 1.0 if modeled and observed

values totally agree and has a value of zero if the model does not perform better than the

mean value O of the observed values. Theoretically, R2 ranges from to 1.0 and is a

relative index that can be used to assess models over different temporal and spatial domains.

As it implicitly compares the model performance against the simplest model (i.e. one that

uses the constant mean value of the observation), a value of 0.0 indicates that the model is

as good as using the mean value as a prediction and values below 0.0 indicate questionable

model results altogether. Willmott (1981) proposed the Index of Agreement or d-statistics as

an additional relative index:

d j 1

n

i 1

Oi Pi
j

n

i 1
Pi O Oi O

2
(6.29)

where j represents an arbitrary positive integer value (typically j=2) and d j ranges from

zero (poor model) to 1.0 (perfect model). This criterion is considered an improved model

evaluation tool over R2 because it takes into account differences in observed and modeled

means (biases) and variances, as well as correlation.

6.7 Uncertainty And Sensitivity Analysis

Uncertainty is an integral part of any hydrological modeling exercise. It is therefore impor-

tant to analyze the sources of uncertainty and their effects on the model predictions. Un-

certainties in hydrological modeling are due to the following (Uhlenbrock, 2005; Gattke,

2006):

1. Errors are due to measurement errors in the input data. For global scale applications,

the most important error of this kind is related to gauge undercatch in measuring pre-

cipitation values (Chapter 5.2).

2. Errors are due to uncertainties in the spatial interpolation of the input data. Input cli-

mate data is typically measured at point locations and has to be spatially interpolated.

This is particularly significant if data from a sparse network of stations was interpo-

lated over large spatial domains.

3. Errors can arise from uncertainties in the model structure that simplify the underlying

processes and do not adequately represent the relevant processes at the modeling scale.

4. Errors are due to the uncertainties related to the model parameters. Parameters typi-

cally refer to a collection of aggregated processes that cannot be represented separately

(Wagener et al., 2003) and cannot be determined based on observations. A large num-

ber of parameters in a model and interactions between those parameters can lead to

similar model predictions for different sets of parameter values.

The uncertainty in model predictions is therefore a combined result of the uncertainty related

to the input data and the process representation of the model. The assessment of model un-

certainty and the assessment of model parameters has received an increased interest in the
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last decade (Mantovan and Todini, 2006) and a number of formalized approaches to quan-

tify the uncertainty and its propagation through the modeling process have been developed.

While sensitivity analysis is aimed at determing crucial model inputs (Christiaens and Feyen,

2002), uncertainty analysis tries to quantify the uncertainty in the model outputs. The fol-

lowing section will discuss commonly used methods for quantifying both the sensitivity of

models to input data and uncertainty related to model predictions. The selection of an appro-

priate method to perform uncertainty and sensitivity analysis depends on the output variable

that is evaluated, and the time and space scale of the output variable (Christiaens and Feyen,

2002).

6.7.1 One Dimensional Sensitivity Analysis

Sensitivity analysis is an essential tool that is aimed at understanding the importance of

variables and their effect on the computed outputs, specifically, how outputs respond to per-

turbations in inputs (Carrera and Bastidas, 2005). Secondly, the analysis can highlight the

importance of several variables in the model that may only be apparent when performing

a sensitivity analysis (Carrera and Bastidas, 2005). Sensitivity analysis can therefore be

used to determine the direction of data collection activities that could help improving the

model results. Formally, the sensitivity of the model can be expressed using a Taylor series

expansion of the explicit function (McCuen, 2003):

O f F1 F2 Fn (6.30)

where O is the model output and Fi are the factors that influence O. The sensitivity S is

derived from the incremental change in O:

S
O

Fi
(6.31)

Given the complexity of hydrologic models, Equation 6.31 is most commonly solved by

factor perturbation by incrementing Fi by Fi and computing the resulting change in the

solution O. Formally, the sensitivity S is given by

S
O0

Fi

f Fi Fi Fj j i f F1 F2 Fn

Fi
(6.32)

Despite being a simple and direct method, this individual parameter (or one dimensional)

sensitivity analysis has the disadvantage of being calculation intensive if a number of differ-

ent input data sets are varied. Furthermore, it ignores the interactions among model input

data and parameters.

6.7.2 Uncertainty Analysis

A number of approaches to assess the uncertainty of a model and to assign likelihood val-

ues to model predictions have been developed. Most commonly, these methods are based

on Monte Carlo techniques that are based on randomly sampling the parameter space and
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a comparison of observed and predicted values. The Generalized Likelihood Uncertainty

Estimation (GLUE) is the most popular of those methods7 (Wagener et al., 2004) and will

be briefly described here.

Based on the observation that there is no unique set of parameters and several models can

lead to equally acceptable representations of observed natural processes, Beven and Binley

(1992) have introduced the concept of equifinality and proposed a formalized method to

quantify uncertainties in hydrological predictions. The GLUE procedure is based on making

a large number of model simulations with different sets of randomly chosen parameter values

(assuming that lower and upper limits for each parameter can be specified) and assigns a

likelihood for each parameter set being a simulator of the system based on the comparison

of simulated and observed data. The likelihood is quantitatively described by goodness-of-

fit measures such as the criteria described in Chapter 6.6, as long as they monotonically

increase with model performance. The likelihood values are rescaled such that the sum of all

likelihood values equals unity. The likelihood measure is then used to confine the parameter

space such that acceptable sets of model predictions can be evaluated at each time step.

Prediction bounds can then be computed by calculating the weighted cumulative distribution

function of a predicted value.

The result is is an evaluation of the model results for each time step and a likelihood for each

simulated value that reflects the uncertainties in the model as well as the uncertainties in the

input data sets.

7An overview of other methods is given in Gattke (2006)
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Human Interventions

7.1 Introduction

Based on the objectives for a macroscale hydrological model outlined in Chapter 1.2, this

chapter describes a model that explicitly accounts for human interventions in the water cy-

cle. The model is implemented in the recently developed modeling Framework for Modeling

of Aquatic Systems (FrAMES; Wollheim et al. (2008)), which was designed to enable the

application of coupled hydrological/biogeochemical models at scales ranging from regional

(grid cell size in the range of a few hundred meters) to global (grid cell size ranging from 6

min to 30 min), operating at a daily time step. It is built around the existing WBM (Chap-

ter 6.3) with some substantial modifications and will be referred to as WBMplus. The main

modifications encompass two modules: (1) An irrigation water module that models the inter-

actions of irrigated areas with non-renewable and renewable water resources (Chapter 7.3),

and (2) a module that simulates the alterations of the hydrological cycle induced by reser-

voirs, including small reservoirs that are used to store water for irrigation purposes (Chapter

7.4). Furthermore, the model integrates a newly developed flow routing scheme (Chapter

7.5) that replaces the Water Transport Model (WTM) in previous versions. As the model is

run at a daily time step with most global variables having a temporal resolution of one month,

a temporal downscaling of precipitation data was implemented in the modeling framework

(Chapter 7.7). The modules for irrigation, large reservoirs, small reservoirs, and the tem-

poral disaggregation of precipitation data were developed as part of this study whereas the

horizontal water transport functionality is provided by the software framework FrAMES. A

validation of the model and an assessment of its uncertainties will be given in Chapter 8,

while applications of the model will be discussed in Chapter 9.

The water balance calculations representing the vertical water exchange between the atmo-

sphere and the land surface are performed for rain-fed and irrigated areas separately. Each

grid cell is partitioned into irrigated and non-irrigated parts, and the water budget over the

whole cell is computed as the area weighted average of the two parts. A schematic overview

of the vertical water flows in the model is given in Figure 7.1. The irrigated part of the cell

can be made up of any number of crops each having its own characteristics with regard to

crop physiology, cropping patterns and hence water requirements. Water demand is com-

puted individually for each crop type, and a soil moisture balance is calculated for each crop.

The total irrigation water demand is obtained by summing the demand over all crops. This

mosaic approach allows for a flexible integration of data sets on irrigated areas and different

crops from a variety of sources into the existing grid cell framework.
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Figure 7.1: Schematic diagram of the vertical flows in theWBMplus model showing the partitioning of

grid cells into an irrigated and a non-irrigated part. Water for irrigation can be abstracted

from local runoff storage components, rivers in the same grid cell or non-renewable re-

sources.

7.2 Rainfed Water Balance

The soil water budget in the non-irrigated fraction of the cells is not changed compared to

the original version of the WBM model. It is fully described by Equation 6.2, explained in

the previous chapter.

7.2.1 Snowpack

WBMplus implements an improved snowpack simulation over the previous version. The

snowpack is calculated uniformly over irrigated and non-irrigated areas. Precipitation is

considered snow if the daily mean air temperature is below a snowfall threshold SF [ C] and

rain above that threshold. The snow accumulates during the snowing period without allowing

sublimation. During the melting periods when snow is on the ground and the temperature is

above freezing, the snowmelt SM[mm] is computed as function of mean daily temperature

Tm [ C] and daily rainfall P [mm] (Willmott et al., 1985):

SM 2 63 2 55 Tm 0 0912 Tm P (7.1)

7.3 Irrigation Water Demand

7.3.1 Introduction

As described in Chapter 2.5, irrigation water demand shows a considerable variability over

time as a result of crop growth and senescence. Furthermore, different crop physiological

properties, cropping patterns, and growing season length for different crops can significantly
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vary, and those characteristics need to be considered when modeling irrigation water abstrac-

tions. Instead of assuming a constant crop water demand throughout the growing season

(Hanasaki et al., 2008), the approach implemented here takes into account time varying de-

mand and computes crop (evaporative) water demand for each crop separately depending on

the crop’s physiological characteristics and the growing season length. Before the method

for estimating crop water demand for individual crops is described, the following section

summarizes the partitioning of the irrigated part of the grid cell and the onset of the growing

season.

7.3.2 Modeling the Cropping Pattern

The distribution of crops in the irrigated part of the cell is based on globally available data

sets showing the spatial distribution of crops such as the data sets discussed in Chapter 4.8.2.

A simple scaling procedure is applied to each irrigated grid cell to determine the fraction of

a given crop CFi in the grid cell

CFi
CRi

CRi
(7.2)

whereCRi is the fraction of the crop related to the cropland layer. As the cropland data layers

and the global irrigated area maps are derived from entirely different data sources, cases may

occur where a grid cell is designated as irrigated but no cropland is reported in the cropland

data set. For example, when the crop distribution maps by Monfreda et al. (2008) are used

in combination with the GMIA irrigated area map, this affects 10% of the grid cells. Six per

cent of the grid cells designated as irrigated in the GIAM data set do not have any cropland

according to the cropland data layer. In those cases, it is assumed that a seasonal cereal crop

is grown. The cropping intensity (i.e. the number of cropping seasons) is taken from country

statistics (Chapter 4.3) if a static irrigated area maps such as the GMIA is used and implicitly

given if GIAM is used, as GIAM reports areas for each cropping season separately (Chapter

4).

To determine the onset of the growing seasons, two approaches are generally possible. The

onset of the growing season can be taken from remotely sensed products (Chapter 3) or can

be derived from climate data sets as presented in Chapter 5.5. Phenology data products based

on remotely sensed data are available for a number of sensors and platforms and generally

have the advantage of high spatial resolution compared to approaches based on agro-climatic

data sets. On the other hand, climate based approaches have the advantage of global cover-

age, and sensitivity to variations in the climate data. The latter is particularly significant for

simulations with future climate data where changes in the phenology that have already been

observed in the last century are likely to magnify (Penuelas and Filella, 2001).

7.3.3 Irrigation Water Demand

With regard to the total water demand for a given crop it is important to explicitly take into

account the additional water required for the cropping of rice as a result of the growing

practices for paddy rice described in Chapter 2.5. To model the irrigation water demand

for each crop, the approach recommended by FAO for designing irrigation water demand
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known as the FAO-56 method (Allen et al., 1998) was implemented. Daily values of crop

evapotranspiration ETc [mm] are calculated by multiplying the evapotranspiration ET0 [mm]

from a reference surface by a dimensionless crop coefficient kc:

ETc kcET0 (7.3)

Evaporative crop water demand is computed for each crop separately and the total demand

is computed as the area weighted sum for all crops.

The capacity of the soil to retain water is parametrized as the total available water TAW

[mm] that is defined as the water that can be held against the gravitational forces and the

point below which it cannot be extracted by crops, multiplied by the rooting depth Zr [m]:

TAW FC PWP Zr (7.4)

where FC and PWP represent the soil water content at field capacity FC and permanent

wilting point PWP and are given in m3 m3 and TAW is the total available water in meters.

Although water is theoretically available until PWP is reached, the crop will experience

difficulties in quickly enough extracting the water to meet the evaporative demand. To avoid

water stress, irrigation water must therefore be applied before TAW is depleted. The fraction

of TAW that can be extracted without suffering water stress is the readily available water

RAW and is given by (Allen et al., 1998):

RAW pTAW (7.5)

The dimensionless depletion factor p is a function of the evaporation power of the atmo-

sphere and differs from one crop to another. Values for p range between 0.3 and 0.7 and are

given, for example in Allen et al. (1998). Expressed as depletion, the daily soil water balance

in the irrigated part of a grid cell on day i is given by

Dr i Dr i 1 P RO i Inet i CRi ETc i DPi (7.6)

where

Dr i mm = root zone depletion at the end of the day

Dr i 1 mm = root zone depletion at the previous day

Pi mm = Precipitation

ROi mm = Surface runoff

Inet mm = Net irrigation depth that infiltrates the soil

CRi mm = Capillary rise from the groundwater

ETc i mm = Crop evapotranspiration

DPi mm = deep percolation

Neglecting RO,CRi and DPi, Equation 7.6 is simplified to

Dr i Dr i 1 P Inet i ETc i (7.7)

where Inet i [mm] is the net amount of applied irrigation water. Irrigation is required when

Dr i RAW and the net irrigation depth should be smaller than or equal to the root zone

depletion to avoid deep percolation losses (Ii Dr i), so that the depletion following an irri-

gation event is zero. Figure 7.2 illustrates the soil water balance and the development of the

root zone depletion after precipitation or irrigation events.
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Figure 7.2: Development of the soil moisture (expressed as depletion) after precipitation and irriga-

tion events after Allen et al. (1998)

Water Abstractions for Paddy Rice

The crop coefficient method described above is generally appropriate for estimating the crop

water requirements of all non-rice crops. The agricultural practices carried out when growing

rice outlined in Chapter 2.5.3, however, require an additional amount of water for irrigated

paddy rice. The variables that control this additional water demand are the depth of the

water layer WL [mm] and the daily rates of percolation DP [mm], seepage S [mm], and the

preparation of the land SAT [mm]. Preparation of the land starts one month before sowing

and usually involves flooding of the fields to make ploughing easier and varies greatly among

regions. The total water demand for rice crops is therefore given by (Brouwer et al., 1989)

Inet ETc SAT S DP WL P (7.8)

where ETc [mm] is the crop water requirement for rice computed using the method described

above. Evapotranspiration for paddy rice in the initial stage is equal to the evaporation from

standing water. Allen et al. (1998) recommends kc values ranging from 1.0 to 1.2 depending

on local climate. Percolation refers to the flow of water below the root zone while seepage

is the lateral flow of water under the soil surface. Because both loss terms are difficult to

measure in the field, they are often considered as one loss term SP (Tabbla et al., 2002).

Both,WL and SP vary greatly with climatic region, agricultural management practices, and

soil type. Simmers (1997) notes that typical recharge water losses in flooded rice irrigation

are 10 to 15 mm d 1, of which 2 mm per day are typically lost as vertical flow through

the plough layer and the remainder through the bunds. Typical values for SP in Asia range

from 1 5 mm d 1 in heavy clay soils to 25 30 mm d 1 in sandy and sandy loam soil

(Tabbla et al., 2002). Brouwer et al. (1989) recommend values between 2 mm d 1 for heavy

soils, 8 mm d 1 for light soils and 5 mm d 1 on average. However, even values of more

than 20 mm d 1 may be reached under unfavorable conditions (Tuong and Bhuiyan, 1999).

Frolking et al. (2006) used the sand:clay ratio derived from FAO’s soil map of the world to

model percolation rates in India. They assumed a daily percolation rate of 20 mm d 1 for the

highest ratio (8.9) and and rate of 1 mm d 1 for the lowest ratio (0.1) and used a country-wide

mean value of 4.7 mm day 1. For the present study, percolation rates for paddy rice were

estimated by assigning percolation rates between 2 and 8 mm d 1 to soil drainage classes in
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FAO’s soil map (Chapter 5.6) and computing a rice-area weighted average percolation rate

for each grid cell (Table 7.1).

Table 7.1: Estimated daily percolation rates for different soil drainage classes

Soil Drainage Class Daily Percolation [mm]

excessively drained 8

extremely drained 7

well drained 6

moderately well drained 5

imperfectly drained 4

poorly drained 3

very poorly drained 2

The water layerWL is typically maintained around 50 to 100 mm and is kept until terminal

drainage (1-2 weeks before harvesting). Rice grown under traditional practices in medium

to heavy textured soil in Asia requires about 150 to 200 mm for land preparation and 50 mm

for growing the rice seedlings in the nursery (Guera et al., 1998; Brouwer et al., 1989). In

this study, a water layer of 50 mm was assumed for the length of the growing season until

terminal drainage two weeks before harvesting.

7.3.4 Water Withdrawal and Return Flows

The amount of water that needs to be abstracted from groundwater and surface water sources

needs to be higher than the net irrigation water demand to account for losses in the irriga-

tion system. Such losses include evaporation and percolation from canals, pipelines, over-

irrigation (percolation out of the root zone), and other losses. The gross irrigation water

demand Igross [mm] is obtained by dividing the net irrigation demand with the efficiency of

water use E [-].

Igross
Inet i

E
(7.9)

where Ee f f is the project efficiency (Chapter 2.6) for which global estimates are available on

the country scale. Estimated values for Ee f f for a number of world regions are listed in table

A-3 in the Appendix. While it is sufficient when computing irrigation water requirements to

just consider those losses by a single efficiency factor, it is important to consider the ’sink’ for

those losses in a water balance model as they partly return from irrigated areas as return flow

and are available for irrigation downstream. The low efficiencies found in irrigation projects

around the globe are typically a result of evaporation and percolation losses in canals, ponds,

diversions etc. In paddy rice fields, a considerable amount of water percolates into the root

zone and results in aquifer recharge. However, as the quality of the recharging water is

deteriorated, this simultaneously provides a resource benefit and a pollution hazard (Foster

and Chilton, 2003) that needs to be adequately addressed when modeling water demand for

irrigation and the interactions to available water. The amount of water that is returned from

the cultivated area to the abstracted areas depends on a number of different factors including
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type of irrigation system, crops types, soil conditions, and many others. The coefficient

of return flow can vary from 50% for rice crops to close to 0% when higly efficient drip

irrigation is used. Based on field data and soil charactereistics, Dewandel et al. (2007) found

return flow coefficients varying at the watershed scale from 51% in the rainy season and

24% for summer vegetables while Kim et al. (2009) found 25% of the water from irrigated

rice fields returning to streams, canals, and groundwater. Using a modelling approach with

regression trees, Vijayalakshmib (2009) found return flow coefficients varying between 3%

and 45% depending on soil conditions for rice cropping systems in India. Clearly, the return

flow coefficients are controlled by the fraction of rice area from which the percolation rates

are relatively well known. In this study, it was assumed that 10% of the total losses (i.e. the

difference between gross and net water demand) returns to the groundwater pool in addition

to the amount of water that percolates from rice areas at a constant rate. This value reflects

the lower return flow rate for non-rice crops and the percolation from rice areas that are

explicitely accounted for by the daily percolation rates.

7.4 Reservoirs

7.4.1 Introduction

The implementation of reservoir operations inWBMplus distinguishes two kinds of impound-

ments: (a) large reservoirs for river flow control that directly alter the discharge in river chan-

nels (typically with a capacity of 0 5 km3 or larger1 and (b) small reservoirs for local water

management that act as an additional storage pool providing water resources for irrigation.

Large river flow control reservoirs are represented explicitly by their position in the simu-

lated river network, and their impact on discharge is expressed via flow regulation functions

that calculate the outflow at the reservoir location as a function of inflow and reservoir stor-

age. Small water management reservoirs are expressed as lumped storage within grid cells

that withhold some of the runoff generated on the non-irrigated portion and release it later to

satisfy irrigation water demand.

7.4.2 Large Reservoirs

Storage reservoirs provide one of the most effective tools to minimize discrepancies of sup-

ply and demand over space and time. The purposes that reservoirs serve range from hy-

dropower generation, water supply, irrigation water supply, recreational uses, to flood con-

trol. Each of such reservoir purposes imposes some constraints on the operation policy of the

reservoir. Mathematically, the basic problem of reservoir operation under deficiency condi-

tions is to find a relationship between storage S, demandD, and the reliability of the reservoir

R (Nagy et al., 2002):

S fs D R (7.10)

that is dependent on the reservoir inflow I and the operation policy of the reservoir. The reser-

voir storage equation 7.10 can be solved using deterministic, stochastic and hybrid methods.

Model parameters are usually derived from historical streamflow records, as a function of

1The threshold of 0 5 km3 is based on the data set of geo-registerd large reservoirs describded in Chapter 5.7.4

69



7 A Macroscale Model Accounting for Human Interventions

the reservoir purpose and can also be derived for multiple reservoirs simultaneously (Brass

and Schumann, 2003). This subchapter is aimed at introducing a simple reservoir operation

model that is based on reservoir capacity, and inflow to the reservoir. Its parameters were

determined based on time series of operational data for a subset of 29 of the geo-registered

reservoirs described in Chapter 5.7.4. Before the development of this model is discussed, it

is necessary to discuss the characteristics of the subset of reservoirs with regard to the total

population of registered reservoirs.

Reservoir Characteristics

Monthly time series of reservoir release, inflow, and storage was available for 29 reservoirs

globally2, with an average length of recording of 290 months and a median length of 359

months. A list of available records for those reservoirs is given in table A-4 in the Appendix.

