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3- D N U M E RI C A L M O D E L LI N G  O F F L O W A N D S C O U R A R O U N D A PI L E 

B y 

A. R o ul u n d 1 , B. M. S u m er2 , J. Fr e ds ø e3 , J. Mi c h els e n4

A B S T R A C T 

A 3- D fl o w c o d e, Elli p S ys 3 D, t e st e d a n d v ali d at e d, h as b e e n i m pl e m e nt e d al o n g wit h a 
m or p h ol o gi c  m o d el  t o  si m ul at e  t h e  s c o ur  pr o c ess  ar o u n d  a  v erti c al  cir c ul ar  pil e  i n  a  
st e a d y c urr e nt i n t h e c as e of n o n- c o h esi v e s e di m e nt. T h e k -ω  t ur b ul e n c e m o d el h as b e e n 
us e d  f or  cl os ur e.  T h e  m or p h ol o gi c  m o d el  i n cl u d es  ( 1)  a  t w o- di m e nsi o n al  b e d  l o a d  
s e di m e nt tr a ns p ort d es cri pti o n, a n d ( 2) a d es cri pti o n of s urf a c e-l a y er s a n d sli d es f or b e d 
sl o p es e x c e e di n g t h e a n gl e of r e p os e. T h e si m ul ati o n c a pt ur e d all t h e b e d f e at ur es, i. e. t h e 
s c o ur h ol e a n d t h e f or m ati o n of a d o w nstr e a m d u n e at t h e i niti al st a g e, a n d t h e tr u n c at e d 
c o n e-s h a p e d s c o ur h ol e i n t h e e q uili bri u m st a g e. T h e m a x i m u m e q uili bri u m s c o ur d e pt h 
o bt ai n e d fr o m t h e si m ul ati o n c o m p ar es f a irl y w ell wit h t h e m e as ur e m e nts.  

I N T R O D U C TI O N

D uri n g t h e l ast 3 0 y e ars, m or e t h a n 1 0 0 0 of a b o ut 6 0 0. 0 0 0 bri d g es i n t h e U nit e d St at es 
h a v e f ail e d, a n d 6 0 % of t h os e f ail ur es ar e d u e t o s c o ur, Bri a u d et al. ( 1 9 9 9). M or e t h a n 
8 5. 0 0 0 bri d g es i n t h e U. S. ar e v ul n er a bl e t o s c o ur ( a b o ut 8 0. 0 0 0 b ei n g s c o ur-s us c e pti bl e 
a n d a b o ut 7. 0 0 0 s c o ur- criti c al) ( L a g ass e et al., 1 9 9 5). T w o e x c ell e nt a c c o u nts of s c o ur at 
bri d g e  pi ers  h a v e  r e c e ntl y  a p p e ar e d  i n  t h e  lit er at ur e.  O n e  is  a  c o m p e n di u m  of  p a p ers  
pr es e nt e d  i n  t h e  A S C E  W at er  R es o ur c es  E n gi n e eri n g  C o nf er e n c es  fr o m  1 9 9 1  t o  1 9 9 8  
wit h 3 7 1 a bstr a cts a n d 7 5 p a p ers ( Ri c h ar ds o n a n d L a g ass e, 1 9 9 9). T h e ot h er is a b o o k b y 
M el vill e  a n d  C ol e m a n  ( 2 0 0 0),  w hi c h,  al o n g  wit h  t h e  r e c e nt  k n o wl e d g e,  dr a ws  o n  t h e  
e x p eri e n c es  o n  s c o ur  i n  N e w  Z e al a n d,  a n d  ill ustr at es  a  gr e at  m a n y  e x a m pl es  of  c as e  
st u di es.

T h e pr es e nt p a p er d e als wit h s c o ur ar o u n d a v erti c al cir c ul ar pil e i n st e a d y c urr e nts. T h e 
k e y el e m e nt i n t h e s c o ur pr o c ess is t h e s o- c all e d h ors es h o e v ort e x ( Fi g. 1). T his v ort e x, 
c o m bi n e d wit h t h e eff e ct of t h e c o ntr a cti o n of  str e a mli n es at t h e si d e e d g es of t h e pil e 
( Fi g. 1), c a n er o d e a si g nifi c a nt a m o u nt of s e di m e nt a w a y fr o m t h e n ei g h b o ur h o o d of t h e 
pil e, l e a di n g t o a tr u n c at e d- c o n e-s h a p e d s c o ur h ol e ar o u n d t h e pil e.  