The maximum reservoir capacity for the selected reservoirs ranges from 0.017 km3 to 150

km3 and is 14.42 km3 on average (median 4.36), compared with a range of 0.5 km3 to 204

km3 (mean 7.28 km3, median 1.92 km3) for the 661 reservoirs in the ICOLD data set. These

differences in the capacity of both reservoir distributions lead to differences in the residence

time distributions.

Figure 7.3 shows the distribution of residence time values for the 29 reservoirs and the data

set of all registered reservoirs. Whereas the mean value of the 29 reservoirs (1.1) is much

smaller than the mean value for all reservoirs (2.09), general distribution of residence time

is similar for both data sets3.

The larger mean values for the entire data set can largely be explained with biases aris-

ing from registered reservoirs with a multi-year capacity such as the Lazaro Cardenas (El

Palmito) in Mexico with a residence time of more than 50 years, and the Marimbondo in

Brazil with a residence time of 23 years4. The distribution of residence time values, with a

majority of values below one year shows that most reservoirs were built to change the sea-

sonal pattern of river flow within a year rather than to balance multi-year flow patterns by

carrying over stored water from one year to another. With regard to the main reservoir pur-

poses, the reservoir set represents a wide range of purposes (9 reservoirs are mainly operated

for hydropower purposes; 10 for irrigation; 8 for flood control; 1 for water supply, and 1 for

recreational purposes) that is comparable with the range of reported reservoir purposes in the

registered set of reservoirs (Chapter 5.7.4).

2Out of these reservoirs 26 are located in North America, 2 in Thailand, and 1 in Ghana (Table A-4 in the

Appendix)
3To formally test if both data sets come from the same population, a nonparametric, one-sided Mann and

Withney test was performed and the null hypothesis H0 that both populations have the same reservoir

residence time was accepted. The test statistics were U’ = 8573 and z = 0.9629
4This calculation is based on the storage capacity reported by ICOLD and does not consider dead storage

capacity which is not reported in this database
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Figure 7.3: Distribution of residence time (computed as reservoir capacity over mean annual inflow

for the period 1998-2002) for the subset of reservoirs with operational data and the entire

set of geo-registered reservoirs

Observed Reservoir Operation

The observed monthly flow and release patterns were analyzed with respect to the wet season

(defined as periods where inflow is greater than long-term mean inflow) and the dry season

(defined as periods where inflow is less than mean annual inflow) and release coefficients

relating reservoir release to inflow and mean annual inflow were computed. Averaged over

all 29 reservoirs, the dry season period is 253 days in one year whereas the inflow is greater

than long-term mean inflow on 112 days (Figure 7.4). The operation of reservoirs lowers wet

season flow from 159% to 117% of the long term mean and increases dry season flow from

68% of long-term mean inflow to 83% compared to the flow under natural conditions.

As the long-term release approaches the long-term inflow for most reservoirs, the inter-

annual variations in reservoir storage are small. Table 7.2 summarizes the reservoir release

with respect to inflow and long term mean inflow for all reservoirs and shows descriptive

statistics of those relationships. Despite a relatively low inter quartile range of release co-

efficients for all reservoirs, there is a considerable variation of release coefficients reflecting

the wide range of reservoir purposes, reservoir capacity, climate condition, and other factors

affecting the operation policy.

It can be assumed that the variations in reservoir release with respect to inflow in dry and

wet seasons are partly dependent on the residence time of the reservoir. Reservoirs with

residence times greater than one year carry over water from one year to another and will tend

to release less water during the wet season. Conversely, reservoirs with a larger residence

time can release more water during the dry season in a given year. To test the assumed

relationship between release, inflow and residence time of the reservoir, release coefficients
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Figure 7.4: Long-term inflow (grey line) and release (black line) for all 29 reservoirs during wet and

dry seasons, and long-term season average flows, indexed to the long-term mean inflow

(100). Q = Inflow in the reservoir, R = observed reservoir release

Table 7.2: Selected statistics of reservoir release coefficients for wet and dry season flows based on

operational reservoir data for 29 reservoirs. R = Release, Q = Inflow, wet and dry denote

periods where inflow is below and above long-term mean inflow

Rdry Qdry Rwet Qwet Qdry Qm Qwet Qm

Average 1.59 0.68 0.83 1.17

Std Dev 0.72 0.23 0.13 0.29

Minimum 0.98 0.19 0.61 0.46

1st Quartile 1.13 0.55 0.73 1.08

Median 1.37 0.68 0.83 1.20

3rd Quartile 1.68 0.85 0.92 1.32

Maximum 3.46 1.00 1.11 1.89
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were plotted as a function of residence time. The results of this analysis are shown in Figure

7.5. Simple linear models that predict seasonal reservoir release are highly significant and

Figure 7.5: Observed relationship between residence time and release coefficients during wet and

dry periods and results of a linear regression model to predict those coefficients. Main

purpose from ICOLD database; I = Irrigation, H = Hydropower, C = Flood Control, S =

Water Supply

show a moderate correlation (Figure 7.5). A linear model that predicts wet season release as

a function of residence time explains 58% of the variation in observed release. The linear

relationship between residence time and dry season release explains 34% of the variation

in relative dry season release. Although the plots in Figure 7.5 may suggest a different

relationship for reservoirs that primarily serve irrigation purposes, the number of available

data sets is too small to derive robust relationships that would take into account different

reservoir purposes.

Reservoir Operation Model

To develop a simple model that predicts release from a reservoir, the observed reservoir oper-

ation patterns were parameterized so that the model predicts reservoir outflow independent of

the purpose based on inflow/capacity relationships for wet and dry season flows separately.

Formally, the model predicts release from a reservoir Rt [m3s 1] as:

Rt
Qt Qt Qm

Qt Qt Qm
(7.11)

where the parameters [ ] and [ ] are release coefficients and Qt [m3s 1] is the time

varying inflow to the reservoir. Qm [m3s 1] is the long-term mean inflow.
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Two approaches are generally possible to determine the release coefficients and based on

the observed reservoir operation. They can be static and based on observed release patterns,

such as the statistical values reported in Table 7.2. Release coefficients can also be based on

the significant relationship between reservoir capacity and reservoir release described above.

In this case, the reservoir release (Equation 7.11) is written as

Rt
0 19B 0 88 Qt Qt Qm

0 47B 1 12 Qt Qt Qm
(7.12)

where B [a] is the residence time of the reservoir. To test this reservoir release model, pre-

dicted reservoir release was compared with the observed release, and the performance mea-

sures discussed in Chapter 6.6 were used to assess the model performance. If Equation 7.12

is used to predict reservoir release for all reservoirs, the d-statistics vary between 0.29 and

0.97 and are 0.68 on average. The Nash-Sutcliffe efficiency ranges from -1.2 to 0.87 and is

less than zero for 12 of the reservoirs and ranges between 0.04 to 0.87 with an average of

0.49 for the remaining reservoirs. Figure 7.6 shows modeled and observed time series for

selected reservoirs with a wide range of model performance ranges and residence times. De-

spite the low performance of the model when compared to observed daily values of reservoir

release, the model captures the seasonal release from reservoir reasonably well (Figure 7.7).

Sensitivity and Validation

As the parameters used to determine the release function (Equation 7.12) are based on a

limited number of observed reservoir operation, the predicted release will depend on the

reservoir data sets that were used to determine the empirical relationships. To investigate

how the sample reservoir data affects the results, the parameters and were determined

on a set of 15 reservoir data sets, randomly selected from the 29 observed reservoir data sets.

Such an approach can be considered a split sample test in context of testing hydrological

models following the notion of Klêmes (1986). The static parameters for this randomly

selected subset are = 1.56 and = 0.63 and are very similar to the results (1.59 and 0.67,

Table 7.2). When the release coefficients are computed as function of residence time, the

linear regression for wet and dry season release is weaker but still significant. The equations

are:

Rt wet 0 22B 0 96 Qt R
2 0 76 p 0 00003 (7.13)

and

Rt dry 0 0106B 1 89 Qt R
2 0 24 p 0 04 (7.14)

When the reservoir release model based on the parameters computed using these release

coefficients to model the release from the remaining 15 reservoirs, the d-statistics is slightly

lower (0.65) but the seasonal release pattern compares with the observed pattern sufficiently

well (Figure 7.8).

Summary and Conclusions

Based on observed operational data from a set of 29 reservoirs, which was representative of

the global data set of registered reservoirs with regard to the distribution of residence times,
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Figure 7.6: Observed and modeled release from selected reservoirs using the empirical model with

adjustment for residence time. Mean annual inflow is indicated by the straight lines,

inflow to the reservoir by the red line

Figure 7.7: Modeled and observed release from reservoirs compared to the inflow to the reservoir

(natural flow) for dry season (left) and the wet season (right)
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Figure 7.8: Modeled and observed release from reservoirs compared to the inflow to the reservoir

(natural flow) for wet season (left) and the dry season(right) based on the split sample

test

a simple reservoir operation model was developed to predict reservoir release for wet and

dry seasons. The model parameterizes observed reservoir operation independent of reservoir

purpose and only is based on inflow and reservoir capacity. Compared to observed reservoir

releases the model is capable of predicting the seasonal flows, although the model perfor-

mance of monthly predicted values for some reservoirs are lower than what is typically ex-

pected for hydrological models. The split sample test indicated that the seasonal predictions

are robust with regard to the reservoir data. As the model does not require additional data

on individual reservoirs, it can be applied to reservoir operation in global models without

modifications.

7.4.3 Small Reservoirs

Local ’water harvesting’5 methods are aimed at collecting rainwater when it is available in

abundance to supply irrigated areas during low-rainfall periods. Those methods have long

been recognized as a means to increase water productivity and to reduce the risk of crop

failure by storing runoff in small farms ponds, cisterns, and other microstorage facilities.

With growing population numbers and limited land resources, those facilities are growing

in importance, particularly in arid and semi-arid regions. Downing et al. (2006) compiled a

number of statistical data sets and reported annual growth rates of those reservoirs varying

from 1-2% in the agricultural areas in the United States to more than 60% in parts of India.

Small farm tanks supply an estimated 37% of the irrigated area in the semi-arid regions of

India (Anbumozhi et al., 2001), and are of utmost importance in many arid and semi-arid re-

gions in the world. The number, distribution, and storage capacity of such storage facilities is

unknown on a global scale, and only some estimates exist. By extrapolating data from India,

Great Britain, and the U.S., Downing et al. (2006) estimated the total surface area of farm

5The term refers to a number of different methods to store water including collecting water from rooftops,

floodwater storage, and others. Bruins et al. (1986) therefore suggested using ’runoff farming’ referring to

the storage of runoff for agricultural purposes
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ponds to be around 80,000 km2. Assuming an individual area of 0.001 km2, the total number

could be as high as 80 million. The total storage volume (assuming a depth of 2 m) would

be about 154 km3, representing 3% of the storage volume of the registered large reservoirs

(Chapter 5.7). Although the total storage volume is insignificant at the global scale, given

their importance in regional water management, they need to be accounted for in hydrologi-

cal models as they provide an essential tool to secure water availability for food production.

A simple model was therefore implemented to account for the storage and release from small

reservoirs. Small reservoirs (SR’s) in WBMplus are assumed to collect part of the estimated

surface runoff from the non-irrigated part of the grid cell and partially supply the estimated

irrigation water requirement Igr in the irrigated fraction of the grid cell.

The amount of surface water that can actually be collected depends on a number of local con-

ditions including soil texture, land use, and topography, as well as socio-economic factors

(Kahinda et al., 2008; Qadir et al., 2007) and those criteria are mostly site specific (Rock-

ström, 1999). In accord with how runoff harvesting systems are typically designed in the

field (Srivastava, 2001), the accumulated capacity of small reservoirs in each grid cell was

constrained by the the fraction of surface runoff that can be collected and the total amount of

irrigation water needed in each grid cell in a typical year:

Csr min Xr Igross (7.15)

where Igross[mm] is the estimated irrigation water demand (Equation 7.9) and is an effi-

ciency factor that describes the fraction of the non-irrigated part of the grid cell from which

runoff can actually be collected. The parameter controls the amount of excess water Xr
[mm] that runs off on the surface (and can be collected) and is globally set to 0.5 (see Equa-

tion 6.8). The most appropriate design parameter to determine is the relationship between

the catchment area for a reservoir at which runoff is collected and the cultivated area supplied

by an individual reservoir. This parameter is commonly referred to as the catchment com-

mand area ratio (CCR) (Critchley et al., 1991). The design objective for small reservoirs is to

minimize CCR, as higher values lead to high evaporation and percolation losses that render

small reservoirs less effective and less economical. This ratio strongly depends on the sea-

sonal variability of rainfall and storage capacities. Values for CCR between 1.0 and 5.0 are

generally considered appropriate but values ranging between 17 and 30 with an average of 20

have been reported (Boers and Benasher, 1982). As the factors controlling the design value

are unknown at the local scale, the model simulations are carried out for different values

of CCR that are set constant globally and are varied between zero (no small reservoirs) and

20. Implications of those variations will be discussed in 8.2.5. Evaporation [mmd 1] from

small reservoirs will depend on the actual type of reservoir used to store the water (closed

tanks, open surface reservoirs, covered reservoirs, etc.) and is computed (Martinez-Alvarez

et al., 2008) as as ET ET0 where is set to 0.6 (Arnold and Stockle, 1991). The depth

of small reservoirs is assumed to be 2 m globally which is a typical depth of small reservoirs,

for example in the semi-arid regions of India (Gunnel and Krishnamurthy, 2003; Mialhe

et al., 2008).

77



7 A Macroscale Model Accounting for Human Interventions

7.5 Horizontal Water Transport

The horizontal water transport in WBMplus is allowed only through river systems. For the

present study, the monthly routing system in the previous model version has been replaced

by a routing scheme that uses a Muskingum type scheme and estimates the necessary pa-

rameters based on river bed geometry. FrAMES offers the basic skeleton for flow routing

along gridded river networks (Döll and Lehner, 2002; Oki and Sud, 1998; Vörösmarty et al.,

2000c) that propagates water downstream where the actual flow simulation can be carried out

by different methods. For the present study, a Muskingum type solution (McCarthy, 1938)

of the Saint-Venant flow equations was implemented that estimates the outflow Qt 1
j 1[m3s 1]

as a linear combination of the inflow Qtj and the outflow from the previous time step and the

inflow in grid cell j of the current time step t :

Qt 1
j 1 C0Q

t 1
j C1Q

t
j 1 C2Q

t
j (7.16)

The sum of the unit-less coefficients C0, C1, and C2 equals one, reflecting the conserva-

tion of volume in the river routing system. As opposed to the traditional Muskingum flow

routing where model parameters have to be calibrated using inflow and outflow hydrograph

data, the method implemented in WBMplus determines parameters from channel character-

istic features, expressed as the cell Courant number C and cell Reynolds number D (Ponce

and Yevjevich, 1978):

C0
1 C D

1 C D
(7.17)

C1
1 C D

1 C D
(7.18)

C2
1 C D

1 C D
(7.19)

which are calculated as:

C Uw
t

l
(7.20)

and

D
Qmean

WmeanS0Uw l
(7.21)

where Uw [m3 s] is the characteristic speed of the flood wave propagation, l[m] is the

river cell length, t[s] is the time step length, S0 [-] is the riverbed slope, Qmean [m3 s] and

Wmean[m] are mean annual discharge and the corresponding flow width. Considering the

Manning or the Chezy flow equation and approximating the riverbed shape with the power-

function

Y aWb (7.22)

where Y and W are channel depth and width[m], is a shape coefficient and is a shape

exponent, one can demonstrate that the flood wave velocity Uw[m3 s] is strictly a function

of the flow velocityU [m3 s] and the shape exponent b[-]:
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Uw U 1
bp

b 1
U (7.23)

where p is the exponent of the hydraulic radius according to the Chezy or Manning equations

(1 2 or 2 3 respectively). The power function approximation for the riverbed geometry is

consistent with empirical at-a-site discharge-depth, and discharge-width relationships (Ding-

man, 2007). The reference widthWmean and depth Ymean at mean discharge are calculated by

empirical equations:

Wmean Qmean (7.24)

and

Ymean Qmean (7.25)

where , , , and are empirical constants (set to 0.25, 0.40, 8.0, and 0.58 respectively

(Knighton, 1998).

7.6 Model Integration and Water Sources for Irrigation

The irrigated and the non-irrigated part of the grid cell interact in two ways; irrigation water

applied in the irrigated part lowers the stocks in the non-irrigated part and water returning

from irrigated areas as return flows increase the runoff detention pool in the non-irrigated

fraction of the grid cell.

The estimated water requirement for irrigation calculated using the method described in

Chapter 7.3 is met by withdrawing water from the non-irrigated part of the grid cell, as

depicted in Figure 7.1. The water sources for irrigation are determined by abstracting the

computed demand from the stocks in the non-irrigated part in a given order until the demand

is met. Conceptually, the water is first withdrawn from locally stored water resources (small

reservoirs), and if those resources are not available or depleted, from groundwater resources

(Dr in Eq. 6.8). If the required amount of water is greater than those sources, water is

withdrawn from river discharge flowing in the same grid cell (Chapter 7.5). In cases where

both surface water resources and renewable groundwater resources are depleted, irrigation

water is still applied assuming that it is coming from the mining of groundwater resources

(Chapter 6.4.1) that are not connected to the hydrological cycle. Figure 7.9 depicts the

priorities of water abstraction from different sources to meet the estimated water demand in

one grid cell.

7.7 Temporal Downscaling of Climate Data

Most globally available precipitation data sets (see Chapter 5) have a temporal resolution of

one month. However, the non-linearities in system behavior in hydrological processes are

particularly relevant with respect to precipitation and make daily precipitation data a neces-

sity for ecosystem modeling (Friend, 1998). Two approaches to generate daily precipitation

data sets have been used in this study. The first approach is to distribute the monthly val-

ues using a daily precipitation fraction derived from global daily precipitation data sets such
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Figure 7.9: Flowchart showing the withdrawal of the modeled water requirement from different

sources in one grid cell

as the one degree daily (1DD) precipitation product from GPCP (Chapter 5.2.3). This ap-

proach maintains the spatial covariance of precipitation while applying monthly totals from

observed data with a longer observation period than the satellite record of GPCP.

The second approach is to stochastically generate daily precipitation data using a weather

generator procedure for individual grid cells and thereby loosing any spatial covariance in

daily precipitation of neighboring grid cells. The most commonly used models for gen-

erating daily precipitation are two-part models that first model the occurrence of wet and

dry days and then assign an amount of precipitation to a wet day (Castellvi et al., 2004).

Traditionally, Markov Chains are incorporated to model the sequence of wet and dry days.

Although higher order Markov chains have been used to model the wet and dry day se-

quence, first order Markov chains are generally considered to be adequate for most locations

although higher order models may be required at specific climate conditions (Srikanthan and

McMahon, 2001). The procedure implemented inWBMplus is described in detail in Castellvi

et al. (2004) and is based on the WGEN weather generator. The WGEN weather generator

(Richardson, 1981)6 uses a two-state, first-order Markov model and describes the probability

of a wet day on day i given that the day i 1 was wet, and the probability of a wet day i given

6The method described here is sometimes referred to as the ’short method’ of the WGEN weather generator
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a dry day on day i 1:

Pi D W 1 Pi W W (7.26)

Pi D D 1 Pi W D (7.27)

where Pi D W and P D D are the probabilities of a dry day given a wet day on day i 1,

and the probability of a dry day on day i given a dry day on day i 1. As the transitional

probabilities are conditional, the following expression holds (Castellvi et al., 2004):

fwet P W D 1 fwet P W W fwet (7.28)

where fwet is the fraction of wet days within the modeling period. Once the estimates of

the transitional probabilities P W W and P W D are determined, the occurance of a rainy

day is simulated by comparing a uniform random deviate u in the interval [0,1] with the

transitional probabilities. A day is classified a dry day if u is less than or equal to P W W

or P W D (whichever is appropriate); otherwise the day is defined a wet day (Geng et al.,

1986). To determine the transition probabilities, a historic record of daily rainfall measure-

ments is required. However, by analyzing rainfall data from various locations around the

world, Geng et al. (1986) found that the transitional probabilities of a wet day followed by

a wet day tends to be greater but parallel to the transitional probabilities of a dry day fol-

lowed by a wet day. This relationship leads to a linear relationship between the transitional

probabilities and the fraction of wet days within a month. Geng et al. (1986) proposed the

following simple equations to estimate the transitional probabilities:

Pi W D 0 75 fwet (7.29)

Using the marginal probability equation (Eq. 7.28), P W W can be estimated as

Pi W W 0 25 Pi W D (7.30)

This simple relationship explains more than 96% of the total variation among transitional

probabilities in time and space (Geng et al., 1986) and greatly simplifies the process of es-

timating transitional probabilites without long daily time series of precipitation. The second

part of the model is the implementation of a suitable distribution function for the simulation

of precipitation on days that have been defined wet. Commonly used distribution functions

for the distribution of precipitation include the exponential function, the Weibull distribu-

tion, and others. Richardson (1981) found that the gamma distribution generally fits well to

observed daily precipitation amounts. The probability density function of the two-parameter

Gamma distribution is given by :

f p
p 1e p

(7.31)

where p is a random variable of daily rainfall and and denote the shape and scale

parameters of the Gamma distribution. Parameter is dimensionless and usually less than

one while parameter has units of precipitation with a wide range of possible values. The

value of determines to what extent extreme values of precipitation can occur while

influences the proportion of small amounts of precipitation (Geng et al., 1986). Since the

rainfall distribution is usually positively skewed, the parameter of the density function is
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closely related to the amount of rainfall per wet day, Pwet . Geng et al. (1986) found that the

simple linear relationships

2 16 1 83Pwet (7.32)

and

Pwet (7.33)

explain more than 96% of the total variation of precipitation in time and space for a wide

range of climate conditions. Daily rainfall values can thus be generated using only four

parameters (two transitional probabilities and two gamma distribution parameters) that are

estimated from the amount of rainfall per month and the fraction of wet days per month.

Both rainfall amount and fraction of wet days are available globally for a number of years in

databases such as CRU (Chapter 5.3). Despite its simplicity, the method described above has

been widely used in larges-scale hydrological modeling (Li et al., 2005) as well as regional

crop modeling (Hartkamp et al., 2004).

Stochastically generated rainfall using the method described above does not necessarily re-

produce the monthly totals of recorded precipitation RM . Many simulations may therefore

be required to reproduce the monthly target value within an acceptable range of accuracy. It

may be necessary to constrain the generation such that the sum of the generated daily values

RM exactly matches the recorded values RM . Hansen and Ines (2005) suggested an iterative

procedure that repeatedly generates a time series of rainfall for a given month until RM devi-

ates less than a threshold T of RM. The generated time series of daily values is then rescaled

to exactly match the target value. Since the sum of the generated values is not known in ad-

vance, only a constant multiplier can rescale the generated values to match the target value.

The rescaling is done by multiplying each generated value by RM RM . This iterative proce-

dure avoids large discontinuities due to the rescaling process while maintaining the statistical

properties of the observed rainfall time series.
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8.1 Introduction

Validation is generally understood as an assessment of accuracy or validity of a model us-

ing independent, reliable data. Klêmes (1986) proposed a hierarchical approach for testing

hydrological models using four basic schemes (split-sample, proxy-basin, differential split-

sample, and proxy-basin differential split sample). While such a procedure is very valuable

for validating hydrological models at individual river basins, the restrictions with regard to

observed discharge data at a global scale (Chapter 5.7.3) limit the application of such a for-

malized procedure for continental and global water balance models.

The validation of the newly developedWBMplus model involves a validation of the irrigation

water simulations and simulated discharge against observed data and is performed both for

individual river basins and globally. These assessments are made for model simulations

with the irrigation and reservoir module turned on (’disturbed’ conditions) and for model

predictions ignoring irrigation and reservoir operation (’natural’ or ’pristine’ conditions).

The uncertainty related to model parameters and input data sets is assessed by sensitivity

studies of model predictions with regard to input data and Monte Carlo simulations of model

parameters.

The results of the model simulations described in the following section were performed using

the CRU TS data (Chapter 5.3) and the Hamon function (Chapter 5.4.3) to compute potential

evapotranspiration. Geospatial data sets of irrigation efficiency and irrigation intensity were

derived from national statistical data provided by AQUASTAT (2008) (Chapter 4.3). The

distribution of crops in irrigated areas was modeled using the cropland data layer compiled

byMonfreda et al. (2008) (Chapter 4.8.2). The 175 crops in this data set were aggregated into

four crop groups: seasonal, (paddy) rice, vegetables, and perennials, and average kc values

for those crop groups were computed from Allen et al. (1998). This data was aggregated

to 30-min resolution and crop areas were distributed proportionally over the irrigated areas.

If grid cells were designated as irrigated but had no cropland area, the area was assigned

a ’seasonal crop’ (the lowest water requirement). The onset of the growing season was

estimated using the climatological method described in Chapter 5.5.
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8.2 Irrigation Water Use and Withdrawal

8.2.1 Global, Long-term Withdrawal

Very few attempts have been made to model irrigation water demand on a global scale.

Among the few studies is the WaterGAP model (Döll and Siebert, 2002), that has been de-

scribed in Chapter 6.3. Haddeland et al. (2006b) have made some regional assessments

for Asia and the USA by applying a modified version of the VIC model (see Chapter 6.3),

and Hanasaki et al. (2008) have used a simple irrigation water module to model irrigation

water demand and withdrawal globally at a spatial resolution of 1°. The WaterGAP calcu-

lations are based on climatological drivers for the period 1961 to 1999 (CRU data), while

VIC was run with daily atmospheric data for the period 1980 to 1999. Both studies relied on

the GMIA as the irrigation base map. The estimated values are aggregated per country and

are also compared to independent data from statistical databases such as AQUASTAT and

the USDA agricultural statistics (Chapter 4.1). To compare modeled irrigation water with-

drawal with these data sets, the mean annual irrigation water withdrawal was computed for

the period 1963-2002 using the CRU data, assuming constant irrigated areas and constant

distribution of crops. Since irrigation area expanded significantly during this period (Pos-

tel, 1997; AQUASTAT, 2008) this analysis was not an estimate of historical irrigation water

use, but rather an estimate of the mean irrigation water withdrawal during that period. The

modeled long-term annual withdrawal is shown in Figure 8.1.

The total irrigation water withdrawal was estimated to be 3,135 km3a 1 (Table 8.1). This

contemporary withdrawal is slightly higher than previous, global-scale estimates that range

from 2,200 to 2,900 km3a 1 (Döll and Siebert, 2002; Hanasaki et al., 2008; Siebert and

Döll, 2007; Vörösmarty et al., 2005). By continents, most of the withdrawal is estimated

for Asia ( 83%), home to most of the world’s rice paddies and multiple cropping (Maclean

et al., 2002). To compare the modeled values with reported values in databases provided by

USDA and AQUASTAT the grid based values were spatially aggregated and the results of

this comparison are shown in Figure 8.2 and in Table 8.1.

Despite significant differences for individual countries, the modeled data agrees reasonably

well with country based statistics.

The estimated net irrigation water demand (1,118 km3a 1) that is used for crop evapotranspi-

ration (Inet ) is remarkably close to the estimates from Döll and Siebert (2002) and AQUAS-

TAT (2008). The largest differences betweenWBMplus estimated irrigation water withdrawal

occur in areas with a large fraction of rice where the different assumptions regarding the ad-

ditional water demand (Chapter 2.5) significantly increase the total water withdrawal. For

example, the net irrigation water requirement estimated for India is similar to the value re-

ported by AQUASTAT (2008) but the additional water for rice leads to an estimated water

withdrawal that exceeds the reported value by nearly 52% (Table 8.1).

The values of irrigation water withdrawal estimated by Döll and Siebert (2002) are gener-

ally in better agreement with the reported values of FAO AQUASTAT then those calculated

usingWBMplus. Besides the differences in the parameterization of the water demand for rice

paddies, these deviations can be explained with the differences in the model structure with

regard to the calculation of soil water storage, temporal disaggregation of precipitation, and
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Figure 8.1: Modeled long term irrigation water withdrawal for the period 1963-2002 based on GMIA

irrigation data
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Figure 8.2: Comparison of the estimated water withdrawal with reported values: Data aggregated for

159 countries and compared with data in FAO AQUASTAT (top) and data aggregated for

US States and compared with USDA statistical data

different crop coefficients used in both models. Furthermore, the Döll and Siebert (2002)

estimates are based on an earlier version of the Global Map of Irrigated Areas (GMIA) that

reported a total area of 254 million ha; this value is 8% lower than the sum of irrigated areas

in the version 3 of GMIA (275 million ha). It is important to note, however, that values on

the actual water withdrawal for irrigation in FAO AQUASTAT are known with a reasonable

accuracy only for a few world regions (Döll and Siebert, 2002) and some of those national

estimates are incomplete or grossly outdated (Gleick, 2003). It is likely that many national

totals reported to AQUASTAT are based on water use modeling (methodologically similar to

the analysis used here) and not on actual water use statistics.

8.2.2 Inter-Annual Variability

From a water resources point of view, it is not only important to quantify the amount of water

that needs to be withdrawn from aquifers and rivers on average but also to look at the inter-

annual variations of required water withdrawal in a dry year and water required in a wet year.

As dry years are generally likely to be years with reduced water supply (lower flows in rivers,

lower levels in reservoirs), this variability has implications for regional water management.

Figure 8.3 shows the variability of WBMplus modeled water withdrawal per unit area, ex-

pressed as the coefficient of variation of annual values for the period 1963-2002, for all grid

cells with irrigation (computed using the same input data as described above) and affirms the
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Table 8.1: Comparison of global estimates of net and gross irrigation water demand from national

statistics and other models [km3a 1]. Reported values for the USA are taken from USDA

(2002), FAO from AQUASTAT (2008), WaterGAP from values from Döll and Siebert

(2002), VIC from Haddeland et al. (2007). Values are reported to four significant fig-

ures

Country WaterGAP FAO(reported) VIC This study

Inet Igross Inet Igross Inet Igross Inet Igross

India 223 655 303 558 306 845

China 120 352 153 426 277 606

Egypt 42 60 29 54 21 38

USA 112 186 120 80 191 69 141

Global 1,092 2,452 1,100 2,305 1,118 3,135

Table 8.2: Mean values, 20% and 80% percentiles, and extremal values of modeled annual water

withdrawal [km3a 1] using CRU data, 1963-2002 and assuming static irrigated areas for

selected countries

Country Mean 20-80% Min-Max

India 845 820-866 801-910

China 606 583-632 540-684

Egypt 38 37-39 36-41

USA 141 133-148 125-142

Global 3,135 3,085-3,182 3,037-3,351

finding ofHaddeland et al. (2006a) for the Mekong and Colorado basins. The climate-driven

variability in estimated water withdrawal is highest in areas where rainfall typically provides

a significant fraction of crop water demand. In areas where crop growth depends almost

entirely on irrigation (e.g., Egypt), variability in estimated withdrawal is mainly a function

of evapotranspiration (and thus temperature) alone; this variability is generally small (Table

8.2). Globally, the estimated irrigation water withdrawal for the simulation period ranges be-

tween 3,037 and 3,351 km3a 1, representing variations of around 5% but can be significantly

higher for countries where the demand is generally lower and rainfall supplmenents irriga-

tion water needs. It is important to note that these caluclations do not consider limitations in

water supply.

8.2.3 Uncertainty of Irrigation Parameters (Krishna Basin)

To test the impact of variations in model parameters in the irrigation model on irrigation wa-

ter abstractions, return flow, and subsequently on discharge, river basins with a considerable

fraction of their catchment area under irrigation and a complete record of recent observed

data should ideally be selected. As the model parameters related to the parameterization of
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Figure 8.3: Variability of estimated annual water withdrawal per unit irrigated area based on CRU

climate data (1963-2002) and assuming constant irrigated areas for 24,817 grid cells

paddy rice fields are of particular importance, a considerable fraction of the irrigated area

should be under paddy rice irrigation. However, this selection is constrained by the lack of

observed discharge in most heavily irrigated river basins (see Chapter 5.7). For this study,

the Krishna river basin was selected to validate the irrigation parameters against observations

of discharge and reported irrigation water withdrawal.

The Krishna basin has 16% of its area under irrigation, so that variations in irrigation param-

eters are likely to translate to variations in modeled discharge. The irrigated area consists

of 12% rice, 14% vegetables, 9% perennials, and 65% other seasonal crops. The irrigation

efficiency and irrigation intensity (based on the country values for India) for the basin are

34 and 130%. Irrigation water withdrawal and discharge predictions were tested for their

sensitivity to the irrigation model parameters irrigation efficiency, rice ponding depth, rice

percolation, and irrigation intensity. All of these parameters are only available at the country

scale and therefore have a considerable degree of uncertainty. These values have randomly

been chosen in a range around the global mean values; irrigation efficiency from 10 to 66%,

the rice ponding depth between 10 and 90 mm, daily rice percolation between 0.5 and 3 mm,

and irrigation intensity between 100 and 200%. 5,000 simulations were run with varying

parameters and the predicted irrigation water demand and the impact on discharge simula-

tions were analyzed for the period 1995-1999. Using the country data (irrigation efficiency =

40%, irrigation intensity= 130%) for the basin, the estimated withdrawal for irrigation water

is 47 km3a 1, consistent with the 31 km3a 1 consumptive water use that was estimated by

Bouwer et al. (2006) and an estimated water use for all sectors in the basin of 47 km3a 1

in 1989 (Central Water Comission of India, 1998). As expected, predictions of irrigation

water withdrawal are most sensitive to variations in irrigation efficiency and irrigation inten-
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sity (Figure 8.4). Lowering efficiency by 50%, can lead to a more than two-fold increase in

irrigation water withdrawal. Similarily, an increase in irrigation intensity leads to a propor-

tional increase in irrigation water withdrawal. The sensitivity of irrigation water withdrawal

to parameters controlling the water demand for rice is generally weaker as only 12% of the

irrigated area are under paddy rice irrigation.

These variations in irrigation water withdrawal have implications for estimates of discharge

for which observed monthly values were available for contemporary conditions. Observed

monthly discharge data is available for the station Vijayawada (A = 251,355 km2) near the

mouth of the river. Under pristine conditions, the modeled discharge is constantly overes-

timated (mean annual flows are 148% higher than observed), particularly during low flow

periods (Figure 8.5). Including the effects of irrigation and reservoirs leads to considerably

lower discharge predictions during those periods and therefore a better fit to observations.

The mean annual discharge under disturbed conditions (averaged over all simulations) is 603

m3s 1, compared to 1,320 m3s 1 under pristine conditions and 531 m3s 1 for the observed

values during the period 1995-1999. To estimate the likelihood of irrigation parameters being

a predictor of the system, the GLUE method (Chapter 6.7) was used. Figure 8.6 shows the

d-statistics of model simulations as a function of parameter values. Despite large differences

in modeled irrigation water withdrawal, the impact of variations in irrigation parameters

on modeled discharge is generally low. Model parameters are identifiable if the likelihood

shows a distinct maximum as a function of the parameter value. Parameters that do not show

a distinct pattern with regard to model performance are therefore poorly identifiable. As can

be seen, model simulations are most sensitive to variations in irrigation efficiency and inten-

sity but the impact of variations on discharge is small. The scatterplots of parameters against

model performance suggest that d-statistics values are well constrained for efficiency values

of 25 to 30% and irrigation intensities around 130%, values slightly lower than the country

values used as default values for the simulation.

To investigate the uncertainties in the predictions of discharge arising from the parameter

variations discussed above, the GLUE method was applied to estimate the 0.05 and 0.95

percentiles of the likelihood weighted discharge values (based on the d-Statistics) at each

time step (Chapter 6.7.2). Figure 8.5 shows the GLUE estimated uncertainty in discharge

simulations based on the 1,000 best of the 5,000 simulations, measured by the d-statistics.

The 90% confidence range of the simulated discharge can be interpreted as the uncertainty

in the predictions related to variations in the model parameters. It is not related to one par-

ticular simulation result but to the likelihood weighted discharge values that could represent

a different parameter set at each time step. It is also important to note that the range does

not represent the percentiles of the discharge itself but of the likelihood weights and the cor-

responding discharge. The irrigation related uncertainty is highest during the rainy season

(starting in June) when irrigation supplements rainfall in many regions. The impact of irri-

gation on discharge during low flow periods is generally a reduction of flows; the absolute

uncertainty during those periods is low.

The return flow in the Krishna basin is primarily controlled by the efficiency value. The

rate of water returning to the sources varies from 15% for high efficiency values of 65%

to 87% assuming an efficiency of only 10%. Using the country based values, 41% of the
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irrigation water abstracted returns to the hydrological cycle, which is consistent with the

reported literature values mentioned in Chapter 7.3.4.

Figure 8.4: Scatterplot showing the sensitivity of irrigation water withdrawal estimates to variations

in parameters related to the irrigation water module for 5000 simulations

8.2.4 Global Data Uncertainty

To assess the uncertainties related to the simulated irrigation water withdrawal at the global

scale, a simple sensitivity analysis (Chapter 6.7.1) was performed. As the magnitude of the

uncertainties in irrigation water withdrawal at large scales will be dominated by variations in

the distribution of irrigated areas and climate drivers, simulations were done by combining

two different sets of climate drivers and two different geospatial data sets showing the distri-

bution of irrigated areas. To further assess the effect of variations in the agricultural data sets

on irrigation water withdrawal, other model input data was varied. The water holding capac-

ity and the daily percolation rate for paddy rice was varied by 50% and the impact of the

crop distribution was assessed by assuming that one non-rice crop is grown everywhere. The

climate-driven variability was tested using the monthly CRU TS data set (Chapter 5.2.1) and

the daily NCEP/NCAR reanalysis product (Chapter 5.2.4) for precipitation and air tempera-

ture. CRU precipitation data was stochastically downscaled to daily values using the method

described in Chapter 7.7. The distribution of crops and the onset of the growing season was

modeled as described in Chapter 8.1. The geospatial distribution of irrigated areas was taken

from the GMIA (Chapter 4.7) that is based on national and sub-national statistics and the

GIAM (Chapter 3.5.3) that is a remotely sensed product based on a variety of sensors and
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Figure 8.5: GLUE estimated uncertainty for the predicted discharge for the Krishna basins, for 1000

out of 5000 simulations (grey), observed values (circles) and model simulations under

pristine conditions (black line)

auxiliary data sets. Figure 8.7 shows the zonal averages over 0.5° latitude bins of the four

data sets. Spatial differences in the precipitation data sets and the two maps of irrigated areas

have been discussed in Chapter 5.2 and Chapter 4.7.1 respectively. Using both CRU and

NCEP weather data, the mean annual irrigation water withdrawal for the period 1963-2002

for both the GMIA and GIAM irrigation area maps, assuming constant irrigated area over

time was computed.

Results and Discussion

The combination of the two irrigation data sets and the two climate reconstruction data sets

showed substantial differences in the mean annual water withdrawal. Using the GMIA data

set, the 40-yr mean irrigation water withdrawal is 3,135 km3a 1 (see Chapter 8.2.1). If the

same map is used with NCEP climate data, the estimated irrigation water withdrawal reduces

to 2,159 km3a 1 (Table 8.3). Both values fall in the range of previously reported values using

the GMIA data set (WRI, 1998; Hanasaki et al., 2008; Döll and Siebert, 2002; Siebert and

Döll, 2007; Vörösmarty et al., 2005).

When the GIAM data set is used, the computed withdrawal based on CRU and NCEP data
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Figure 8.6: Scatterplot showing the sensitivity of discharge predictions to variations in parameters

related to the irrigation water module for 5000 simulations

Figure 8.7: Latitude profiles (0.5°bins) of irrigated area, using GIAM and GMIA data sets, and mean

annual precipitation over all land (1963-2002) for the CRU and NCEP precipitation data
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Table 8.3: Mean values of annual estimated irrigation water withdrawal globally [km3a 1] and for

selected countries based on combinations of climate drivers and irrigated area data sets

Climate CRU CRU NCEP NCEP

Irrigation Area GMIA GIAM GMIA GIAM

Global 3,135 3,847 2,159 2,724

India 845 1,696 511 1,281

China 606 755 351 423

Egypt 38 19 35 17

USA 141 122 117 96

Figure 8.8: Modeled irrigation water withdrawal per country for different irrigated area and weather

data configurations compared with reported irrigation water withdrawal from AQUASTAT

(2008) for 159 countries. 1:1 lines added to each panel
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Figure 8.9: Modeled long term irrigation water withdrawal for the period 1963-2002 based on GIAM

irrigation data and CRU climate data

is 3,847 km3a 1 and 2,724 km3a 1, respectively, a ~30% increase over the GMIA results.

For a given irrigation base map, the computed global withdrawal is ~30% lower when forced

with NCEP data than CRU data (Table 8.3), as NCEP precipitation is higher over most irri-

gated areas (Figure 8.7) and precipitation supplements irrigation water demand. The highest

estimate, using the combination of GIAM and CRU, is about 54% higher than what has previ-

ously been reported for global irrigation water use (2,452 km3a 1 (Döll and Siebert, 2002))

while the lowest value, using GMIA data and NCEP climate drivers, is about 15% lower.

Simulated mean annual irrigation water use, aggregated by country, correlates with national

statistics reported by AQUASTAT (2008), though for many countries the simulation results

are biased low (Figure 8.8), indicating an underestimation of irrigation water withdrawal.

Not surprisingly, the bias is lowest for the combination of GMIA data with the CRU data set

that was probably used to estimate national water use in many countries where actual water

use statistics were not available. Following the spatial differences in both irrigated area maps

discussed in Chapter 4.7.1, the largest absolute differences in irrigation water withdrawal are

calculated for India and China where the withdrawal based on the GIAM map is 100% and

22% higher than the estimate based on GMIA data. Figure 8.9 shows the modeled irrigation

water withdrawal using the CRU data set and the GIAM irrigated area map.

The impact of variations in the model parameters rice area, percolation rate for paddy rice

and distribution of rice have been found to be much smaller than the uncertainties in irrigated

area maps and climate drivers. Generally, model results were very sensitive to factors related

to paddy rice, and much less sensitive to other factors. Changing the percolation rate for

paddy rice by 50% caused a 10% change in global irrigation water use, implying that,

in these simulations, 20% of global irrigation water percolates from flooded fields. These

calculations are based on continuous flooding; paddy water management in some regions

is changing to intermittent drainage (e.g., Li et al. (2002)), reducing total irrigation water

requirements. Neglecting cropping information by assuming that only one, namely non-rice
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crop is grown on all irrigated land reduced irrigation demand by 50%, again highlighting

the importance of paddy rice. Sensitivities to changes in soil water holding capacity and the

timing of the growing season were very low and changed the global estimate of irrigation

water withdrawal by ~1%.

It is important to note that the estimated water withdrawal could be affected by further

sources of uncertainties that have not been investigated here due to the lack of sufficient

data. For example, the choice of a different reference evapotranspiration function ET0 could

change the estimated demand by ~40% (Weiss and Menzel, 2008), and variations in the crop

coefficient kc might have a 15% sensitivity (Satti et al., 2004).

8.2.5 Water Sources for Irrigation and Return Flow

As the withdrawal of water for irrigation will have different impacts on components of the

hydrological cycle, as well as biogeochemical fluxes, depending on the source where it is

taken from, it is important to know if the water is supplied by groundwater, locally produced

runoff, streamflow, or non-renewable water sources. Although some estimates exists on

the global scale, a detailed, consistent inventory of this information is lacking (Oki and

Kanae, 2006). The fraction of irrigation that is supplied by groundwater varies greatly within

regions. U.S. agriculture, for example, relies on 65% groundwater (Pimentel et al., 2004),

while groundwater is supplying an estimated 50% to 60% in India (Singh and Singh, 2002;

Thenkabail et al., 2006), and 40% in China (Thenkabail et al., 2006). Foster and Chilton

(2003) compiled data on irrigation water use for selected countries and concluded that the

contribution of groundwater to irrigation water abstractions is approaching 30% globally. As

noted earlier, cases can occur where the demand cannot be met by either locally produced

runoff or river corridor discharge, representing mining of fossil groundwater. Recently, Rost

et al. (2008) suggested that these non-renewable sources supply almost half of the current

water used in irrigated areas while an earlier study by Vörösmarty et al. (2005) estimated

this number to be around 35% to 40%.