1
T e c h ni c al U ni v ersit y of D e n m ar k, D e p art m e nt of M e c h a ni c al E n gi n e eri n g, C o ast al a n d Ri v er 

E n gi n e eri n g S e cti o n, B uil di n g 1 1 5, 2 8 0 0 L y n g b y, D e n m ar k. Pr e s e nt a d dr e ss: NI R A S S ort e m o s e v ej 2, 3 4 5 0 
All er ø d, D e n m ar k 
2  T e c h ni c al U ni v ersit y of D e n m ar k, D e p art m e nt of M e c h a ni c al E n gi n e eri n g, C o ast al a n d Ri v er E n gi n e eri n g 
S e cti o n, B uil di n g 1 1 5, 2 8 0 0 L y n g b y, D e n m ar k, ( s u m er @is v a. dt u. d k)  
3  T h e s a m e a s a b o v e. 
4

 

 T e c h ni c al U ni v ersit y of D e n m ar k, D e p art m e nt of M e c h a ni c al E n gi n e eri n g, Fl ui d M e c h a ni cs S e cti o n, 
B uil di n g 4 0 3, 2 8 0 0 L y n g b y, D e n m ar k. 
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Scour around piles in steady currents has been investigated quite extensively (particularly 

in the context of scour at bridge piers). Reviews of the subject can be found in the books 

of Breusers and Raudkivi (1991), Hoffmans and Verheij (1997), Whitehouse (1998), 

Raudkivi (1998), Melville and Coleman (2000) and Sumer and Fredsøe (2002). 

While much has been written on the subject of scour around piles in steady currents, 

comparatively few studies have been presented of the 3-D numerical modeling of scour. 

Table 1 gives a list of studies on the 3-D modeling of flow and scour around piles in 

steady currents. As seen from the table, Olsen and his co-workers (1993, 1998) were the 

only researchers to undertake the 3-D modeling of the actual scour process.  

The purpose of the present study is (1) to implement a hydrodynamic model, EllipSys3D, 

for the 3-D flow around a pile, both with a rigid plane bed and with a sediment bed 

undergoing scour; and (2) to conduct a 3-D numerical simulation of the actual scour 

process itself, using the former hydrodynamic model. A major paper, which summarizes 

the results of the study, is under preparation, Roulund et al. (2002). The present paper 

reports some of the results obtained for the numerical simulation of the scour process in 

the case of steady current. 

HYDRODYNAMIC MODEL 

A three-dimensional general-purpose flow solver, EllipSys3D, has been used to calculate 

the flow. EllipSys3D is a finite volume numerical model that solves the incompressible 

Reynolds-averaged Navier-Stokes equations 
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in which Ui is the i-th component of velocity; t is the time; xi is the Cartesian coordinates; 

ρ is the fluid density; p is the dynamic pressure; µ is the viscosity; and µT is the eddy 

viscosity, calculated by a two-equation eddy-viscosity type turbulence model, as detailed 

in the following paragraphs. 

EllipSys3D has been developed at the Risø National Laboratory, Denmark and at the 

Technical University of Denmark. It is an incompressible general purpose Navier-Stokes 

solver. It is basically a multiblock finite volume discretisation of the Reynolds Averaged 

Navier-Stokes equations. A Variety of turbulence models are available. The model is 

under constant development. It has been implemented successfully in various engineering 

problems such as those in wind engineering and aeronautical engineering. The basic 

principles of the model have been described in Sørensen, 1995 and Michelsen, 1992. The 

following web address can be consulted for further information: 

http://www.risoe.dk/vea-aed/numwind/ellipsys.htm

We have also implemented the model to simulate the flow around and forces on a sphere 

placed near a bed. A paper summarizing the results of this latter study is under 

preparation.
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For steady-state flow calculations, the SIMPLE algorithm (Patankar, 1980) is used. In 

this algorithm, the pressure field is calculated and the velocity field is corrected so that 

the continuity equation 
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                           (2)    

is satisfied in an iterative manner. By underrelaxation of the correction to the velocity 

field, the transient components of the flow are suppressed. Although the majority of the 

present study involved steady-state flow calculations, some transient flow calculations 

have also been performed. 