TheWBMplus estimated volume of water that has to be abstracted from these non-renewable

sources is consistent with those estimates; 1,400 km3a 1, representing almost 40% of the

estimated global agricultural water withdrawal need to be withdrawn from non-renewable

sources under contemporary conditions. However, these estimates based on the vertical water

balance at grid cell level may represent an overestimation as WBMplus does not adequately

represent the dynamics of large groundwater systems from which water can be withdrawn in

areas far away from the areas where the system is recharged. Figure 8.10 shows theWBMplus
estimated contribution of the different water sources to the total irrigation water withdrawal

for different design parameters of local irrigation reservoirs. For a medium variant of small

reservoir capacity (CCR=5)1, the estimated contribution of local runoff is 10%, 17% are

taken from local groundwater, and 33% are supplied from locally stored runoff in small

reservoirs.

1This means that the area that is needed to collect runoff for a small reservoir is five times larger than the area

that is supplied from that reservoir (see Chapter 7.4.3)
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Figure 8.10:WBMplus-estimated water sources for irrigation water demand for varying capacities of

small reservoirs (SRs). GW=groundwater.

As described in Chapter 2.5.3, a considerable amount of water abstracted for irrigation pur-

poses percolates through the soil, recharges groundwater and eventually becomes runoff.

Owing to the parameterization of paddy rice fields and the percolation from those fields

(Chapter 7.3), the return flow is dominated by the percolation from rice fields. Losses due

to inefficiencies in the distribution network on non-rice irrigated fields are generally much

smaller (assumed to be 10% of the total losses). Globally, the modeled return flow from

irrigated areas is around 1,650 km3a 1 under contemporay conditions and using the input

data described above, representing 55% of the modeled irrigation water withdrawal. These

estimates are consistent with the reported values for return flows discussed in Chapter 7.3.4.

At the global scale, a consistent assessment of return flows is not available. By continent,

return flow rates are highest in the rice growing regions of Asia. As irrigation water with-

drawal inWBMplus is not limited by available water (see Chapter 7.6) and water is supplied

from non-renewable sources when it is not locally available, the return flow from irrigated

areas can actually increase runoff compared to ’natural’ conditions when irrigation water

abstractions are not taken into account. The implications of return flows at individual river

basins will be demonstrated in Chapter 9.5.

8.3 Discharge

8.3.1 Introduction

After the estimates of irrigation water withdrawal are validated against reported values at

country level and uncertainties related to variations in input data and model parameters are

quantified, the following section is aimed at validating predictions of discharge that are cor-

rected for interactions with irrigation against measured hydrographs. In this context, the

uncertainty related to parameters controlling discharge and uncertainties related to climate

drivers will be discussed. The first part of the section will assess the performance of the

model globally based on a set of 658 discharge gauging stations. In this context, model
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predictions that take into account irrigation and reservoirs are compared with simulations

without those effects. Next, the impact of variations in model parameters on discharge sim-

ulations are assessed based on Monte Carlo simulations for two selected river basins.

8.3.2 Global Assessments

Previous versions of the WBM/WTM models were validated against discharge records in

various geographical regions (e.g. conterminous U.S. (Vörösmarty et al., 1998), Amazon

(Vörösmarty et al., 1996) and globally (Fekete et al., 2002)). All previous studies showed

that WBM/WTM had little bias over large domains while individual basins could have large

discrepancies. For the present study, predicted monthly discharge values for the period 1901

through 2002 were validated against the selected 6582 GRDC discharge stations (Chapter

5.7.3) that cover 52% of the terrestrial area globally. To quantify the impact of the newly de-

veloped modules inWBMplus, simulations where performed under natural conditions (with-

out considering irrigation and reservoirs) and under disturbed conditions (with the irrigation

and reservoir modules turned on). Model performance was assessed using the Mean Bias

Error (MBE), the Mean Absolute Error (MAE) and d-Statistics (Chapter 6.6). To further

assess the impact of irrigation on modeled discharge, these values were computed for basins

with irrigation exceeding a given threshold. As the irrigated area for 490 of the 678 basins is

less than 1%, the impact of irrigation on discharge will be neglibly small in the majority of

basins. The statistics of these measures are summarized in Table 8.4.

Table 8.4: Summary of performance measures for model simulations under pristine and disturbed

conditions for all basins and basins that have at least 3% of their area under irrigation. CV

= coefficient of variation of monthly discharge

All Basins (n=658) Basins with Airr 3% (n=110)

Pristine Disturbed Pristine Disturbed

MBE (average) [mm] -0.639 -0.911 -3.449 -4.756

MBE (median) [mm] 0.531 0.270 -1.428 -1.778

CV (modeled) [-] 1.368 1.363 1.113 1.130

CV (observed)[-] 1.121 1.121 1.311 1.310

MAE (average)[mm] 18.68 18.62 14.45 14.29

MAE (median)[mm] 14.91 14.88 10.94 10.38

d-Stat (average)[-] 0.745 0.746 0.691 0.694

d-Stat (median) [-] 0.681 0.682 0.760 0.764

The d-statistics vary between 0.01 and 0.97 with an average of 0.68 (Figure 8.11), the MBE

is slightly negative for both pristine and disturbed conditions suggesting that the predicted

discharge is underestimated on average. This can partly be explained with biases arising

from errors in the precipitation input fields due to gauge undercatch, particularly in high lati-

tude regions (Chapter 5.2.1). The overall results indicate that the model reproduces observed

2Selecting only stations with at least 15 years of observation reduced the number from the initial 663 stations
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Figure 8.11: Frequency distribution of the mean model bias and the d-statistics for the selected 658

gauging stations with varying periods of observation.

discharge on average reasonably well at large river basins and affirms previous findings re-

garding the bias of the model. The comparison of model results under natural and disturbed

conditions shows a slight improvement of overall model performance when the effects of ir-

rigation and reservoirs are taken into account. For all river basins, the results under disturbed

conditions improve d-statistics although the impact is small, owing to the small average frac-

tion of basin area under irrigation (see above).

For basins with more than 3% of their area equipped for irrigation, the improvement in d-

statistics is slightly larger but including irrigation in the calculations increases the negative

bias in model predictions for those basins (Table 8.4).

As the bias arising from uncertainties in the input data partly cancels out over large domains,

the model performance generally increases with basin size (Fekete et al., 2002; Hunger and

Döll, 2007). This is illustrated in Figure 8.12 where the model performance, MBE and MAE

is plotted as a function of catchment size for the selected 658 discharge stations.

Figure 8.14 shows the spatial distribution, magnitude, and sign of the bias for the 658 se-

lected gauging stations. As can be seen, model results are consistently biased low in the

northern basis. This underestimation of discharge can be attributed to low biases in CRU

precipitation that are caused by gauge undercatch due to snow and biases arising from the

distribution of precipitation stations (see Chapter 5.3). For other regions, a distribution of

biases is centered around the mean value and does not seem to follow a climatic gradient.

Lowest absolute values for the bias can be found in North America, Europe, South Africa,

Australia, and parts of South America. As these regions also have the highest density in

the precipitation network (see Figure 5.1), the number of precipitation stations upstream of

discharge station in each year between 1901 and 2002 was computed and related to the to-

tal basin area. The resulting precipitation network density is highest for basins in North
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Figure 8.12: Model performance (expressed by the MBE and MAE) as a function of basin size, based

on 1901-2002 CRU data

Table 8.5: Meaning, original value, and sampling range of conceptual parameters in the WBMplus
model

Parameter Meaning Original Unit Range

Value

Drying Function (Eq. 6.3) 5.0 - 2-8

Groundwater release (Eq. 6.8) 0.0167 1/T 0.00835- 0.02505

Groundwater partitioning (Eq. 6.8) 0.5 - 0.0-1.0

SF Snowfall threshold -1.0 deg C -2.5-0.5

America, South Africa, and Europe. To test the assumed relationship between the density of

the precipitation network and the model performance, the bias has been plotted against the

computed precipitation network density for the simulation period (Figure 8.13).

As can be seen, the model bias is lowest in regions with a sparse precipitation network and

generally increases with a higher precipitation network density (and thus lower uncertainty

in gridded precipitation).

8.3.3 Parameter Uncertainty

To assess the uncertainty of model parameters controlling the formation of runoff and their

implications on the predicted model results, the GLUE method discussed in Chapter 6.7.2

was selected. The conceptual parameters controlling the vertical water balance in WBMplus
are listed in Table 8.5. The impact of variations of the model parameters and within the

predefined range on components of the model is qualitatively shown in Figure 8.15.
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Figure 8.13: Model bias as a function of precipitation network density, computed as a the average

number of stations upstream of a discharge gauging station during the period for which

discharge data is available

The soil moisture drying function g Ww is controlled by the parameter and reaches its

maximum for lower values of relative soil moisture (Ws Wc) when increases. The param-

eter therefore largely controls the soil water balance of the model and higher values of

lead to higher predictions of actual evapotranspiration and consequently lower runoff. The

parameter controls the fraction of surplus water that becomes discharge instantaneously

and effectively separates the runoff formation in a slow and a fast component. The lower

panel qualitatively shows the emptying of the runoff detention pool Dr in periods of no

recharge for variations of the model parameter . Lower values of lead to a slower release

of runoff from the the runoff detention pool. Unlike the parameter , controls the tempo-

ral dynamics of the runoff detention pool and variations in will not impact the predicted

amount of runoff but the temporal dynamics of active groundwater.

The Monte-Carlo simulations required for the GLUE method have been performed by lin-

early sampling the parameters within a predefined range around the original values of the

parameters (Table 8.5) using a random number generator. While the original value is based

on Vörösmarty et al. (1998), the range at which the parameters are linearly sampled is based

on both the experience from other studies and physically meaningful ranges. The sufficient

number of Monte Carlo simulations to be performed for the GLUE analysis is discussed in

Beven (2006) and generally increases with increasing model complexity. Given the large

requirements in terms of computing time and disk space for global simulations3, model sim-

ulations with randomly sampled parameters were performed for two large river basins for

the period 1996-1999 and the number of simulations was limited to 4,000. Using the CRU

data set and the model configuration described above, the uncertainty was assessed for the

3Global simulations require about 16 min per simulation year on a computer system with 2.5 Mhz CPUs and

produce about 12 Megabyte of output data per variable per year if monthly values are outputted

100



8.3 Discharge

Figure 8.14: Bias (1 n Modeled Observed for 658 gauging stations with at least 15 years of

observation for simulations under disturbed conditions
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Figure 8.15: Qualitative plots showing the sensitivity of the soil moisture drying function and the

runoff pool to the model parameters and for extreme values with the sampling

range

Danube and Mississippi river basins. The Danube river is about 2,850 km long and its basin

covers an area of 788,002 km2 in 19 countries, making it the most international river basin

of the world before it drains into the Black Sea. The Mississippi river that runs from its

source at Lake Itasca to the Gulf of Mexico with a total length of 3,870 km has a drainage

area of 3,200,000 km2. As described in Chapter 6.7.2, it is necessary to select acceptable

simulations based on some measure of likelihood. If this threshold is based on a fixed value

of model performance measures, the number of accepted simulations (and hence the sam-

pled parameter space) will vary for each river basin. Alternatively, the limit of acceptability

could be based on a fixed number of simulations out of the total number of simulations. The

1,000 simulations with the highest likelihood (based on the Nash-Sutcliffe efficiency R2)

were therefore selected for both river basins.

Predicted monthly values of discharge for the Mississippi river were compared with ob-

served discharge at the gauging station Vicksburg (A = 2,964,252 km2). The Nash Sutcliffe

efficiency for the 1,000 accepted simulations ranged from 0.63 to 0.75 with a mean value of

0.67. Figure 8.16 shows scatter plots of the likelihood measure R2 for the model parameters

, , , and SF for the Mississippi river basin. The parameter shows a moderately iden-

tifiable maximum near the original value (5.0). The runoff partitioning parameter shows

a very clear maximum around the original value of 0.5 whereas the highest likelihood is

reached for values of on the lower end of the sampled range. The snowfall partitioning

value SF shows a clearly identifiable pattern at lower values. The highest likelihood of model

predictions is achieved for snowfall partitioning values SF of -2.4°, considerable lower than

the -1.0° that was used as a threshold for snowmelt in the original version of the model. The

parameter shows a maximum at low values (around 0.00911 1/d), representing a 50% re-

duction over the value that was initially used. Figure 8.17 shows the the uncertainty range
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Figure 8.16: GLUE likelihood dotty plots for the model parameters , , , and the Snowfall thresh-

old for the Mississippi river basin based on 1000 accepted simulations (25% of all sim-

ulations)

of the likelihood weighted simulated discharge values for the Mississippi between the 0.05

and the 0.95 percentiles. The mean simulation range is 4,492 m3s 1 and represents 23%

of the mean observed discharge during the simulation period (19,530 m3s 1). The median

value of the GLUE simulations underestimates the mean value of the observations by 0.6%

on average.

To assess the identifiability of model parameters and the likelihood values as a function of

parameter values for a contrasting river basin, the GLUE method was applied for observed

monthly discharge at the gauging station Ceatal Izmail, located near the mouth of the Danube

river with a catchment area of 788,002 km2. The model performance, expressed as the Nash-

Sutcliffe efficiency R2 for the 1,000 accepted model simulation (25 % of the total number

of simulations) was slightly lower than for the simulations at the Mississippi river basin. R2

values range from 0.36 to 0.67 with a mean value of 0.49. Figure 8.18 shows the scatter-

plots for the likelihood of model results as a function of the parameters. With regard to the

identifiability of parameters, the results suggest that model predictions are sensitive to the

same parameters that have been shown to be important in the Mississippi basin. Discharge

simulations are most sensitive to variations in the partitioning parameter and the snowfall

threshold SF. The range in which the likelihood of the model being a predictor of the system

is highest, however, shows significant differences to the optimal range found for the simula-

tions in the Mississippi basin. Whereas SF lies in the same range, , , and show large

deviations (Table 8.6 and Figure 8.18). As the model tends to underestimate discharge in the

Danube basin when used with CRU climate drivers (Chapter 9.5.4), optimal values for are

significantly lower, reducing actual evapotranspiration and thereby increasing runoff. The
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Figure 8.17: GLUE estimated uncertainty in the predicted discharge for the Mississippi river basin

based on 1000 selected simulations and observed values (circles)

higher value for suggests that the discharge is dominated by slow components (i.e. a larger

fraction of runoff fills the runoff detention pool) with a runoff detention time of around 60

days ( 0 017) . Uncertainty bands for predicted discharge have been plotted in Figure

8.19 and show considerable ranges and deviations from observed discharge. The average

range of the confidence band represents 23% of the observed discharge. On average, the me-

dian of the GLUE simulations underestimates the observed discharge in the basin by 8.3%.

Table 8.6: Optimal parameter values based on the Nash-Sutcliffe efficiency R2 for Mississippi and

Danube basin after 4000 simulations

Scenario SF R2 d MBE

Danube 2.431 0.01761 0.827 -2.454 0.67 0.90 -5.64

Mississippi 5.071 0.00911 0.476 -2.326 0.75 0.92 -6.56

8.3.4 Uncertainties Arising from Precipitation Data Sets

As described in Chapter 5, considerable differences exist among different global climate

data sets. As precipitation is the most important variable for water balance calculations, the

uncertainty arising from differences in precipitation data sets will translate to uncertainties

in the predicted discharge that might be larger than the uncertainty caused by variations in

the parameters alone. The impact of different precipitation data sets was therefore assessed
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Figure 8.18: GLUE likelihood dotty plots for the model parameters , , , and the Snowfall thresh-

old for the Danube river basin based on 1000 accepted simulations (25% of all simula-

tions)
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Figure 8.19: GLUE estimated uncertainty in the predicted discharge for the Danube river basin based

on 1000 selected simulations (grey), observed values (circles) and model simulations

based on different precipitation data sets
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for the Danube river basin. Discharge was simulated using three of the global precipita-

tion data sets described in Chapter 5.2, keeping all other input data the same, and applying

the ’optimal’ parameter set that was found for the CRU simulations. The resulting hydro-

graphs, together with the 90% confidence band derived from CRU simulations is plotted in

Figure 8.19. As can be seen, the uncertainty arising from different precipitation data sets are

much larger then the uncertainties caused by variations in the model parameters. Whereas

discharge simulations based on GPCP and GPCC precipitation data sets show a reasonable

agreement with the observed seasonal discharge cycle, the simulations based on NCEP data

do not seem to adequately represent the observed variability. The mean discharge for the

river basin varies between 5,215 m3s 1 for the GPCC data and 7,776 m3s 1 for the NCEP

data.

Table 8.7: Mean values of simulated discharge for the Danube river basin using different precipitation

data sets. Observed discharge for the period 1996 to 1999 QO = 7,126 m3s 1

Precipitation data set CRU GPCPV2 GPCC NCEP

Mean Q [m3s 1] 7,136 7,334 5,215 7,776

8.4 Summary and Conclusions

A comparison of modeled water demand and withdrawal for irrigation purposes with re-

ported national and sub-national statistics and results from other models showed a good

agreement between predicted and observed values. The plausibility of the models and its

parameters and the impact of variations in parameters on discharge predictions was tested

for the Krishna river basin using a Monte Carlo simulation method. The modeled irrigation

water withdrawal (and thus the impact on modeled discharge) is largely controlled by the ir-

rigation intensity and irrigation efficiency whereas the parameters controlling the percolation

of rice have less impact. At the global scale, the model was found to be most sensitive to the

extend of irrigated areas and the fraction of paddy rice in those areas. The sensitivity of the

model to variations in climate drivers and irrigated area was assessed by using two different

climate reconstructions and two different global maps of irrigated areas and large uncertain-

ties have been revealed. The estimated global withdrawal has a sensitivity of 30% depending

on what global data set on irrigation is used and 30% if different climate reconstructions are

used, with even larger deviations for individual countries.

Discharge predictions (corrected for the effects of irrigation water withdrawal and return

flow) were validated globally against a large set of hydrographs. On average, the model

predictions showed a low bias and a reasonable agreement despite large variations at indi-

vidual river basins. Correcting discharge predictions for irrigation effects slightly improved

model results, particularly in basins with considerable fraction of the basin area under irriga-

tion. However, averaged over all gauging stations, the improvement in model performance is

small as the impact of irrigation and reservoirs for most basins is small. Model simulations of

irrigation water withdrawal and discharge for the Krishna river basin showed that the model

is generally capable of predicting the impacts of human interventions on the hydrological
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cycle. The comparison of model simulations for pristine and disturbed conditions and ob-

served discharge revealed that structural changes in observed discharge cannot be explained

by variations in climate data but by increased evapotranspiration from irrigated areas. These

results are in general agreement with previous observations regarding reduced discharge due

to increases in irrigation water demand (Bouwer et al., 2006; Haddeland et al., 2006a) and

imply that model results and derived indicators can be a useful tool for assessing the impact

of changes in climate and irrigation water withdrawal on water resources at the river basin

scale. In general, the model performance was found to be related to the density of the pre-

cipitation station network (and thus the quality of precipitation data) rather than to a climate

gradient.

The impact of variations in the model parameters controlling the formation of runoff was

tested for two large river basins. Overall, the results show a reasonable identifiability of pa-

rameters and suggest that the model is not over-paramerterized. Model results are sensitive

to variations in all parameters and most sensitive to and SF and less sensitive to and .

The performance ofWBMplus is therefore largely controlled by the surface runoff partition-

ing factor and the partitioning of precipitation into snow and rainfall. Clearly, the results

are strongly dependent on the characteristics of individual river basins and are connected to

the hydroclimatic and geomorphological conditions in the basin. These results are consistent

with the results presented by Demaria et al. (2007) who used Monte Carlo techniques to

evaluate parameters in the VIC model for different U.S. watersheds along a hydroclimatic

gradient.

Although variations in the model parameters , , , and SF substantially impact predicted

discharge and thereby the likelihood of the model being a predictor of the system, the range

of uncertainty caused by parameter variations is small compared to the uncertainty arising

from differences in precipitation data sets. This implies that changes in the climate data

sets will translate to changes in predicted discharge and that model predictions for different

climate data will show the signal of climate drivers regardless of the parameter set and is

relevant, for example, when model predictions are used to study the impact of climate change

on hydrological cycles. The relative impact of precipitation data sets will be smaller in arid

regions where variations in the parameters have a larger impact on the simulated discharge.

It is important to note that the empirical constants used to parameterize the flow routing

equations (Chapter 7.5) could potentially impact the timing and the shape of the computed

discharge. As the uncertainties related to those parameters are considered small compared to

the uncertainties associated with the parameters controlling the vertical water balance, they

have not been investigated here.
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9.1 Introduction

This section is aimed at highlighting applications of the model at larger scales. Applications

include simulations to help understand the role of irrigation and reservoirs on water cycles

over time, to assess water resources with regard to sustainability and highlight water stress at

the river basin scale. It involves a reconstruction of global hydrography for the last century

using time varying data sets of irrigated areas and reservoirs and a comparison of those

simulations with natural conditions to separate trends in continental and global discharge

caused by human interventions and by variations in the climate drivers alone.

The use of model simulations and derived indicators of water stress at river basin scale is

demonstrated for three river basins that are heavily affected by the use of irrigation water.

After a brief discussion of potential impacts of climate change on irrigation water demand,

the implications of climate change on irrigation water demand and water availability will

be discussed for the Danube river basin using high-resolution climate predictions from a

regional climate model.

9.2 Development of Irrigation Water Demand 1901-2002

The time series of irrigated areas that have been created using the method described in Chap-

ter 4.7.2 were used to estimate the evolution of irrigation water withdrawal over the last

century. The cropping pattern (the distribution of different crops) was assumed to be con-

stant over time and CRU climate data was used to simulated irrigation water withdrawal from

1901-2002. The simulated amount of water that needs to be abstracted from groundwater,

small reservoirs, and rivers globally based on the time-varying data set of irrigated areas

increased from 590 km3a 1 in 1901 to 2,997 km3a 1 for the year 2002. Irrigation water

withdrawal in North America ( 6% of the total) increased sharply between 1940 and 1950

(Figure 9.1). With the exception of Europe ( 3% of the global withdrawal), all continents

show an upward trend over the last century in irrigation water use reflecting the expansion

of irrigated areas but a decrease in growth in the last 20 years of the century. As these

simulations are based on the assumption that all irrigation demand is always met, they in-

clude a considerable amount of water that is abstracted from non-renewable sources (Chapter

8.2.5). Over the last century, the total accumulated volume of non-renewable water abstrac-

tions is 55,639 km3, representing about half of the total precipitation reaching the Earth’s

terrestrial surface in one year (Mitchell and Jones, 2005). The total water withdrawn from

non-renewable water resources represents only about 0.2% the volume of water currently

stored in all groundwater stocks, estimated to be 23x106 km3 (Oki and Kanae, 2006).
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Figure 9.1: Time series ofWBMplus modeled irrigation water withdrawal over the last century aggre-

gated by continents using the reconstructed geospatial time series of irrigated areas

9.3 Reconstructing 20th Century Global Hydrography

9.3.1 Introduction

The purpose of this section is to analyze trends in components of the global hydrological

cycle in the 20th century and to assess how the estimated changes in irrigation water with-

drawal and the construction of reservoirs have impacted the horizontal water balance and the

discharge to the oceans. The model simulations in this section were based on the CRU cli-

mate data set and the time varying data sets on irrigated areas (Chapter 4.7.2) and reservoirs

(Chapter 5.7.4).

9.3.2 Spatial Trends in Hydrological Components

To assess spatial patterns and trends in predicted components of the hydrological cycle over

the last century, the trends of the predicted annual values of evapotranspiration and runoff

for each grid cell under natural and disturbed conditions were computed. Trends in annual

values for each grid cell were tested for significance at the 5% level using t-test statistics.

Under pristine conditions, the spatial distribution of the trend in simulated evapotranspira-

tion over the last century reflects the variations in the temperature and precipitation drivers.
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As the temperature shows an upward trend for almost all regions, the trends in evapotranspi-

ration are dominated by increases or decreases in available water and hence by the increases

or decreases in precipitation. Increases in evapotranspiration are therefore seen in the mid

to high latitude regions, Central Southern Africa, Eastern South America, and Central Aus-

tralia.

Under disturbed conditions, the expansion of irrigated areas over the last century has signif-

icantly increased evapotranspiration in Eastern China, India, Central America, and Central

Asia. Figure 9.2 shows significant trends in evapotranspiration under natural and disturbed

conditions and the differences between the two. Negative trends in predicted evapotranspi-

ration reflect the changes in precipitation and can be seen in Western and Central Africa,

Western South America, and parts of South East China.

Changes in modeled evapotranspiration and trends in the precipitation input data result in in-

creases in the modeled runoff (precipitation - evapotranspiration) in the high latitude regions,

Eastern South America, Northern Australia, and mid-latitude North America and runoff de-

creases in Western Africa, Argentina, Eastern China, and parts of Central Asia. The general

pattern of the spatial distribution of runoff trend is consistent with the global distribution of

significant trends in observed discharge for the period 1971-1998 compared to 1901 to 1970

(Milliman et al., 2008; Milly et al., 2005) and observed increases in North America (e.g.

Qian et al. (2007)). Changes in evapotranspiration imposed by the expansion of irrigated ar-

eas and increased evapotranspiration translate to significant decreases in the predicted runoff

in Eastern China and India. Figure 9.3 shows significant trends (natural, disturbed, and

the differences between the two) over the last century. Small negative differences indicate

an increase in runoff caused by return flows from irrigated areas that are supplied by non-

renewable groundwater resources.

9.3.3 Global Simulations and Discharge to Oceans

The spatial trends in runoff and evapotranspiration described above translate to changes in

the predicted terrestrial discharge into the oceans and to endorheic receiving waters (e.g. Aral

and Caspian Sea). Based on the basin characteristics given in the STN river network (Chapter

5.7.1), time series of discharge entering the oceans and endorheic basins were calculated and

tested for significant trends over the period 1901-2002. Trends were tested at the 5% level.

This section will first discuss the total predicted terrestrial discharge over the last century

and then the predicted discharge for individual oceans reflecting the impact of variations in

the climate drivers alone and from changes induced by the expansion of irrigated lands and

the operation of reservoirs. The results are compared with earlier estimates by Fekete et al.

(2002) that have been derived by combining modeled runoff with observed discharge at 663

river gauging stations and therefore reflect observations.

The long term mean annual freshwater export from the terrestrial surface of the Earth (tak-

ing into account irrigation water abstractions) for the last century is 37,401 km3a 1 and is

consistent with earlier estimates (Dai and Trenberth, 2002; Döll et al., 2003; Fekete et al.,

2002; Sitch et al., 2003). The estimated annual total discharge varies considerably in the last

century. Estimated annual values range from 32,783 to 41,725 km3a 1, a larger range than in
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Figure 9.2: Significant trends in evapotranspiration under natural (a), disturbed (b) conditions and

the differences between those (c) for the period 1901-2002
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Figure 9.3: Significant trends in runoff under natural (a), disturbed (b) conditions and the differences

between those (c) for the period 1901-2002
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Table 9.1: Characteristics of endorheic basin and basins draining into the oceans. Irrigated areas and

reservoir capacities based on 2002 data. Residence time is computed as total reservoir

volume over mean annual discharge; taken from Fekete et al. (2002). Basin delineation

based on the STN-30 river network. Mediterranean includes Black Sea

Ocean Area Res. Cap. Irr. Area Irr. Area Residence Time

km2 km3 km2 % a

Land 18,743,062 290 271,121 1.45 0.29

Mediteranean 10,678,622 506 233,241 2.18 0.42

Atlantic Ocean 45,729,720 1,904 362,296 0.79 0.1

Indian Ocean 20,688,590 611 927,762 4.48 0.13

Pacific Ocean 19,931,492 742 826,268 4.15 0.07

Arctic Ocean 19,824,778 673 12,472 0.06 0.21

Global 135,596,264 4,726 2,633,160 1.94 0.12

estimates made by Shiklomanov and Rodda (2003). The highest values are simulated during

the period 1951-1975 (Table 9.2 and Figure 9.4). The maximum value of annual terrestrial

discharge in the last century (41,725 km3a 1) exceeds the average value by 12%. The mini-

mum annual discharge (in 1992) in the last century is 16% lower than the mean annual value

and is related to the substantial decrease in global precipitation following the eruption of

Mt. Pinatubo in June 1991 (Trenberth and Dai, 2007). Over the entire simulation period,

the global discharge increases slightly (11 km3a 1 under natural conditions and 6 km3a 1

when the effects of water abstractions for irrigation are taken into account) but both trends

are not significant. The flow alteration imposed by the construction of reservoirs over the

last century gradually decreased the variability of the estimated discharge expressed by the

coefficient of variation (CV) of monthly discharge values and is discussed in more detail in

Chapter 9.4. The increased evapotranspiration over irrigated areas leads to a reduction of

terrestrial discharge that is partly offset by the additional water abstracted from groundwater

systems that are not connected to the hydrological cycle. Combined, this additional water

and increased evapotranspiration leads to a gradual reduction of global discharge ranging

from 0.6% at the beginning of the last century to around 2% in 2000.

Despite being insignificant for the total discharge entering the oceans, the hydrologic alter-

ations imposed by the construction of reservoirs and the expansion of irrigated areas may

have dramatic effects at the regional scale depending on the degree to which these regions

are equipped with irrigated areas and reservoirs. Table 9.1 summarizes the characteristics of

basins draining into the oceans and irrigated areas. The combined impact of irrigation water

abstractions and reservoirs on time series of discharge entering internally draining basins and

the oceans will be discussed in the following section.

Land/Endorheic basins

Major internally draining basins include the Aral Sea drainage basin (A = 1,676,054 km2

representing 10% of the total area in this category), the basins draining into the Caspian
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Figure 9.4: Annual time series of modeled discharge to the ocean and to endorheic basins under

pristine (dashed line) and disturbed (solid line) conditions 1901-2002
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Table 9.2: Components of the hydrological cycle for endorheic basins and basins draining into the

Oceans. Fluxes in km3a 1. Coefficient of variation (CV) calculated for monthly discharge.

prist: model run under natural conditions, dist: model results under disturbed conditions

(irrigation water abstractions and reservoir operation turned on). P = Precipitation, ET =

Evapotranspiration, Q = discharge. MS = Mediterranean Sea, ArO = Arctic Ocean, PO =

Pacific Ocean, AO = Atlantic Ocean, IO = Indian Ocean. R = modeled long-term mean

corrected using observed data (Fekete (2002))

1901/1925 1926/1950 1951-1975 1976-2002 1901-2002 R

prist dist prist dist prist dist prist dist prist dist

Land P 5,799 5,728 5,949 5,917 5,849

Land ET 4,718 4,764 4,652 4,713 4,793 4,893 4,863 5,012 4,752 4,849

Land Q 1,060 1,040 1,062 1,033 1,137 1,097 1,032 984 1,072 1,037 993

Land CV 0.51 0.51 0.5 0.49 0.51 0.42 0.52 0.37 0.51 0.45

MS P 4922 4912 5003 4777 4,901

MS ET 3,887 3,720 3,688 3,728 3,707 3,765 3,657 3,752 3,684 3742

MS Q 1,205 1,188 1,213 1,191 1,280 1,236 1,098 1,066 1,197 1,168 1,205

MS CV 0.28 0.28 0.29 0.29 0.27 0.27 0.29 0.34 0.29 0.3

ArO P 7,613 7,809 8,083 8,018 7884

ArO ET 4,445 4,446 4,615 4,616 4,561 4,562 4,612 4,614 4,559 4,561

ArO Q 2,101 2,101 2,185 2,185 2,480 2,462 2,379 2,375 2,288 2,282 3,268

ArO CV 1.03 1.03 0.96 0.96 1.01 0.97 1 0.93 1 0.97

PO P 21,641 21,857 22,394 21,827 21,928

PO ET 11,979 12,166 12,086 12,327 12,020 12,388 12,182 12,734 12,069 12,410

PO Q 9,666 9,518 9,746 9,564 10,357 10,095 9,658 9,350 9,853 9,626 10,476

PO CV 0.19 0.19 0.19 0.19 0.2 0.18 0.19 0.17 0.2 0.18

AO P 50,215 50,166 51,072 50,931 50,602

AO ET 32,129 32,153 32,117 32,150 32,275 32,330 32,660 32,742 32,302 32,352

AO Q 18,106 18,088 18,084 18,060 18,825 18,778 18,344 18,296 18,340 18,305 18,507

AO CV 0.23 0.23 0.24 0.23 0.23 0.22 0.26 0.24 0.24 0.23

IO P 15,109 15,204 15,579 15,294 15,296

IO ET 9,925 1,025 9,869 10,292 10,048 10,612 10,193 11,063 10,012 10,566

IO Q 5,133 4,953 5,274 5,059 5,477 5,196 5,065 4,742 5,234 4,983 4,858

IO CV 0.33 0.3 0.34 0.31 0.33 0.29 0.33 0.3 0.33 0.3

Global P 105,298 105,675 108,081 106,764 106,461

Global ET 67,083 68,274 67,027 67,826 67,404 68,550 68,167 69,917 67,378 68,480

Global Q 37,271 36,888 37,564 37,092 39,556 38,864 37,576 36,813 37,984 37,401 39,307

Global CV 0.19 0.19 0.2 0.19 0.19 0.18 0.21 0.18 0.2 0.19
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Sean (A = 3,202,149 km2, 17%) and inland basins (A = 13,601,128 km2, 72%). The largest

internally drainining inland basins are the Lake Chad basin, the Great Artesian Basin, Trim

basin, and Kerulen basin. Around 1.45% of the area in those basins is equipped for irrigation

and the installed reservoir capacity, expressed as the mean residence time (reservoir capacity

over mean annual discharge) is 0.29 (under contemporary conditions). The estimated annual

discharge from those basins shows considerable variations (between 774 km3a 1 and 1,650

km3a 1 under disturbed conditions) and is 1037 km3a 1 on average (Table 9.2). Discharge

in endorheic basins is slightly declining over the entire period, most notably in the last 25

years of the last century. Over the last century, the trend is negative (but insignificant), -0.2

km3a 1 under pristine conditions and -0.5 km3a 1 taking into account the effects of irrigation

water withdrawal. The construction of reservoirs has led to a considerable decrease of the

variability of monthly flows, most drastically in the period 1975-2002 (Table 9.2).

Mediterranean/Black Sea

The basins draining into the Mediterranean and Black Sea are among the most heavily in-

fluenced with regard to the effects of irrigation and reservoirs (Table 9.1). The discharge to

the Black Sea is dominated by the Danube (50%), the Dnepr (15%) and the Don (9%). The

discharge to the Mediterranean is dominated by the flow of the river Nile contributing more

than 53% to the total inflow. Other important rivers include the Po (9%) and the Rhone river

(7%). Similar to endorheic basins, basins draining into the Mediterranean are experiencing a

decline in discharge in the last 25 years of the last century. Over the entire simulation period,

the trend in discharge is -1.2 km3a 1 (significant) under natural and -1.4 km3a 1 (insignif-

icant due to higher variability) under disturbed conditions. It is important to note that the

modeled discharge under disturbed conditions can be higher than the estimated discharge

under natural conditions in very dry years. This can largely be explained with the inadequate

representation of irrigated areas along the Nile river and in the Nile delta and the system of

irrigation infrastructure that supplies water from the river; irrigation water in the Nile delta

will be assumed to come from unsustainable sources but in reality is supplied from the river

through a network of canals.

Atlantic Ocean

About 30% of the terrestrial flow to the Atlantic Ocean is coming from the Amazon river.

Other important rivers include the Zaire (9%), Mississippi (4%), and Parana (4%). Given

the large volume of discharge entering the Atlantic Ocean, the effect of human interventions

on the discharge volume is negligibly small; over the last century, the combined effect of

increased evapotranspiration and water withdrawal from non-renewable sources reduces the

annual discharge into the Atlantic Ocean by 33 km3a 1 (0.2%). Over the entire simulation

period, discharge into the Atlantic Oceans shows and upward (but insignificant) trend of 5.4

km3a 1 and 5.8 km3a 1 under natural and disturbed conditions, respectively.
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Indian Ocean

The most important rivers draining into the Indian Ocean are the Ganges (with a flow equiv-

alent to 23% of the total), the Irrawaddy (12%), and the Zambezi (6%). The estimated

long-term mean annual discharge entering the Indian Ocean is 4,983 km3a 1 with significant

reductions imposed by the expansion of irrigated areas and increased evapotranspiration in

basins draining into the Indian Ocean. With 4% of the drainage area being under irrigation,

irrigation water abstraction reduces the total flow to the Indian Ocean by almost 5% averaged

over the last century with the a reduction reaching the highest values (~7%) in the last 25

years of the 20th century. Under both natural and disturbed conditions, the time series show

decreasing but insignificant trends (-0.14 km3a 1 and -2.0 km3a 1).

Pacific Ocean

Important rivers draining to the Pacific Ocean include the Chang Jiang (9%), the Mekong

(4%) and the Amur (3%). Although areas under irrigation represent ~4% of the drainage area

(Table 9.1), increased evapotranspiration translates only to a reduction of 341 km3a 1 repre-

senting 2.3% of the discharge under pristine conditions (averaged over the entire simulation

period). With the expansion of irrigated areas, the reduction of flow gradually increases, with

a steep increase in the last half of the last century. The discharge under disturbed conditions is

9,626 km3a 1 on average and varies considerably over the last century. As discharge into the

Atlantic, discharge was highest in the 1951-1975 period (~5% higher than averaged over the

20th century. Over the entire simulation period, discharge under natural conditions increased

by 2.7 km3a 1 and 0.5 km3a 1 under disturbed conditions, both trends being insignificant.

Arctic Ocean

Flow into the Arctic Ocean is dominated by the Yenisei, Lena, Ob, and Mackenzie river, con-

tributing to more than half of the total flow. Owing to the large volumes of spring discharge

that is dominated by snow melt compared to summer flows, the variability of streamflow in

basins is higher than for any other ocean (CV for monthly values under pristine conditions

is around 1.0 and reduces slightly to around 0.97 when reservoir operation is considered).

Reservoirs are responsible for a substantial change in the seasonality of streamflow in Arctic

river basins (Adam et al., 2007), and the construction of reservoirs over the last century has

gradually led to a slight reduction of the variability of modeled discharge entering the Arctic

Ocean (Table 9.2). The coefficient of variation of monthly flow decreased from 1.09 at the

beginning of the century to 0.93 during the last 25 years. It is noteworthy that the estimate of

the long-term mean annual discharge into the Arctic Ocean (2,282 km3a 1) is around 30%

lower than the 3,268 km3a 1 estimated from gauge corrected runoff fields (Fekete et al.,

2002) and the 3,200 km3a 1 estimated based on contemporary discharge records (Serreze

et al., 2006). The discrepancy can largely be attributed the huge uncertainties in Arctic hy-

droclimatological data arising from the sparse network of Arctic climate stations (Rawlins

et al., 2006) and gauge under catch, due to the vicinity of gauge locations to highly popu-

lated places and the non-representativeness of those gauges of complex topographic features
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(Adam et al., 2006). Over the last century, discharge into the Arctic Ocean shows a signif-

icant positive trend of 4.2 km3a 1. This trend is consistent with the annual rate of increase

of 2.0 2.7 km3a 1 that has been estimated from observed discharge from the six Eurasian

arctic rivers from 1936-1999 (Peterson et al., 2002) and upward trend of 8.2 km3a 1 for the

period 1949-2004 that has been found by Dai et al. (2009) from a new data set of streamflow

records derived from land surface simulations.

9.4 Impact of Reservoirs

The disturbances of the natural water cycle induced by the construction of reservoirs have

a number of direct and indirect impacts on the physical, biogeochemical, and geomorpho-

logical processes in the river network. Besides a hydrograph distortion, such effects include

changes in the sediment trapping efficiency (Vörösmarty and Sahagian, 2000), the emission

of trace gases from rivers and reservoirs, and others. To illustrate the impact of the construc-

tion of reservoirs on discharge, Vörösmarty et al. (1997) has introduced the concept of river

water aging. The aging of water in its passage to the oceans reflects the impact of reservoirs

but must not be confused with the true age of water entering the oceans that can be deter-

mined, for example, using tracer hydrological methods. The residence time [s] of water

in reservoirs and the river network in each grid cell can be calculated by relating the mod-

eled annual discharge Qm[m3s 1] to the river volume Vriv[m
3] and reservoir volume Vres[m

3]

(accumulated downstream using the STN-30 network):

m
uVres Vriv

Qm
(9.1)

where u is a utilization factor that relates mean modeled annual storage in each reservoir to

the reservoir capacity and Vriv is the storage volume in the river, computed as Vriv YmWm
( Eq. 7.25 and Eq. 7.24). The computed age varies with the modeled annual discharge

and the estimated reservoir storage based on the reservoir operation described in Chapter

7.4. The estimated mean discharge weighted apparent water age globally is 19 days and is

consistent with earlier estimates (Covich, 1983; Vörösmarty et al., 2000c). The discharge

weighted age of water entering the oceans varies considerably between 8 days for basins

entering the Pacific Ocean and 39 days for the Mediterranean basins (Table 9.3). Figure 9.5

shows the evolution of the apparent water age for the oceans and the endorheic basins over

the last century. Whereas the variations in the apparent water age in the first half of the

last century are governed by variations in the computed discharge, the increase in reservoir

capacity after the 1950s has drastically altered the discharge regime to the oceans depending

on the installed reservoir capacity in relation to discharge (see Table 9.1).

By ocean, the largest changes in the water age are simulated for the Mediterranean Sea basin

with the construction of major reservoirs along the Rhone and along the Nile (the largest

being the Owen Falls with a capacity of 204 km3 in 1954). The construction of several

reservoirs in basins draining to the Black Sea (along Don and Dnepr river) around the same

time has led to a threefold increase of the combined water age for both drainage basins.

Similarly, the hydrographs of rivers draining into the Arctic Ocean have significantly been

distorted by the operation of reservoirs constructed in the Ob and Yenisei basins starting in

the 1950s and 1960s. The increase in the apparent aging in endorheic basins is governed by
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Table 9.3: River storage volume, apparent age of water entering the oceans and endorheic basins

under pristine and disturbed conditions, and increase in apparent water age. River water

age for the year 2002

Ocean Vriv [km3] (pristine)[d] (disturbed)[d] m [d]

Pacific 192 8 37 29

Atlantic 1143 22 58 36

Indian 142 11 64 53

Land 50 22 151 129

Mediterranean 105 39 223 184

Arctic 133 23 115 92

Total 1,765 19 61 42

the construction of reservoirs along the Volga river, and the rivers draining to the Aral Sea,

Syr-Darya and Amu-Darya. Given the low residence in the basins draining into the Atlantic

Ocean, the Indian Ocean, and the Pacific Ocean under contemporary conditions (Table 9.1),

the increases in the apparent aging in those basins are generally smaller.