Table 1. A list of studies on 3-D modeling of flow and scour around a pile in a current. 

The k-ω model (Wilcox, 1993) has been selected as the turbulence model because of its 

better performance in the case of boundary-layer flows with strong adverse pressure 

gradients (Wilcox, 1993; Menter, 1992). The details of (1) the algorithms used in both the 

steady-state flow calculations and the transient calculations and (2) the turbulence model 

adopted in the study will be given in Roulund et al. (2002). 

Author Turbulence

model 

Steady current: 

Steady 

solution; or 

Transient 

solution 

Bed:  

Rigid bed; or 

Sediment bed 

Scour Remarks 

Olsen and 

Melaaen 

(1993)

k-ε Steady 

solution 

Sediment bed Initial stage of 

scour is 

simulated. 

Clear-water 

scour 

Horseshoe vortex is 

resolved 

Olsen and 

Kjellesvig 

(1998)

,, ,, ,, Entire scour 

process is 

simulated. 

Clear-water 

scour  

,,

Richardson 

and 

Panchang 

(1998)

Turbulent 

closure 

through a 

number of 

advanced 

schemes 

Steady 

solution, and 

Transient 

solution (?) 

Three kinds 

of  “frozen” 

rigid beds, 

ranging from 

a plane bed to 

equilibrium 

scour hole 

Scour process is 

not simulated 

,,

Tseng, Yen 

and Song 

(2000)

Large Eddy 

Simulation 

Transient 

solution 

Rigid plane 

bed

Scour process is 

not simulated 

Horseshoe vortex and 

vortex shedding are 

resolved 

Present k-ω Steady 

solution, and 

Transient 

solution 

Both rigid 

and sediment 

beds 

Entire scour 

process is 

simulated. Live-

bed scour 

Horseshoe vortex is 

resolved. Vortex 

shedding is resolved 

in some rigid-bed 

simulations 
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The boundaries of the computational domain are (1) Inlet, (2) Outlet, (3) Symmetry 

Boundaries and (4) Walls.  

At the inlet boundary, zero transverse, v, and vertical, w, velocities were specified. The 

inlet profiles for u, k and ω were based on the equilibrium profiles obtained from 

uniform-channel flow calculations with similar flow settings. At the outlet boundary, 

zero-gradient (Neumann) conditions were applied for all quantities. At the symmetry 

boundaries (i.e., at the sides and top surface of the computational domain), Neumann 

conditions were applied for k and ω, while no-flux conditions were applied for the three 

components of the velocity, u, v and w (in which u is the streamwise component of the 

velocity). At the walls (i.e., at the bed, and at the surface of the pile) zero velocity was 

specified for u, v and w; zero turbulent energy was specified for k when the wall was 

smooth, while the Neumann condition was applied when the wall was rough and 

transitional. Regarding the latter condition, experiments do reveal that the Neumann 

condition (i.e., ∂k/∂n = 0) is satisfied at the wall, n being the direction normal to the wall; 

see Nezu, 1977; Sumer et al., 2001 and 2002). The Dirichlet condition was applied for ω,

υ
ω

2
f

r

U
S=                   (3)

in which Uf  = (τ0 /ρ)
1/2

 is the friction velocity based on the wall shear stress τ0. The 

quantity Sr is a tuning parameter, and it is used to account for the bed roughness: 
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r k
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S                               (5)

in which ks
+
 = ks Uf /ν is the wall roughness in wall units, ν is the kinematic viscosity and 

ks  is Nikuradse’s equivalent sand roughness. Wilcox (1993) was the first to introduce the 

previous boundary condition. The tuning parameter Sr was given by Wilcox (1993) in a 

form slightly different from that in the preceding equations.  