Figure 9.5: Time series of the discharge weighted apparent water age for discharge entering the

Oceans and endorheic basins, 1901-2002
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9.5 Assessing Unsustainable Abstractions for Selected River Basins

9.5.1 Introduction

This section will discuss water management practices against principles of sustainability and

demonstrate the application of the model to highlight water stressed regions resulting from

abstraction of water for irrigation purposes. The natural scale at which such assessments

have to be carried out is the river basin scale. It is important to note that the results presented

below are not calibrated for individual river basins since the focus of macroscale hydrological

models is the continental and global discharge and models should generally be applied over

those domains without recalibration (see Chapter 6). Before a methodology for assessing

water resources and supply is applied to three river basins that are influenced by irrigation

water abstractions to a varying degree, it is necessary to briefly review some of the basic

concepts of sustainability with regard to water resources management.

Sustainability Concepts

A number of suggestions have been made to adapt the original definition of the sustainability

concept1 of the 1987 Brundtland Report in the water resources context. An adaption of this

concept requires that the effects of human activities on the water resources are understood

and can be quantified at a reasonable accuracy. A popular concept to assess the sustainability

of groundwater abstractions in particular is the concept of safe yield2 that has been devel-

oped in the 1920’s mainly to preserve the beneficial use of groundwater in the eastern United

States as the ’rate of water that can be withdrawn from an aquifer for human use without

depleting the supply to such an extent that withdrawal at this rate is no longer economically

feasible’ (Custodio, 2002; Alley and Leake, 2004) and was initially primarily based on wa-

ter quantity assessments. Later, aspects of water quality have been included in this concept

before it was broadly defined as ’the amount of water that can be withdrawn from an aquifer

annually without producing negative results’ (Alley and Leake, 2004). Although this concept

has been criticized for its vagueness, for neglecting aquifer interactions, long-term effects

and environmental impacts, it has been widely used and is still used today. One of the most

common misinterpretations resulting directly from this definition is that an aquifer is safe if

the annual recharge rate exceeds the rate of withdrawal (Alley and Leake, 2004). The safe

yield concept is further constrained by the perception that the recharge rate is independent

of the rate of abstraction and that it has to be known to assess the sustainable pumping rate.

Devlin and Sophocleous (2005) call this belief the ’Water myth’ and show that although

the recharge rate is important when considering the sustainability of aquifer systems, it is

not necessary to estimate sustainable pumping rates. Assessing the sustainability of water

resources based on a single year may lead to misinterpretations because withdrawal may

exceed the recharge rate in dry years while the aquifer is replenished in wet years. To ac-

count for the long-term dynamics of aquifer recharge, Loaiciaga (2002) suggested to assess

1Sustainable development is defined as meeting the needs of the present generation without compromising the

ability of future generations to meet their demands (Bruntland, 1987)
2This concept is sometimes confusingly referred to as sustainable pumping rate
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water resources over an ’extended period of time (five or more consecutive years)’. The En-

vironmental Protection Agency (EPA) defines the sustainable abstraction rate as ’the annual

quantity of water that can be taken from a source of supply over a period of years with-

out depleting the source beyond its ability to be replenished naturally in wet years’ (Singh

and Singh, 2002). It is important to note that the definitions described above are entirely

based on water quantity parameters and ignore water quality and economical considerations.

However, aquifers can be economically depleted even before a physical depletion occurs;

decreasing water tables render the exploitation of aquifers impossible simply because the

pumping and associated energy cost are to high. Large-scale aquifers are economically de-

pleted long before the physical depletion is evident and the economic dimension is therefore

central to understanding the meaning of overextraction (Moench et al., 2003). Assessments

of water resources systems mentioned above assume that the rate of recharge can be reason-

ably well quantified. However, the rate of aquifer recharge is difficult to estimate on larger

scales and varies generally with land use changes, urbanization processes, changes in surface

water regime, lowering the water table of the aquifer system and longer term climatic cycles

(Foster and Chilton, 2003). Despite recent efforts in mapping and assessment of groundwa-

ter resources (Döll and Fiedler, 2008; IGRAC, 2006; BGR, 2006), the global understanding

of groundwater resources and their dynamics is very limited (Foster and Chilton, 2003) and

global data on the source of water for irrigation purposes is not available at the level of detail

that is required (Chapter 4.3).

To assess the sustainability of water resources management at the river basin scale, the analy-

sis was carried out using the Water Exploitation Index3 (WEI) that extends the considerations

discussed above to the entire river basin and is simply defined as the water abstractions per

year related to the long-term renewable freshwater resources. Although being a very simple

indicator, the WEI shows the pressure exerted on water resources and can help identifying

regions that are prone to water stress. The European Environmental Agency defines the

warning level for the WEI that distinguishes a non-stressed region from a stressed region

around 20% and asssumes that severe water stress and unsustainable water use is indicated

if the WEI exceeds 40%. Alcamo et al. (2000) define ’severe water stress’ at WEI levels

above 40% and ’very high water stress’ over 80% and, based on this levels, estimated that

25% of the Earth are under severe water stress and that this number is expected to further

rise due to population growth and an overall increase in irrigated areas. The assessments of

water resources in the following section will be based on simulated values of irrigation water

withdrawal and discharge.

9.5.2 Aral Sea Basin

The Aral Sea river basin is a landlocked endorheic river basin located in the semi-arid regions

of Central Asia and has a catchment area of 1,676,054 km2. The two main rivers feeding the

Aral Sea are the Amu Darya (A = 617,306 km2) and the Syr Darya (A = 1,058,747 km2)

with a river length of 2,400 km and 2,200 km, respectively. The extensive development

of irrigation (most notably cotton) in the two sub basins starting in the 1950’s has led to a

3Also referred to as Intensity of Water Use (OECD), Withdrawal Ratio or Critical Ratio (CR) (Alcamo et al.,

2000)
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dramatic reduction of the river flows, subsequently leading to a shrinking of the Aral Sea to

about half its size (Cai et al., 2003b), a decline of its water level by about 0.6 ma 1 (Peneva

et al., 2004), and a reduction of the volume of 90% (Micklin, 2006). This reduction in river

flow and the environmental consequences caused by pollution related to irrigation are now

seen as one of the greatest man-made environmental disasters (Waltham and Sholji, 2001)

and the basin is a prime example for unsustainable irrigation development (Cai et al., 2003b).

It therefore provides a unique opportunity to investigate the basin-wide, long-term effects of

irrigation and the operation of reservoirs using theWBMplus macroscale hydrological model.

Figure 9.6: Map of the Aral sea basin showing the location of the major reservoirs, irrigated areas,

and the gauging stations for which monthly discharge data is available in the GRDC data

set. The river basin boundary is based on the STN 30 river network

The climate in the Aral Sea basin is semiarid and extremely continental. Precipitation is

concentrated in the winter and spring months and the highest amounts are observed in the

mountain regions in the southern part of the basin (Schiemann et al., 2007). Annual precip-

itation in the basin varies between 246 mm and 856 mm and is 560 mm on average with no
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significant trend over the last century. The irrigated area in the basin increased steadily in the

last century with a rapid expansion in the 1960’s and 1970’s. The area equipped for irrigation

under contemporary conditions is 3.5 Mha in the Syr Darya sub basin (equivalent to ~3.5%

of the basin area), and 5.2 Mha in the Amu Darya sub basin (~8% of the basin area). The

development of irrigated areas was accompanied by the construction of water distribution

networks and the construction of several major dams. Based on the data set of registered

reservoirs (Chapter 5.7.4), the combined storage capacity in the basin is 56 km3, about 21

km3 of which were constructed in the Amu Darya basin and 35 km3 in the Syr Darya basin.

The dominant type of irrigation is furrow surface irrigation (Saiko and Zonn, 2000). Figure

9.6 shows an overview of the basin, the location of major reservoirs and the distribution of

irrigated areas in the basin.

Modeled discharge in the Syr Darya basin and in the Amu Darya basin for the period before

1950, when irrigation was very localized and negligibly small compared to precipitation

(Shibuo et al., 2007) is 71 km3a 1 and 39 km3a 1, close to reported observed values of 72

and 37 km3a 1 (Cai et al., 2003b; Glantz, 2005), respectively.

Using the contemporary cropland data set (Chapter 4.8.2), the modeled annual irrigation

water withdrawal in the entire basin increased from around 21 km3a 1 at the beginning of

the last century (1911/1920) to more than 56 km3a 1 for the period after 1970 (Table 9.4) and

is lower than previous estimates based on reported values (Cai et al., 2003b; FAO, 1997)4.

The modeled differences between evapotranspiration under disturbed and natural conditions

for the 1991-2002 period are 43 km3a 1 (Table 9.4) and are consistent with the 37 and 50

km3a 1 estimated by Shibuo et al. (2007). The underestimation of modeled withdrawals is

partly caused by low percentages of cotton in the contemporary distribution of crops. In fact,

cotton has been replaced by winter wheat and the percentage of cotton on the total irrigated

area has dropped from 45% to 25% after 1990 (Micklin, 2006), significantly reducing the

water use in irrigation.

To further validate the model, the calculated discharge was compared with monthly observed

discharge from the GRDC data sets (Chapter 5.7.3). Observed discharge data for the Syr

Darya is available for the gauging Station at Tyumen-Aryk (A = 219,000 km2) from 1930 to

1986 and for the Amu Darya at Kerki (A = 309,000 km2) from 1932 to 1989 (Figure 9.6).

Under disturbed conditions, the MBE for the stations Tyumen-Aryk and Kerki is 3.2 and 2.2

mm, and the d-Statistics 0.59 and 0.77, respectively. If the model is configured for pristine

conditions (i.e. the irrigation and reservoir modules are turned off), the performance at both

stations is significantly lower, with MBE values of 5.1 and 3.6 mm and d-Statistics of 0.51

(Tyumen-Aryk) and 0.71 (Kerki). Despite an overestimation of discharge (see discussion

below), the modeled results compare reasonably well with the general pattern of observed

discharge (Figure 9.7).

Under natural conditions, spring and summer peaks in discharge are grossly overestimated

while the ’flattening’ of the hydrograph due to the construction of reservoirs and the decrease

in discharge due to increased evapotranspiration is captured reasonably well for the stations

4FAO (1997) reports a total water withdrawal for the Aral Sea basin in 1980 of 120 km3a 1, 90% of which are

used for agriculture. For the Syr Darya basin alone, Cai et al. (2003b) reports total withdrawals increasing

from 28 km3a 1 in 1961 to 53 km3a 1 in 1990
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Figure 9.7: Modeled and observed hydrographs for the two rivers feeding the Aral Sea and pristine

and disturbed conditions
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in the Syr Darya basin and Amu Darya basin. Components of the hydrological cycle for

the entire basin for different periods of time are summarized in Table 9.4. Starting from the

1970’s, the modeled discharge for both rivers decreases to a total of 104 km3a 1, despite no

decrease in precipitation. This decrease qualitatively reflects the changes in the hydrological

cycle due to increased evapotranspiration over irrigated areas but significantly overestimates

the flows entering the Aral Sea when compared to reported values. The observed discharge to

the Aral Sea for the period 1982-2002 is 12 km3a 1, 8 km3a 1 of which are coming from the

Amu Darya river and 4 km3a 1 from the Syr Darya (Shibuo et al., 2007) while theWBMplus
based estimate is 112 km3a 1.

Table 9.4:WBMplus- modeled components of the hydrological cycle in the Aral Sea basin for dif-

ferent periods of time. P = precipitation, Q = discharge, ET = evapotranspiration, W =

withdrawal, prist = natural conditions, dist = disturbed conditions. Fluxes are in km3a 1,

WEI in %

1911- 1921- 1931- 1941- 1951- 1961- 1971- 1981- 1991-

1920 1930 1940 1950 1960 1970 1980 1990 2002

P Syr D 285 263 244 255 284 276 253 273 266

Amu D 188 190 189 199 219 206 181 196 195

Total 473 453 433 454 503 482 434 469 461

ET Syr D 216 222 205 212 226 228 214 228 224

prist Amu D 100 112 118 113 124 121 116 122 119

Total 316 334 323 325 350 349 330 350 343

ET Syr D 224 230 214 222 236 239 228 245 241

dist Amu D 110 123 129 126 139 139 136 146 145

Total 334 353 343 348 375 378 364 391 386

W Syr D 10 11 12 14 15 17 29 23 24

Amu D 11 12 14 16 19 22 24 29 32

Total 21 23 26 30 34 39 53 52 56

Q Syr D 33 43 39 45 57 48 41 43 43

prist Amu D 48 80 71 87 94 86 66 71 67

Total 81 123 110 132 151 134 107 114 110

Q Syr D 32 41 37 43 55 46 39 43 43

dist Amu D 47 79 70 85 92 85 65 70 67

Total 79 120 107 128 147 131 104 113 110

Excess Syr D 3 3 4 4 3 5 7 9 11

Amu D 5 5 5 6 7 9 10 13 15

Total Total 8 8 8 10 10 14 17 22 26

WEI % Aral Sea 27 19 24 23 23 30 51 46 51

These results suggest that the model is not capable of adequately reproducing the hydrolog-

ical components in the basin under the impacts of irrigation and can be attributed to three

main factors: the underestimation of irrigation water demand, the neglect of inter-basin trans-

fers, and the overestimation of non-sustainable water that partly becomes runoff via return
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flow from irrigated areas. Non-agricultural water uses in the basin are less than 8% of the

total withdrawal (Micklin, 2006). As the consumptive use for water that is used for non-

agricultural purposes is typically much smaller than for irrigation, these abstractions can be

neglected. As explained earlier, the estimates of irrigation water withdrawal are much lower

than reported values and this is due to uncertainties in input data sets. As shown in Chapter

8.2.3, variations in the estimated basin-wide irrigation efficiency drastically impact estimates

on irrigation water withdrawal. Similarly, irrigation intensity is not known with certainty and

can impact those estimates by around 50%. Secondly, water is transferred out of the Aral

sea basin and not taken into account in the model. These inter-basin water transfers out of

the basin are significant and an estimated volume of 14 km3a 1 is exported during the period

1983-2002 (Shibuo et al., 2007), mostly through the Karakum canal in the south of the Amu

Darya sub basin and other inter-basin transfer projects.

However, even if the model would accurately estimated irrigation water demand and con-

sider inter-basin transfers, simulated discharge values will likely be higher than observations

due to the large amount of non-sustainable water abstractions in the basin. This water con-

ceptually represents fossil groundwater that is not connected to the hydrological cycle and

increases steadily from around 8 km3a 1 at the beginning of the last century to an average of

26 km3a 1 for the period 1991-2002. As an average of 30% of the withdrawal in the basin

returns to rivers and streams, the fossil groundwater abstractions increase discharge com-

pared to natural conditions and partly offset the computed decrease in discharge as a result

of increased evapotranspiration induced by irrigation.

The water balance calculations for the Aral Sea basin are further complicated by losses from

discharge during the passage of rivers before they reach the Aral Sea that are not accounted

for by the model. Micklin (2006) estimated these in-stream losses to be around 14% of the

total flow. Nezlin et al. (2004) estimated that even prior to the development of large scale

irrigation, one third of the flow of the Amu Darya is lost by evaporation, transpiration from

vegetation along the banks, and bed filtration before the rivers enters the Aral Sea. Simi-

larly, the Syr Darya loses about 50% of its flow during its journey across the Kyzyl-Kum

desert. Despite this limitation, model results can qualitatively highlight the pressure on wa-

ter resources in the basin, for example expressed using the WEI. The increased abstraction

for irrigation needs has led to considerable water stress in the basin. Using the WEI as an

indicator, the basin has experienced severe water stress starting in the 1970’s (Table 9.4).

Potential approaches to return to a sustainable use of water resources in the basin must there-

fore involve a reduction in irrigation water use. As the population in the Aral Sea basin is

expected to grow by as much as 35% over the next 30 years (Cai et al., 2003b), a decrease

in irrigated areas itself is unlikely. Instead, the water savings would have to come from a

shift to crops that have lower water requirements (see above) and improvements in the water

distribution and conveyance systems.

9.5.3 Krishna River Basin

The Krishna river basin is the second largest river basin in peninsular India with a catchment

area of 258,948 km2 and is populated by some 70 million people. Like most parts of India, the

region experiences a typical Monsoon climate with a distinct rainy season from June through
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Figure 9.8: Map of the Krishna river basin showing the location of the major reservoirs. The river

basin boundary is based on the STN 30 river network

November and thus a high variability in streamflow. The climate is subtropical with most of

the rainfall being observed in the mountains of the Western Ghats and arid conditions in the

central basin (Bouwer et al., 2008). Average annual precipitation for the last century (based

on the CRU data set) varied between 480 mm and 1,112 mm and is 734 mm on average.

Over the last century, annual values of precipitation significantly increased by 0.8 mma 1.

High variability in streamflow and increasing water use have exerted substantial pressure in

the water resources in the basin (Gaur et al., 2007; Bouwer et al., 2006; Amarasinghe et al.,

2005; Jain et al., 2005; Bouwer et al., 2003).

The basin has experienced a considerable growth in irrigated areas in the last century, most

rapidly after India’s independence in 1947. The irrigated area in the basin has increased from

just over 9000 ha in 1903 to around around 400,000 in 1984 while the contemporary area

equipped for irrigation (according to GMIA) is about 4.4 Mha (Figure 9.9). Irrigated areas

include the double cropping of rice and grains, single cropping of sugarcane and areas of

supplemental irrigation of cotton, corn, sorghum and others (Biggs et al., 2006). The crop-

ping cycle can be classified into the monsoon season (Kharif ), from June through October,

the post-monsoon season (Rabi), from November to March, and the dry season (April-May).

As in India in general, practically all irrigated areas are surface-irrigated. Motivated by the

need to store water for irrigation purposes, some major infrastructure projects and reservoirs

have been constructed since the middle of the 20th century (Figure 9.9). The total contempo-

rary storage capacity of registered reservoirs in the basin is around 42 km3. An overview of

the catchment, the location of large reservoirs and the percentage of irrigated areas is given

in Figure 9.8.
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The estimated withdrawal of water for irrigation increased from 13 km3a 1 in the beginning

of the century to 47 km3a 1 as the mean value for the period 1991-2002. The contempo-

rary estimate is consistent with the 31 km3a 1 consumptive water use that was estimated

by Bouwer et al. (2006) and an estimated water use for all sectors in the basin of 47 km3

in 1989 (Central Water Comission of India, 1998). To estimate the variability in model re-

sults caused by the climate variability alone, additional model simulations were performed

under pristine conditions (i.e. neglecting irrigation water abstractions and the operation of

reservoirs) and results were compared with observed river discharge. Figure 9.9 shows an-

nual values of modeled and observed discharge under pristine and disturbed conditions for

the period 1950-2002 for the station Vijayawada (A = 251,355 km2) near the mouth of the

river. For the period of observation, the model tends to underestimate discharge (MBE =

-7.6 mm (37% lower than observed discharge) under disturbed conditions and -5.0 mm (17%

lower) under pristine conditions) but captures the annual and seasonal variations in discharge

reasonably well (d-statistics = 0.68 under disturbed conditions and 0.74 under pristine con-

ditions). Table 9.5 summarizes the components of the hydrological cycle in the Krishna

basin for the 20th century. The modeled evapotranspiration under disturbed conditions at

the end of the last century is about 30 km3a 1 higher than at the beginning of the century.

This increase, however, does not translate to an equivalent reduction in discharge because of

additional water being added to the system from fossil groundwater that eventually becomes

discharge. The modeled amount of water from those sources increased from 5 km3a 1 to

an average of 17 km3a 1 for the period 1991-2002. Consistent with the observations, the

modeled annual discharge decreases significantly with the expansion of irrigated areas and

increased evapotranspiration fluxes. For the last decade of the last century, discharge under

disturbed conditions is 12 km3a 1 lower than the estimate under pristine conditions, repre-

senting a reduction of nearly 50%, consistent with previous estimates (e.g. Bouwer et al.

(2006)).

The construction of major reservoirs (most notably the Nagarjunasagar Dam in 1974 with a

storage capacity of 11.5 km3) significantly altered the flow regime of the river by increasing

dry season flows (when water is released to augment flow) and decreasing wet season flows

(when flows are partly used to fill up reservoirs). While the model captures the reduction

of flows during the wet season reasonably well, it tends to overestimate flows during the

dry season (Figure 9.9). However, the increasing dry season flows under pristine conditions

suggest that the changes are not caused by an inadequate parameterization of reservoir opera-

tion but at least partly caused by a change in the rainfall regime in the basin. Increased water

abstractions have led to substantial pressure on the existing water resources in the basin. In-

dicated by the WEI, water stress was apparent from the beginning of the century (Table 9.5).

Starting in the 1970s, the annual withdrawals in the basin exceed the runoff indicating severe

water stress and leading to a water deficit in the basin that has been previously estimated to

be around 6.06 km3 (Jain et al., 2005).

9.5.4 Danube

While the results for individual river basins presented above were based on data at a spatial

resolution of 30 min, this section will demonstrate the application of the model using the STN

river network (Chapter 5.7.1) at a resolution of 6 min. CRU climate data, and agricultural
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Figure 9.9: Time series of irrigated areas and reservoir capacities for the basin and modeled and

observed discharge for the gauging station Vijayawada; annual discharge, dry season

flows (December-May), and wet season flows (June-November)

Table 9.5:WBMplus- modeled components of the hydrological cycle in the Krishna basin for dif-

ferent periods of time. P = precipitation, Q = discharge, ET = evapotranspiration, W =

withdrawal. Fluxes are in km3a 1, WEI in %

1910- 1921- 1931- 1941- 1951- 1961- 1971- 1981- 1991-

1920 1930 1940 1950 1960 1970 1980 1990 2002

P 187 174 199 192 213 206 196 196 202

Q(prist) 36 24 37 38 48 42 39 34 37

Q(dist) 30 19 30 30 38 31 28 21 25

Q(obs) 56 53 56 52 68 23 29 - 21

ET 161 157 172 166 178 180 178 187 195

W 13 15 16 18 20 25 33 40 47

WEI 36 63 43 47 42 60 85 118 127

data sets based on national statistics were regridded to the finer resolution and the original

version of the GMIA was aggregated to the STN-6 river network resolution. The results of

the model simulation will provide the basis for an assessment of potential climate change

impacts on water demand and availability that is discussed later in this Chapter.