The momentum, continuity and turbulence-model equations are transformed into 

curvilinear coordinates, linearised and decoupled.  The latter has been described in detail 

in Sørensen (1995), following the principles given in Patankar (1980). 

The computational mesh is based on a multi-block structure with each block containing 

N
3
 computational cells where N is the number of cells in each spatial direction. N = 16 

was used for the scour and transient-flow simulations. The total number of cells in these 

cases was 197.000. The number of cells across the depth was 32, and the number of cells 

around the pile perimeter was 64. The length, width and depth of the computational 

domain were 15D, 18D and 2D, respectively. In the case of steady (not transient) rigid-

bed simulations, N was 32; the total number of cells was 786.000; the number of cells 

across the depth was 64, while the number of cells around the pile perimeter was 128; the 

length, width and depth of the computational domain were 20D, 20D and 2D,
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respectively. (It may be noted that N = 32 required prohibitively large computational 

times for the scour and transient flow simulations). Fig. 2 shows a detailed picture of the 

mesh used for the steady-current rigid-bed calculations.  

MORPHOLOGIC MODEL 

The morphologic model couples the flow solution with a sediment transport description, 

and routines for updating the computational mesh based on the mass balance of sediment. 

There are three elements in the morphologic model: (1) the bed load; (2) the sand slide; 

and (3) the equation of continuity for sediment. 

Each element is now considered individually. 

Bed load. A two-dimensional bed load description has been developed. This description 

is actually an extension of the bed-load equation of Engelund and Fredsøe (1976) to a 2-

D vectorial representation. The bed load occurs on a slope (Fig. 3). bU  is the mean 

transport velocity of a particle moving as bedload. The fluid velocity at the particle 

position is U , different from bU  (Fig. 3). Following Engelund and Fredsøe (1976), the 

latter velocity may be taken as fUaU = in which fU is the friction velocity, and a is an 

empirical constant, taken as a = 10. 

The rate of bedload transport in volume per unit time and per unit width, bq , is related to 

bU by the following equation (Engelund and Fredsøe, 1976) 

b
EF

b U
d

p
dq

2

3

6

π
=                  (6)

in which d is the grain size, and pEF is the percentage of particles in motion in the surface 

layer of the bed. The above equation implies that the bedload transport is determined by 

two quantities: pEF and bU .

In the case where the sediment transport takes place on a horizontal bed, Engelund and 

Fredsøe (1976) obtained the following semi-empirical expression for pEF

4/1

4)6(1

−



















−
+=

c

d

EFp
θθ

µ
π

                (7)

in which µd is the dynamic friction coefficient, taken as 0.51 (Fredsøe and Deigaard, 

1992, p. 218), θ is the Shields parameter and θc is the critical value of θ for the initiation 

of sediment motion at the bed. 
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We have adopted in the present study the same expression as in Eq. 7 to calculate the 

quantity pEF. In the case of the sloping bed, pEF may undergo a slight change, in the order 

of magnitude of (1/cos β) where β is the slope of the bed (Fig. 3). However, this has not 

been incorporated in the calculations on grounds that such a refinement in the model may 

be inconsistent with several other assumptions inherent in the formulation of the sediment 

transport.

The Shields parameter in Eq. 7 is 

dsg

U f

)1(

2

−
=θ                  (8)

in which s is the specific gravity of the sediment grains, and g is the acceleration due to 

gravity. Uf in Eq. 8 is taken as the magnitude of the friction-velocity vector associated 

with the skin friction.

The critical Shields parameter in Eq. 7, on the other hand, is 

)
sincostansin

1(cos
2

22

0
ss

cc µ

βα

µ

βα
βθθ −−=               (9)

in which θc0 is the critical Shields parameter for a horizontal bed, taken as 0.05, µs is the 

static friction coefficient, taken as µs = 0.63 for the sand used in the present simulation 

(Lambe and Whitman, 1969, p.149), and α is the angle between the flow velocity vector 

and the direction of the steepest bed slope (Fig. 3).  

The particle velocity is obtained from the two components of the equation of particle 

motion. The equation of motion in the direction of particle motion, considering that the 

particle is, on average, moving with a constant velocity: 

0)cos()cos(sincos 1 =−−+ dD WWF µβψαβψ            (10)

in which W (= (π/6)ρg(s-1)d
3
) is the submerged weight of the particle, FD is the drag 

force

22

42

1
rDD UdCF

π
ρ=                            (11)

in which CD is the drag coefficient, and Ur is the velocity of the fluid (at the particle 

position) relative to the particle (Fig. 3), rU  = fUa - bU . Luque (1974) (see also 

Fredsøe and Deigaard, 1992, p. 211) found from his experiments: 

)
2

1
(3

4

0
2

c

s
D

a

C

θ

µ
=                             (12)

The equation of motion in the direction perpendicular to bU , on the other hand, reads:
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0)sin(sinsin 1 =−− ψαβψ WFD                           (13)

There are also the following geometric relations from Fig. 3  

0sinsin 1 =− ψψ fr aUU                                         (14)

and

0coscos 1 =+− bfr UaUU ψψ                                        (15)

Eqs. 10, 13, 14 and 15 are to be solved for the four unknown quantities, namely Ub, Ur, ψ

and ψ1. Once Ub and ψ1 are determined (and therefore bU  is obtained), then inserting 

bU  and pEF in Eq. 6 will give the bed load transport bq .

Sand slide. Observations show that, during the development of the scour process, there 

are areas at the upstream side of the scour hole where the local bed slope exceeds the 

angle of repose, and, as a result, shear failures occur at these locations. Two “ingredients” 

of this latter process are that, first of all, the backward flow at the base of the pile erodes 

the foot of the upstream slope of the scour hole (A in Fig. 4), and secondly there is a 

continuous sediment supply into the scour hole from upstream (B in Fig. 4). 

Our visual observations have indicated that, in the upstream part of the scour hole, the 

bed “avalanched” when the slope β exceeded approximately the angle of repose,  βr = 

32
0
, by a few degrees. They have also shown that this shear failure of the soil occurred 

just below the bed surface, and sand slided down towards the centre of the scour hole, 

and, after each sand slide, the bed slope was a few degrees lower than the angle of repose. 

Based on these observations, a sand slide procedure was developed to calculate the new 

slope of the bed, and it was incorporated in the morphologic model. The adopted 

procedure is as follows: (1) Calculate a new sediment transport rate when the local bed 

slope is exceeded βr + 2
0
. (2) Do this, based on a new particle velocity Ub, obtained from 

the following equation:  

0
42

1
cossin

2 =−− bDd dUCWW
π

ρβµβ                                  (16)  

(This is basically the equation of motion for a sediment particle (undergoing the sand 

slide) in the direction of the particle motion, considering that the particle is, on average, 

moving with a constant velocity in an otherwise still water). (3) Update the bed with the 

ordinary morphology scheme (described in the following paragraphs). (4) Repeat this 

procedure until the local bed slope was reduced to βr - 2
0
. In this procedure, a pseudo 

time step was used since it was assumed that the sand slide takes place instantaneously.  

Continuity equation for sediment. The mass balance for sediment at each grid point on 

the bed is 

∑
=

•
−

−
=

∂

∂
4

1

, )(
1

1

1

i

iiib lnq
Ant

h
                                        (17) 
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in which h is the bed elevation, n is the porosity (taken as n = 0.4 in the present 

calculations); A is the projected area (on the x,y plane) of a small bed element; i indicates 

the number assigned to each side of the projected area (i=1,..4); in are the normal vector 

at the i–th side of the projected area, ibq ,  is the sediment transport vector at the i–th side 

of the projected area; and |li| is the length of the i–th side of the bed element. 

The procedure in the computations was as follows: (1) Generate the mesh; (2) Calculate 

the flow; (3) Calculate the sediment transport due to bed load; (4) Update the bed; (5) 

Check the sand slide; and (6) Return Step 1. The morphological time step in the 

calculations was 0.02 s initially, and gradually raised to 0.1 s. The computational time 

was 2.5 months on an Alpha 21264 workstation, equivalent to a 1500 MHz Pentium IV. 