The climate in the river basin is strongly influenced by the Atlantic in the upper basin,
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whereas the Alps in the west, the Dinaric-Balkan mountain chains in the south and the

Carpathian mountain bow in the eastern center provide a significant morphological and cli-

matic barrier (Lucarini et al., 2007). The central and the southern basin are affected by

Mediterranean climate. Based on the CRU data set, the annual rainfall in the basin during

the period 1961-2002 varies between 611 and 934 mm and is 769 mm on average. Highest

rainfall amounts are observed in the mountain chains, while the lowland and the lower basin

are generally dry. Figure 9.10 shows an overview of the Danube river basin with the loca-

tion of major reservoirs and the distribution of irrigated areas. The total area equipped for

irrigation under contemporary conditions is 3.58 Mha and represents 4.5% of the total basin

area.

Figure 9.10: Overview of the Danube river basin showing the fraction of irrigated areas and the lo-

cation of reservoirs.

The estimated average annual water withdrawal increases from around 5 km3a 1 in the

1960’s to around 15 km3a 1 under contemporary (1991-2000) conditions (Table 9.6). Most

of the water is abstracted in Romania and the estimate for contemporary conditions compares

well to the reported water withdrawal from AQUASTAT (2008)5.

As the irrigated areas are concentrated near the lower reaches of the river, the gauging station

Ceatal Izmail (A = 788,002 km2), near the mouth of the Danube was used to compare model

predictions with observed discharge. Figure 9.11 shows time series of modeled and observed

monthly discharge data for the period 1960-2002 while components of the hydrological cycle

for different periods of time are summarized in Table 9.6. Over the entire simulation period,

the model tends to slightly underestimate observed discharge in the basin (the predicted

5the reported figures for the year 2000 are: 13 km3 for Romania, 1.9 km3 for Bulgaria, 2.45 km3 for Hungary.

Abstractions in other countries are insignificant
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Figure 9.11: Modeled and observed monthly time series of discharge for the gauging station Ceatal

Izmail using CRU climate data

values are on average 4.3% lower than the observed values) but is capable of reproducing the

variability of observed discharge in the basin reasonably well (Index of agreement = 0.87).

The increased evapotranspiration over irrigated areas, combined with lower discharge has

resulted in increasing pressure on water resources in the basin (Table 9.6). Although the es-

timated withdrawal under contemporary conditions represents ~9% of the computed runoff

and indicates no water stress, the WEI has experienced a threefold increase since the begin-

ning of the 1960’s. Despite the low WEI, a considerable amount of the estimated irrigation

water demand cannot be met by the computed surface water or groundwater resources on a

grid-cell basis. The annual amount of non-renewable water resources that needs to be ab-

stracted to satisfy irrigation water demand increased from around 1 km3a 1 in the 1960’s to

6 km3a 1 in the last decade of the simulation period, most of which is needed on irrigated

areas near the river in the lower reaches of the Danube river.

Implications of Spatial Resolution

As explained in Chapter 7, the calculations of vertical components of the hydrological cycle

are generally independent of scale. Neglecting biases arising from interpolation of input

data there is no difference in simulated values for different grid cell resolutions. However,

the assumptions regarding the water sources for supplying irrigation water demand in a grid

cell may lead to different results for different grid resolutions. As water can only be supplied

by water stored or flowing in the same grid cell, discharge flowing in a river can supply areas

up to a distance of 50 km (one 30 min grid cell) whereas only areas within a 5 km range

can be supplied from the same river if simulations are based on 6 min resolution. As the the

variations imposed by the resolution for the other sources (small reservoirs and groundwater)

are generally negligibly small, the differences in river water supply can only be compensated
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Table 9.6:WBMplus- modeled components of the hydrological cycle in the Danube basin for different

periods of time.Fluxes are in km3a 1, WEI in %

1961-1970 1971-1980 1981-1990 1991-2000

Precipitation 618 616 562 595

Evapotranspiration 419 424 416 435

Irrigation withdrawal 4.6 8.5 16.2 15.3

Modeled Q 199 191 162 172

Observed Q 184 183 194 194

WEI 2 4 10 10

by water abstractions from non-sustainable sources. The estimates for non-sustainable water

abstractions therefore decrease with coarser resolution. For comparison, simulations for the

Danube river where performed with the 30 min river network and keeping all other input

data sets. For the entire basin, the simulated amount of river water for irrigation supply is

around 40% lower for the 30 min stimulation resolution, ranging from 0.92 km3a 1 for the

period 1961-1970 to 5.54 km3a 1 for the period 1991-2000 (Figure 9.12). As water taken

from non-sustainable sources partly becomes runoff, the simulated values of runoff might

be slightly different depending on the resolution of the model. However, as the WEI relates

water abstractions to discharge under natural conditions, the assessments of sustainability of

water abstractions will not be dependent on scale.

Figure 9.12: Estimated supply of irrigation water from different water sources for different model

resolutions for the Danube river basin
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9.6 Potential Impacts of Climate Change

9.6.1 Introduction

The potential impacts of global warming on the hydrological cycle, the availability of water

resources and their management have been one of the major concerns in the debate about

consequences of global warming. Given the important role of agriculture in providing food

for a growing population and its dependence on climate drivers and water resources, it is im-

portant to assess the impacts of global warming on irrigated agriculture. Climate change may

impact the demand and the management practices for irrigation water in two ways. First, the

pattern of the availability of water may change so that the water required for irrigation may

not be available at the time when it is needed. Secondly, the irrigation water requirements

will be affected by changing global climate directly through altering the plants physiological

processes and indirectly by changing climate conditions (Allen et al., 1991).

At the crop level, transpiration is controlled by the physiological crop properties responding

to global warming: increasing temperatures decrease the stomatal conductance of the crops

and thereby lead to a decrease of transpiration (Betts et al., 2007). Higher atmospheric CO2

concentrations, on the other hand, are generally associated with an increase of plant growth

(CO2 fertilization) and a substantial increase in water use efficiency (expressed as volume of

water used per unit of biomass). The overall direct effect on crop transpiration can therefore

not yet be quantified due to insufficient knowledge (Döll, 2002). With regard to the role of

precipitation in partly supplying the crop water demand, the results on the interannual vari-

ability of irrigation water demand presented in Chapter 8.2.2 suggest that variability is lowest

in regions where irrigation water demand is not strongly supplemented by precipitation and

irrigation water demand per unit area is high. Changing precipitation patterns will there-

fore affect the variability of irrigation water demand in regions with relatively low demand

whereas the demand in regions that entirely rely on irrigation water will be controlled by

changes in the evapotranspirative demand that are generally smaller. As the predicted irriga-

tion water withdrawal is controlled by the temporal distribution of precipitation in relation to

the growing season rather than the annual amount, irrigation water demand may decrease or

increase with decreasing annual precipitation and shifts in both the temporal distribution of

precipitation and the growing season (Döll, 2002). As increasing temperatures are generally

associated with longer growing seasons in the temperate zone, additional water demand may

be required because multiple (and different) crops can be grown in regions where the crop

growth was limited by a short vegetation period.

With regard to the trends in precipitation and the availability of water resources, AOGCM

simulation results indicate a wide range of possible trends in different parts of the world.

The highest increases in annual precipitation are predicted for the high latitudes which is a

very consistent pattern across climate models (Meehl et al., 2007) and consistent with the

observed changes in precipitation during the last decades (Hulme et al., 1998). Significant

declining trends are observed in Western Africa, Northern Africa, Western South America,

and Southern East Asia.

A few studies have investigated the impact of global climate change on the productivity and

the water requirements for crops at larger scales. Izaurralde et al. (2003) used a modified
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version of an agro-ecological model, the EPIC6 model to assess the impact of climate change

on both crop productivity and water requirements for the conterminous United States. The

results indicate a wide range of changes in crop yield and water requirements across the

United States. While yield increases for irrigated corn were predicted in all regions, the

soybean yields are predicted to decrease in the Northern and Southern Plains. These large

differences in the simulated results can largely be explained by the differences in predictions

of precipitation and temperature across the regions. Döll (2002) studied the effects of ex-

ternal climate drivers on irrigation water requirements by using AOGCM outputs to drive

a simple irrigation water abstraction model (see Chapter 6.3) and estimated an increase in

the net irrigation water demand of 3-5% by the 2020s and up to 15% by the 2070s. How-

ever, although mostly consistent over large scales, the results for individual river basins vary

with the AOGCM model used and the spatial AOGCM resolution is generally to coarse for

most river basin studies (Lehner et al., 2006b). Since the river basin scale is at the focus of

such changes, the impact studies should be based on high resolution regional climate models

rather then coarse AOGCM data that is not fine enough to adequately reproduce climate con-

ditions at the river basin scale. Considerable progress has recently been made in downscaling

the information from the coarser AOGCMs to regional climate models (RCMs) (Christensen

et al., 2007) although the atmospheric components of RCMs still face considerable difficul-

ties in reproducing the water balance of large regions (Lucarini et al., 2007). Downscaling

can be done statistically (for a comparison of methods, see Wilby et al. (1998)) or dynami-

cally where the RCM is nested in the AOGCM and AOGCM output data is used as boundary

condition for the RCM and a number of RCMs are now available for many world regions.

The following section will exemplarily discuss the implications of modeled future climate

predictions on estimates of irrigation water withdrawal and water availability based on the

results from a regional climate model for the Danube river basin.

9.6.2 Climate Data

Hollweg et al. (2008) have recently prepared a set of simulations of climate using the Climate

version7 of the Local Model (CLM; Damrath et al. (2000)) of the German Weather Service

(Deutscher Wetterdienst, DWD) nested in the ECHAM5 AOGCM model (Roeckner et al.,

2003).

Model results are available for Europe at a resolution of 0.2° for longitudes between -10.7°E

and 36.9°W and latitudes 34.5°N and 69.9°N. The model simulations for 2001-2100 gen-

erally show an increase in temperature over the whole domain with larger increases around

the Mediterranean and the Alpes region and moderate increases over Central Europe. The

annual precipitation totals show a general increase in Northern Europe and a decrease in

the Mediterranean. In Central Europe, precipitation is projected to significantly decrease

during the summer and increase in winter. The projected increases in mean annual tempera-

tures and the projected changes in mean annual precipitation over the model domain for the

6Erosion Productivity Impact Calculator
7The Local Model must not be confused with the Community Land Model (CLM) that is a collaborative effort

of scientists at NCAR and others and tries to quantify how natural and human changes in vegetation affect

climate (http://www.cgd.ucar.edu/tss/clm/)
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period 2001-2050 and 2051-2100 are shown in Figure A-1 to A-3 in the Appendix. Simula-

tion results are available for the IPCC scenarios A1b and B18 for the period 2001 to 2100.

In addition, control runs that reconstruct the 20th century climate based on contemporary

conditions are provided for the period 1960-2000. The latter results were compared with

simulations based on observed CRU climate data for the period 1961-2000 (Chapter 9.5.4).

The projected climate changes in the Danube basin are generally different for the Mediter-

ranean part of the basin where a decrease in average precipitation is projected, and the parts

that are under the influence of the Northern European climate system, where an increase in

average precipitation is projected (Lucarini et al., 2008). Averaged over the entire basin, the

mean annual precipitation shows a slight decrease for the second half of the 21st century

(Table 9.7). However, the temporal distribution of precipitation within a year is projected to

shift substantially towards more precipitation in the spring and winter months and reduced

summer precipitation. Figure 9.13 shows the predicted mean monthly time series of precipi-

tation based on the CLM A1b data for the periods 2001-2050 and 2051-2100, and the relative

changes compared to the CLM 20th century simulations. Whereas the predicted decrease in

June, July, and August precipitation for the first half of the century are below 10%, the sim-

ulated monthly precipitation for June, July and August for the period 2051-2100 is ~30%

lower than under contemporary conditions. This sharp decrease in summer precipitation is

partly offset by increased precipitation in the rest of the year, most notably in spring precip-

iation in March and April. It is noteworthy that the simulated annual cycle in contemporary

precipitation shows much lower intra annual variability than the observed pattern based on

CRU data (upper panel in Figure 9.13). The basin-averaged air temperature for the CLM

control run under contemporary conditions compares well with the observed mean tempera-

ture based on the CRU data set (Table 9.7). The projected increase for the period 2001/2051

is around 1°C and steadily rises to 3°C for the period 2051/2100. Changes in temperature are

highest during the summer and winter months and lowest during the spring (Figure 9.13).

Table 9.7: Basin averaged precipitation (P) and mean air temperature (T) for the Danube basin

P [mm] T [°C]

CRU 1960/2000 772 8.84

CLM 1960/2000 742 9.15

CLM A1b 2001/2050 746 10.01

CLM A1b 2051/2100 710 12.23

8The A1b scenarios describes a future world with rapid economic growth, a global population peak in the

mid-century, the rapid introduction of new and more efficient technologies, and a balanced use of energy

from fossil and non-fossil sources. B1 refers to a scenario with rapid changes in economic structures with

reduction in material intensity and the introduction of clean technologies. For a complete description of the

scenarios see Barker et al. (2007)
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Figure 9.13: Mean monthly values of precipitation and air temperature averaged over the basin and

the relative changes compared to the 1960-2000 control run simulations

9.6.3 Changes in Irrigation Water Demand

The projected changes in the magnitude and timing of temperature and precipitation affect

the evapotranspirative demand of crops but also change the temporal distribution of precipi-

tation during the growing season. Both of those changes affect the computed irrigation water

withdrawal. The annual water withdrawal for irrigation under the A1b scenario is projected

to increase to 23.4 km3a 1 for the first half of the century and to more than 29.5 km3a 1 in

the second half of the century (Table 9.8), representing an increase of 14 and 43% compared

to the mean value computed for the the period 1961-2000 using the CLM control runs. As

the impacts of increased atmospheric CO2 concentrations on plant physiological processes

are not considered here, the projected increases are caused by a higher evapotranspirative de-

mand of crops (as a result of higher temperatures) and by the decreases in precipitation dur-

ing the summer months (described above). Over the course of the year, the largest absolute

increases are estimated for July, August, and September, reflecting the projected decrease

in precipitation discussed above. In relative terms, these increases are between 5 and 200%

higher than the estimated withdrawal under contemporary climate conditions (Figure 9.14).

Small relative decreases are simulated for the early summer months where the small increase

in precipitation partly offsets the incrased evapotranspirative demand. It is important to note

that the modeled irrigation water withdrawal under contemporary conditions using the CLM

control runs and assuming constant irrigated areas is substantially higher than the modeled

withdrawal using the CRU data. This deviation can largely be explained with the differences

in the annual precipitation cycle between modeled and observed precipitation data (Figure

9.13).
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Figure 9.14: Box-Whisker plot of simulated monthly values of irrigation water withdrawal in the

Danube basin under contemporary conditions (for CRU and CLM data sets) and under

the CLM A1b future climate data. Box indicates starndard deviation, Whisker 10 and

90% percentiles

9.6.4 Changes in Water Availability

To assess the predicted changes in the annual values and in the seasonal pattern of irrigation

water withdrawal with regard to available water resources, it is necessary to put those changes

into a seasonal water supply context. On an annual basis, the runoff in the basin will not

change in the first half of the century but will be substantially (~20%) lower in the period

2051-2100 (Table 9.8). The projected discharge in the basin for the first half of the century

is consistent with the results of Rosenzweig et al. (2004) who used a number of AOGCMs

and found no significant change in runoff in the Danube basin for the first half of the century.

Following the changes in the temporal distribution of precipitation, much of the decrease in

precipitation will be observed during the summer months. Figure 9.15 shows the long-term

monthly mean values of discharge in the Danube basin for contemporary conditions (1960-

2000) and for future conditions using the CLM data for the periods 2001-2050 and 2051-

2100. The combined effects of higher withdrawal and decreased water resources during the

summer months leads to an increased water stress in the basin.

Using the WEI as an indicator to depict water stress based on annual values, the basin could

experience higher levels of water stress in the second half of the century when WEI values of

up to 20% can be expected (Table 9.8). Given the projected seasonal changes in both water

demand and availability, a considerable pressure on water resources is expected during the

summer months.
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Figure 9.15: Box-Whisker plot of simulated monthly values of discharge in the Danube basin. Upper

panel: Long-term mean monthly discharge using the CLM control run (1960-2000) and

CRU observed data. Lower panel: Long-term mean monthly discharge under the A1b

scenario for the periods 2001-2050 and 2051-2100. Box indicates standard deviation,

Whisker 10 and 90% percentiles

Table 9.8: Descriptive statistics for estimated discharge (Q) and irrigation water withdrawal (W) in

the Danube basin using CRU and CLM data. CV=Coefficient of variation, P25=25% per-

centile, P75=75% percentile. Q and W in km3a 1, WEI in %. Irrigation water withdrawal

under contemporary conditions for constant irrigated areas

CRU CLM C20 CLM A1b CLM A1b

1960-2000 1960-2000 2001-2050 2051-2100

W Q W Q W Q W Q

Mean 11.5 188.9 20.5 184.9 23.4 183.2 29.5 148.3

Min 7.7 132.3 13.4 110.0 15.3 108.1 23.1 74.2

Max 17.4 275.4 28.2 291.4 29.9 289.4 37.3 216.7

CV 0.19 0.17 0.15 0.20 0.13 0.23 0.11 0.23

P25 9.6 170.1 18.1 160.2 20.9 153.9 26.5 122.6

P75 13.1 207.9 22.8 205.9 25.4 207.8 32.0 173.3

WEI 6.1 11.1 12.8 19.9
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9.6.5 Summary and Conclusions

The results discussed above suggest that irrigation water demand is increasing substantially

due to the effects of climate change on the timing and magnitude of precipitation and higher

temperature. At the same time, the available water in the basin sharply decreases. The de-

crease is most pronounced during low flow periods in the summer months and is generally

consistent with the projected increase in the occurrence of severe droughts in areas of south

and southern Europe (Lehner et al., 2006b). The combined effect of increasing demand

and decreasing supply in the summer months may exert a pressure on local water resources

that needs to be taken into account in local and regional water resources planing. As these

changes are largely caused by changes in the temporal distribution of precipitation rather

than the magnitude of annual values, the results highlight the importance of climate data

with a high temporal resolution in climate impact studies. It is important to bear in mind that

the results presented above are based on the climate forcings (precipitation and temperature)

of one individual regional climate model. However, Lucarini et al. (2007) compared several

RCMs with regard to the representation of the hydrological cycle in the Danube basin for

the period 1961-1990 and found large discrepancies (up to 50%) both for the monthly cli-

matologies and for mean and annual water balances. Although predicted crop water demand

is likely to be consistent across climate models (as temperature increases are consistent) the

differences in the temporal distribution of precipitation may lead to entirely different results

with regard to the supply and demand pattern in the basin. Furthermore, the analysis pre-

sented above is based on the assumption that there are no changes in the irrigated areas, the

distribution of major crops, and the intensity and efficiency of irrigation water use. Whereas

the assumption of little changes in the irrigated areas in Europe is reasonable (Lehner et al.,

2006b), variations in the cropping pattern, and water management practices can substantially

impact the predictions as well.
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10.1 Summary of Results

To investigate the role of irrigation water abstractions and reservoir operation on continen-

tal and global water cycles, a macroscale model was developed that explicitly accounts for

those human interventions. The development of the new model, WBMplus, was governed

by the availability of global data sets for irrigated areas, reservoirs, and related geospatial

data sets, both based on statistical data and remotely sensed products. WBMplus simulates

the interaction of irrigated areas with non-irrigated areas by explicitly accounting for water

withdrawal and return flow from irrigated areas. It is implemented in a modeling framework

and can operate with a wide range of geospatial data sets at different resolutions, ranging

from one hundred meters to 30 min grid cell size. Based on contemporary data sets of ir-

rigated areas, the modeled volume of water that needs to be abstracted from surface water

and groundwater to meet the irrigation water needs was estimated to be around 3000 km3a 1

globally. A comparison of modeled irrigation water withdrawal with reported values from

national statistics and other studies showed a reasonable agreement despite differences in

some countries. Globally, the model was validated for discharge against observed monthly

discharge from a set of 658 discharge stations covering about 50% of the global land mass

and showed very little bias suggesting that the model is capable of reproducing long-term

continental discharge reasonably well.

Based on time-varying geospatial data sets on irrigated areas and reservoirs that were cre-

ated from statistical data, the model was used to reconstruct the global hydrography of the

last century and to separate trends caused by the climate signal alone and trends caused by

human interventions in the hydrological cycle. Over the last century, significant trends in the

vertical components of the hydrological cycle suggest increased evapotranspiration with the

expansion of irrigated areas. Despite being highly significant in some regions, these changes

did not translate to substantial changes or significant trends in the discharge to the oceans

over the last 100 years. Furthermore, dramatic reductions in flow imposed by increased evap-

otranspiration due to the expansion of irrigated areas in individual river basins did not lead

to variation in the annual flows entering the oceans. Rather, this variation is governed by

variations in the climate forcings over the last century, which is consistent with findings of

Dai et al. (2009) and Milliman et al. (2008). At the global scale, the model did not simulate

a significant increase in terrestrial discharge entering the oceans, contradicting the hypothe-

sis of increasing global runoff as a result of global warming (Labat et al., 2004). With the

exception of the Arctic Ocean, trends in modeled time series of accumulated streamflow en-

tering the Oceans and endorheic basins over the last century were insignificant, which is also

consistent with previous reports (Dai et al., 2009;Milliman et al., 2008). Globally, the most
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significant alteration of the hydrological cycle is not induced by the changes in the vertical

components but by the distortion of river flow caused by large reservoirs.