Finally, it may be noted that, in the present model, the sediment transport is taken as the 

bed load alone (no suspended-load sediment transport is considered). To the authors’ 

knowledge, no study is yet available, investigating the effect of the suspended load on 

scour in a systematic manner. However, the data reported in Baker (1986) (where the 

velocity is increased gradually so as to cover the flow regimes from the clear-water scour 

to the live-bed scour with the bed-load, the bed-load and suspended load and finally the 

suspended-load mode sheet-flow regimes; see Melville and Sutherland, 2000, p. 493, or 

Sumer and Fredsøe, 2002, p. 179) suggests that this effect is not radically significant. 

RESULTS AND DISCUSSION 

A detailed validation exercise has been undertaken for the hydrodynamic model for the 

case where the bed was plane and rigid. Three kinds of quantities have been tested, 

namely the velocity, the pressure and the bed shear stress. The velocities calculated by 

the model have been compared with our own data, obtained with the Laser Doppler 

Anemometry technique. (This has been achieved for both smooth and rough bed cases). 

The pressures have been calculated for the same test conditions as in the experiments of 

Dargahi (1989) and compared with the measured pressures of the latter author. The bed 

shear stresses, calculated from the model, have been compared with our own hot-film 

measurements, and also with the experimental data of Hjorth (1975) where the bed shear 

stress was measured, again, using the hot-film technique. A detailed description of the 

entire validation exercise including the description of the experiments will be given in 

Roulund et al. (2002).

From the latter, it has been concluded that the model captures fairly well the mean 

features of the 3-D flow, including the horseshoe vortex (one of the key elements in the 

scour process), meaning that it can be used for the calculation of the scour process around 

a pile placed in a sediment bed. The following paragraphs will present the results of this 

numerical experiment where the scour process is simulated using the previously 

described hydrodynamic and morphologic model. 

In the numerical simulation of scour, vortex shedding was not resolved (the steady-state 

flow simulation was adopted). This was because of the prohibitively large computational 
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times required for the transient flow solution (where the vortex shedding is resolved) 

combined with the time-resolved morphologic calculations. We shall return to this point 

later in the section. 

The water depth in the simulation was taken as δ =20 cm, corresponding to the boundary 

layer thickness. The pile diameter was D = 10 cm. The mean flow velocity was V = 46 

cm/s. Based on the mean grain size d50 = 0.26 mm, Nikuradse’s equivalent sand 

roughness for the bed was estimated to be ks = 0.7 mm from the relation ks = 2.5 d50. The 

Shields parameter was θ = 0.11, i.e., the scour was in the live bed regime. The ratio 

between the approach velocity and the critical velocity for the initiation of sediment 

motion was V/Vc = 1.6. 

In the simulation, the bed ripples were resolved. To trigger the development of ripples a 

perturbation was applied to the prescribed bed roughness in the first 20 seconds of the 

simulation. The sediment transport description in the present model is based on uniform-

size sand, i.e., the sediment gradation was σg = d85/d50 = 1. 

Fig. 5 shows a sequence of pictures, illustrating the time evolution of the scour hole 

obtained in the present simulation. As seen from the figure, all the topographic bed 

features observed in a typical scour process (in the laboratory, or in the field, see for 

example, Melville and Coleman, 2000 and Sumer and Fredsøe, 2002) are captured. These 

features are: (1) The semi-circular shape of the upstream part of the scour hole with a 

slope equal to the angle of repose; (2) The formation of a ''bar'' downstream of the pile 

(the deposited sand), and its downstream migration; (3) The formation of a gentler slope 

of the downstream side of the scour hole; and (4) The formation and migration of ripples 

outside the scour hole. 

Baker (1986) (see also Melville and Coleman, 2000, p. 493) reports experimental data for 

the equilibrium scour depth as a function of the sediment gradation σg and the velocity 

ratio V/Vc. For V/Vc = 1.25 (the value of the velocity ratio used in the simulation), the 

experimental data for the equilibrium scour depth can be worked out from the data 

reported in the latter publications. Table 2 (Row 2) presents the results of this exercise. 