The construction of large reservoirs over the last century has gradually but significantly al-

tered the seasonality of streamflow and the dynamics of horizontal water transport in the

network of rivers. The construction of reservoirs has led to a threefold increase in the appar-

ent age of water in the horizontal network of rivers globally and even higher increases for

individual oceans. These alterations have a number of effects on biogeochemical processes,

the transport of sediments, and the cycling of nutrients (Vörösmarty et al., 2003; Soumis

et al., 2004; Seitzinger et al., 2002). The model was used to identify river basins under water

stress based on simulated irrigation water withdrawal and simulated discharge. Future cli-

mate data from a regional climate model was used to assess the impacts of climate change

on both irrigation water demand and water supply at the river basin scale. Despite quantita-

tive deviations of model predictions from observed and reported values, the results suggest

that the model adequately represents human interventions in the hydrological cycle and that

simulations can be used to assess water resources and water demand at large scales. The

climate impact assessment showed that future water stress is caused by shifts in the temporal

distribution of rainfall rather than by changes in the annual amount. Those variations lead

to an increase in irrigation water demand and a decrease in available water resources at the

same time and may pose substantial challenges for local water management policies.

The uncertainty in model predictions caused by uncertainties in the input data and the model

itself was assessed using a sensitivity analysis for agricultural data sets and Monte-Carlo

simulations to estimate the uncertainty in predicted discharge caused by parameter uncer-

tainty and input data. Using two different data sets showing the extent of irrigated areas,

results show large uncertainties leading to variations in estimated irrigation water demand of

50% for some countries and 30% for global estimates. Rice paddies have the largest

hydrological impact of all irrigated crop types, so uncertainties associated with their distri-

bution and parameterization substantially impacted model results. An analysis of the model

parameters and the ability to identify them using the GLUE approach was evaluated on two

contrasting river basins (the Mississippi and the Danube river basin). This analysis revealed

a wide range of optimal parameter values for individual river basins and a dependence of

those parameters on hydroclimatic and geomorphological properties in the basin. To put the

estimated uncertainties of discharge predictions into perspective, discharge was simulated

using different global precipitation data sets. Variations in the precipitation signal have a

much larger impact on simulated discharge than parameter variations.

10.2 Limitations and Uncertainties

The simulation of components of the hydrological cycle under natural and disturbed condi-

tions was limited by a number of uncertainties in the input data as well as structural deficien-

cies related to the model itself. Data related to agriculture is not often available as explicit

geospatial data set and must be taken from national statistics with a resolution much larger

than the resolution required for macroscale hydrological models. The uncertainty analysis

revealed substantial uncertainties in the spatial distribution of irrigated areas and the crop-

ping intensity globally. Although the application of the model in a heavily irrigated river
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basin showed results consistent with observations, predictions of irrigation water demand

were found to be highly sensitive to variations in parameters related to the irrigation that are

currently available only as country-scale estimates, although the consistency of the results

with observations suggests appropriate model assumptions. Furthermore, the time series of

irrigated areas created using national statistics do not reflect spatial differences in the dy-

namics of irrigation expansion within individual countries.

With regard to the distortion of hydrographs due to the operation of reservoirs, the results

are limited by the incomplete global repository of registered reservoirs (Vörösmarty and

Sahagian, 2000). Although the data set of large reservoirs represents an estimated 55% of the

total storage volume of impoundments formed by dams over 15 m, river flow is significantly

impacted by the operation of smaller reservoirs that are not accounted for in the model but

collectively have a significant impact on river flow and sediment retention (Vörösmarty et al.,

2003). Furthermore, the current repository of reservoirs provides little information on the

purpose of the reservoir and its operation policy which can strongly impact the effect of

reservoirs on hydrograph distortion.

The application of the model in selected river basins highlighted some structural problems in

the model that limit the application of the model for assessing water availability and demand

with regard to sustainability criteria. First and foremost, the estimates on non-sustainable

water resources are highly uncertain and limited by the lack of an adequate representation

of groundwater that is a general problem of macroscale hydrological models (Lettenmaier,

2001). Related to this problem is a structural issue with the model assumptions regarding

the supply of irrigation water in a given grid cell; the estimated demand can only be met

by abstracting water from stocks or discharge in the same cell. If demand exceeds supply,

water is applied under the assumption that it taken from fossil sources. This can lead to an

increase of simulated discharge when the effects of irrigation water abstraction are taken into

account when part of this water returns from irrigated areas and eventually becomes runoff.

This is a widely observed and well-documented phenomenon, in particular in arid regions

(e. g. Abderrahman (2005); Al-Weshah (2000); Wheida and Verhoeven (2006)). For exam-

ple, based on incomplete regional statistics, Margat et al. (2006) estimate that the current

exploitation of groundwater mining in Northern Africa is around 27 km3a 1. However, the

WBMplus estimated amount of non-sustainable water may be overestimated in some regions

of the world. In reality, water demand could be met from horizontally flowing groundwa-

ter that does not originate in the same grid cell, from water from neighboring cells that is

transported in canals, from reservoirs that are not represented in the model as well as from

non-conventional water sources (desalination, waste water re-use, etc.). All of these factors

are difficult if not impossible to explicitly consider in macroscale hydrological models that

are applied over large spatial domains. As could be shown in Chapter 9.5.4. the simulated

values of the amount of water that cannot be met by local resources are dependent on the

spatial resolution of the model and will be larger at higher resolutions as the area that can be

supplied from one river is smaller. These limitations have to be kept in mind when assessing

non-sustainable water abstractions with a macroscale modeling approach such as the one

presented here.

With regard to hydrological predictions in general, other studies suggest that the performance

of macroscale models can greatly be improved especially during low flow periods if wetlands
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and lakes are adequately represented (Kaspar, 2004). The hydrology of wetlands and lakes

is not explicitly modeled in the current implementation ofWBMplus.

It is also important to note that the estimated changes in the magnitude and timing of hydro-

logical components in natural and disturbed model simulations were based soley on climate

forcings (precipitation and air temperature), water management practices related to irrigated

areas, and the operation of reservoirs. Interactions of atmospheric CO2 concentration and the

hydrological cycle via reduced transpiration and increased runoff (Betts et al., 2007) have not

been accounted for. Furthermore, the effects of land use changes (most notably deforesta-

tion) have not been included. Such changes have been shown to have significant impacts on

the hydrological cycle (Gordon et al., 2005; Haddeland et al., 2007; Piao et al., 2007) and

have been linked to increased runoff globally (Piao et al., 2007) at the same order of mag-

nitude as the changes imposed by increased evapotranspiration in irrigated areas (Gordon

et al., 2005). Separating the natural and anthropogenic effects of changes in the hydrological

cycle is extremely difficult, and the simple method presented here ignores the interrelated

links among climate, atmosphere, soil, and vegetation dynamics. For example, it is possi-

ble that irrigated areas deliver an additional amount of precipitation (Moore and Rojstaczer,

2001, 2002) so that the observed rainfall records already contain an anthropogenic signal.

In addition, the analysis is solely based on atmospheric forcings and their effects on runoff

and does not consider the potential contribution of melting of permafrost areas and glaciers.

Although adding a substantial uncertainty to the model predictions, the limitations discussed

so far are small compared to the uncertainties related to global climate data, especially in

precipitation data sets. The significance of uncertainties in precipitation on a global-scale

water balance context has been shown by Fekete et al. (2004). Uncertainties in the precipita-

tion data sets typically translate to higher relative errors in runoff in semiarid regions and the

use of different precipitation data sets may therefore lead to different spatial and temporal

trends in the hydrological variables.

10.3 Research Needs

To understand the limitations mentioned above, there are several avenues for future research

to help understanding the role of human interventions in the continental and global hydrolog-

ical cycles. The sensitivity analysis revealed that the uncertainties in irrigation water use are

related to the input data while uncertainties due to the model parameters are very small. The

horizontal flow of water outside the river network is currently not considered in macroscale

hydrological models but could help in understanding the role of both renewable and fossil

groundwater in supplying water required for irrigation.

To achieve a comprehensive picture of the impact of water abstractions from rivers, aquifers,

and lakes, a consistent, systematic, and spatially explicit representation (preferably at high

resolution) of irrigated areas is needed. Given the large water demand of paddy rice fields and

their implications for water and nutrient cycling, a comprehensive inventory of those areas

is critically needed. Remote sensing provides a powerful set of products that can potentially

be used to analyze and track agricultural activities over time. Approaches based on remotely

sensed and national census data could support the development of such databases (Xiao et al.,

2005, 2006; Frolking et al., 2006).
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The uncertainties related to the location and hydrological properties of reservoirs will gradu-

ally be reduced with the development of more accurate, consistent and comprehensive global

inventories of dams and reservoirs in combination with high resolution global river networks

that are just beginning to emerge (Lehner et al., 2008).

In addition to higher-resolution input data sets, the model needs to include a better represen-

tation of the dynamics of groundwater flow and its interfaces to river discharge. This would

help to understand the role of ’loosing streams’ in the complex interactions of surface water

and groundwater and the role of groundwater in providing water needed for human water

use.

The export of water from one basin to another is another important human intervention in

the hydrological cycle that needs to be represented in macroscale hydrological models but

will remain a challenging task as long as consistent and systemic inventories of interbasin

transfers are not available at the global scale. As the uncertainty analysis showed, model pre-

dictions are sensitive to conceptual parameters so that spatial variations of those parameters

could help improve the model performance. Ideally, the regionalization of those parameters

could be associated with physical catchment characteristics (Hundecha and Bardossy, 2004).

The biggest uncertainty in macroscale hydrological model predictions however, is caused by

uncertainties in the climate drivers and significant improvements in model predictions can

only be expected if estimates in precipitation data sets are improved. The use of precipitation

data sets that are (partly) based on satellite observations such as the Tropical Rainfall Mea-

suring Mission (TRMM), the Global Precipitation Climatology Project 1 degree daily data

set (GPCP (Huffman et al., 2001)), and the GPCP Version 2 product (Adler et al., 2003) is

limited by the relatively short period of observation but could help reducing the uncertainty

in model input data.

Despite those limitation and uncertainties, the results contribute to the understanding of the

role of irrigation and reservoirs on global and continental water cycles and can provide infor-

mation to the improvement of general circulation models with regard to the representation

of those human interventions. Furthermore, the results indicate important directions for fu-

ture research that help minimizing the uncertainties in simulations and for achieving a more

comprehensive picture of the role of human interventions in the water cycle.
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Appendix

Penman Monteith Equation

The Penman-Monteith method to compute evapotranspiration is based on both an energy

balance of the surface and empirical relationships describing the diffusion of energy from

the surface. It is therefore known as a combination equation which is given by (Allen et al.,

1998):

ET
Rn G acp

es ea
ra

1 rs
ra

(A-1)

where

ET mmd 1 = potential evapotranspiration

MJkg 1 = latent heat of vaporization = 2.45

Rn MJm 2d 1 = net radiation, Eq. A-15

G MJm 2d 1 = soil heat flux density, A-16

es kPa = saturation vapor pressure, Eq. A-18

ea kPa = actual vapor pressure

es ea kPa = saturation vapor pressure deficit

a Mgm 3 = mean air density at constant pressure

cp Jkg 1K 1 = heat capacity of the air = 1005

kPa°C 1 = slope of the vapor pressure curve, Eq. A-8

kPa°C 1 = psychrometric constant , Eq. A-6

rs sm 1 = surface or canopy resistance, Eq. A-3

ra sm 1 = aerodynamic resistance, Eq. A-2

The aerodynamic resistance ra controls the transfer of heat and water from the evaporating

surface to the air and is calculated as (Allen et al., 1998; Brutsaert, 1982):

ra

ln zm d
zom

ln
zh d
zoh

k2uz
(A-2)

where

ra sm 1 = aerodynamic resistance

zm m = height of wind measurements
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zh m = height of humidity measurements

d m = zero plane displacement height, Eq. A-4 and Eq. A-5

zom m = roughness length governing momentum transfer

zoh m = roughness length governing transfer of heat and vapor

k = von Karman’s constant = 0.41

uz ms 1 = wind speed at height z

The bulk or surface resistance rs describes the resistance of vapor flow though the vegetation

and evaporating soil surface and can be approximated using the following approximation

(Allen et al., 1998):

rs
rl

LAIa
(A-3)

where rl[sm
1] is the stomatal resistance of the well-illuminated leaf and LAIa[m

2 m 2] is the

active (sunlit) leaf area index and describes the fraction of the leaf that actively contributes

to the transfer of heat and vapor. LAIa depends on the type of vegetation and varies with time

relative to the maximum leaf area index Lp. The stomatal resistance rl represents the average

resistance of an individual leaf and is a function of climate, crop type, and water availability.

The zero plane displacement height can be computed as (Federer et al., 1996)

d
h zoh

0 3
(A-4)

for Lp 4 and as

d 1 1h ln 1 2 Lp Sp
0 25 (A-5)

for Lp 4. Sp[m
2m 2] is the projected stem area index that is dependent on the type of

vegetation. Atmospheric parameters in Eq. 5.6 are calculated as follows:

The psychrometric constant can be expressed as

cPP
10 3 0 00163

P
(A-6)

where

P kPa = atmospheric pressure (Eq. A-7)

MJkg 1 = latent heat of vaporization

cP MJkg 1°C 1 = specific heat of moist air = 1 01310 3MJkg 1°C 1

= ratio molecular weight of water vapour/dry air = 0.622

The atmospheric pressure P [kPa] as a function of elevation z [m] (assuming ideal gas law

and 20°C for a standard atmosphere) can be expressed as

P 101 3
293 0 0065z

293

5 26

(A-7)

The slope of the saturation vapor pressure curve kPa°C 1 is a function of mean tempera-

ture Tm °C :
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4098 0 6108 exp 17 27Tm
Tm 237 3

Tm 237 3
2

(A-8)

The solar radiation received at the top of the earth’s atmosphere on a horizontal surface

(extraterrestrial radiation) Ra is a function of latitude, date and time of the day:

Ra
24 60

GSCdr s sin sin cos cos sin s (A-9)

where

Ra MJm 2d 1 = extraterrestrial radiation

Gsc MJm
2min 1 = solar constant (0.0820)

dr = inverse relative distance Earth-Sun (Eq. A-10)

s rad = sunset hour angle (Eq. A-12)

rad = latitude

rad = solar declination (Eq. A-11)

Inverse relative distance Earth-Sun dr and solar declination are expressed as a function of

date:

dr 1 0 033cos
2

365
J (A-10)

0 409sin
2

365
J 1 39 (A-11)

where J is the number of the day in the year (Julian Day) between 1 (1 January) and 365 or

366 (31 December). The sunset hour angle s is given by:

s arccos tan tan (A-12)

The daylight hours N are given by:

N
24

s (A-13)

The net longwave radiation Rnl is proportional to the absolute temperature of the surface

T raised to the power of four and is expressed by the Stefan-Boltzmann law (corrected for

humidity and cloudiness):

Rnl
T 4

max K T 4
min K

2
0 34 0 14 ea 1 35

Rs

Rso
0 35 (A-14)

where Tmin K and Tmax K represent the minimum and maximum Temperatures [K], Rs Rso is

the relative shortwave radiation (limited to 1.0). Net radiation Rn is the difference between

the incoming net shortwave radiation Rns and the outgoing net longwave radiation Rnl

Rn Rns Rnl (A-15)
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To consider the soil heat flux G in Eq. 5.6 complex models are required that calculate the

soil heat flux based on the mineral composition and the water content of the soil. However,

as G is usually small compared to Rn, particularly when the soil is covered with vegetation,

it is ignored if daily time steps are used:

G 0 (A-16)

Saturation vapor pressure es is a function of the mean air temperature T and can be expressed

as

es T 0 6108exp
17 27T

T 237 3
(A-17)

Due to the non-linearity of the above equation, the mean saturation vapor pressure should

be computed from mean values of the saturation vapor pressure for minimum and maximum

temperatures Tmax and Tmin for the same period:

es
es Tmax es Tmin

2
(A-18)

The solar radiation Rs can be calculated using a simplified version of the Angstrom formula:

Rs 0 25 0 5
n

N
Ra (A-19)

If cloud cover is used instead of sunshine duration, the solar radiation is calculated as (Black,

1956):

Rs 0 803 0 340C 0 458C2 (A-20)

whereC is the unitless cloud cover fraction. The clear-sky solar Radiation Rso that is required

for computing the net longwave radiation (Eq. A-14):

Rso 0 75 2 10 5zRa (A-21)

where z[m] is the elevation of the station above sea level. Net shortwave radiation Rns is the

balance between incoming and reflected solar radiation as a function of the Albedo :

Rns 1 Rs (A-22)

A number of empirical relationships have been established to estimate the vegetation-

dependent parameters in the above described equations for a number of vegetation classes.

Federer et al. (1996) list such parameters for a set of typical vegetation cover types.
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Table A-1: Root length for different land cover type from Federer et al. (2003)

Cover type Root length [mm]

Boreal evergreen forest 2100

Temperate evergreen forest 3100

Tropical evergreen forest 3500

Temperate deciduous forest 3000

Tropical deciduous forest 2900

Tropical savannah 1000

Sclerophyllous shrub 3400

Temperate grassland 1000

Cultivated 110

Tundra 860

Short evergreen grass 1000

Warm Desert 280
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Table A-2: Crops considered as major crops by Leff et al. (2004) and assumed crop coefficients kc
[-], length of development stages L[d] and rooting depth [m] from Allen et al. (1998)

Name kcini kcmid kcend LIni LDev Lmid Llate RootingDepth

Barley 0.3 1.15 0.25 15 30 40 20 1.25

Maize 0.3 1.2 0.6 25 30 40 30 1.1

Millet 0.3 1 0.3 15 27 40 27 1.5

Rice 1.05 1.2 0.8 30 30 70 30 0.75

Rye 0.95 1.05 1 20 30 60 40 0.8

Sorghum 0.3 1.05 0.8 20 35 45 30 1.5

Wheat 0.5 1.15 0.3 20 25 60 30 1.5

Cassava 0.3 0.9 0.3 20 40 90 30 0.7

Potato 0.5 1.15 0.75 20 40 50 30 0.5

Sugarbeet 0.35 1.2 0.7 20 40 50 30 0.9

Sugarcane 0.4 1.25 0.75 35 60 180 100 1.5

Pulses 0.4 1.15 0.55 20 40 50 30 0.8

Soybean 0.4 1.15 0.5 20 40 50 30 0.8

Groundnuts 0.4 1.15 0.6 20 40 50 30 0.7

Rapeseed 0.35 1.07 0.35 20 40 50 30 1.25

Sunflower 0.35 1.07 0.35 20 40 50 30 1.21

Oilpalm 0.35 1.15 0.35 20 40 50 30 1.5

Cotton 0.35 1.17 0.6 20 40 50 30 1.35

Others 0.35 1.15 0.6 20 40 50 30 1.0
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Table A-3: Estimated Irrigation Efficiencies (Döll and Siebert, 2002)

Region Efficiency

Canada 0.7

United States 0.6

Mittelamerika 0.45

South America 0.45

North Africa 0.7

West Africa 0.45

East Africa 0.55

South Africa 0.55

OECD (Europe North) 0.5

OECD (Europe South) 0.6

Eastern Europe 0.5

Baltic States, Belarus 0.6

Rest of former 0.6

South Asia 0.4

Oceania 0.7

Japan 0.35
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Table A-4: Characteristics of reservoirs with observed operational data. Reservoir purposes based on

ICOLD data (H = hydropower, I = Irrigation, C = Flood control, S = Water Supply, N =

Navigation, O = Others). = Residence time. Data were provided by N. Hansaki, Natl.

Inst. for Environmental Studies (Japan)

Reservoir Name County Basin C [km3] Q[m3 s] [a] From To Purpose

Akosombo Ghana Volta 150 1278.29 3.72 1900 1998 H

American Falls USA Columbia 2.06 206.42 0.32 1978 1995 IHR

Bhumibol Thailand Chao Phraya 13.46 163.22 2.61 1980 1996 IHCS

Big Bend USA Mississippi 2.13 728.9 0.09 1970 2000 CHINR

Buford USA Apalachicola 2.36 55.99 1.34 1900 2004 CHR

Canyon Ferry USA Mississippi 2.4 156.14 0.49 1971 2000 HCISR

Dworshak USA Columbia 4.28 152.01 0.89 1974 1996 CHRSF

E. B. Campbell Canada Nelson 2.2 387.05 0.18 1993 2002 H

Flaming Forge USA Colorado 4.67 66.91 2.21 1971 2000 HCSR

Fort Preck USA Mississippi 22.12 306.38 2.29 1970 2000 CHIN

Fort Randall USA Mississippi 5.7 754.19 0.24 1970 2000 CHNR

Garrison USA Mississippi 22.82 678.27 1.07 1970 2000 CHIR

Glen Canyon USA Colorado 33.3 463.35 2.28 1971 2000 HIRX

Grand Coulee USA Columbia 11.79 2993.49 0.12 1978 1990 IC

Grand Rapids Canada Nelson 9.64 491.82 0.62 1987 1996 H

Hungy Horse USA Columbia 4.28 106.16 1.28 1970 2000 IHC

Intern. Amistat USA Rio Grande 3.41 81.12 1.33 1900 2000 IHCS

Intern. Falcon USA Rio Grande 3.41 103.52 1.04 1977 2002 IHCS

Jenpeg Canada Nelson 31.79 1816.56 0.55 1987 1996 CH

Kettle Rapids Canada Nelson 2.53 2795.7 0.03 1987 1996 H

Libby USA Columbia 7.17 299.04 0.76 1975 1990 HCR

Missi Falls Canada Nelson 28.37 784.35 1.15 1987 1997 H

Navajo USA Colorado 2.11 40.69 1.64 1971 2000 IR

Ohahe USA Mississippi 27.43 974.07 0.89 1970 2000 CHIN

Oroville USA Sacramento 4.36 189.21 0.73 1995 2004 SCIHR

Palisades USA Columbia 1.73 192.98 0.28 1970 2000 IHCRF

Sirikit Thailand Chao Phraya 10.55 166.42 2.01 1980 1996 IHC

Trinity USA Klamath 3.02 54.78 1.75 1970 2000 IHCR

Yellowtail USA Mississippi 0.02 98.64 0.01 1970 2000 R
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Figure A-1: Relative changes in annual precipitation in the CLM model domain (Sres A1b scenario),

compared to the 1960/2000 control runs
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Figure A-2: Projected changes in the mean annual air temperature (2m) from the CLM data set in

Europe for the A1b emission scenario, compared to the 1960-2000 Control Runs[°C]
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