Table 2. Equilibrium scour depths for V/Vc = 1.25. Comparison. The experimental values in the second row 

in the table are worked out from the experimental data of Baker (1986) (see also Melville and Coleman, 

2000, p. 493 for Baker’s data).

Sediment gradation, σg 1.0 1.3 2.3 2.9 4.4 5.2 

Equilibrium scour depth, S/D

Experiments, /D = 3.8-6, 

Baker (1986) 

- 1.9 1.7 0.9 0.4 0.16 

Equilibrium scour depth, S/D

Numerical result, /D = 2, 

Present 

1.5 - - - - - 

Table 2 shows that the normalized equilibrium scour depth S/D for a sediment with a size 

distribution close to uniform, namely σg = 1.3, is S/D =1.9. The present simulation (for 

sediment with a uniform size distribution) predicts this value as S/D = 1.5 (21% smaller 
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than the measurements for σg = 1.3). It may be noted, however, that part of this 

discrepancy may be accounted for the relatively small value of the boundary-layer-to-

pile-diameter ratio in the simulation, namely δ/D = 2 (see Melville and Sutherland, 1988, 

for the influence of the boundary-layer thickness on the scour depth; see also Sumer and 

Fredsøe, 2002, p. 180). 

Fig. 6 shows the bed shear stress amplifications for the initial plane bed and for the 

equilibrium scoured bed in the simulation. The bed shear stress amplification for the 

scoured bed is reduced considerably. However, the bed shear stress in the scour hole is 

still larger than outside the scour hole. This is linked to the relatively higher transport 

rates inside the scour hole (the higher transport rates dictated by the sediment continuity). 

As discussed earlier, the vortex shedding is not resolved in the present scour calculations. 

To observe the influence of the vortex shedding on the flow, some transient flow 

calculations with a rigid plane bed have been undertaken. These calculations have shown 

the following. (1) The transient behaviour of the wake was evident from the numerical 

simulation with the shear layers emanating from the side edges of the pile, rolling up to 

form the lee-wake vortices sketched in Fig. 1, which eventually lead to vortex shedding; 

(2) The horseshoe vortex was also evident in the transient calculations (not surprisingly); 

and (3) The transient component of the flow regarding the horseshoe vortex was 

practically nonexistent; the present simulation did not resolve the secondary, time-

dependent vortices within the horseshoe vortex reported in Baker (1979) and Dargahi 

(1989).

In the previously described steady-state solutions of the present flow model, the transient 

component of the flow is suppressed in the iteration procedure of the numerical 

simulations (see the discussion under Hydrodynamic Model above). In this connection, 

an interesting question may be: how does the steady solution compare with that obtained 

by time averaging of the transient solution (the time averaging taken over one vortex-

shedding period). Fig. 7a shows the contour plot of the bed shear stress obtained from the 

steady solution, while Figure 7b shows that of the time-averaged bed shear stress from a 

transient simulation. As seen, the two plots are almost identical. It is only in the wake 

region where a slight difference is observed. This would enable the large computational 

times for transient simulations to be reduced tremendously (by as much as an order of 

magnitude) by adopting steady simulations of the flow, and obviously the latter would be 

a great advantage when such computations are implemented for scour calculations. 

CONCLUSIONS 

1. A 3-D hydrodynamic model, EllipSys3D, incorporated with the k-ω turbulence model 

has been adopted to simulate the flow around a vertical circular pile exposed to a 

steady current. 

2. The model has been coupled with a morphologic model. The latter has been used to 

calculate scour around a vertical circular pile exposed to a steady current. 

3. The present numerical simulation captures all the main features of the scour process. 
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4. The equilibrium scour depth obtained from the simulation agrees fairly well with the 

measurements. 

5. The calculations show that the amplification in the bed shear stress around the pile is 

reduced considerably with respect to that experienced at the initial stage where the 

bed is plane.

6. The calculations also show that the bed shear stress in the scour hole can still be 

larger than the undisturbed value. This is linked to the contraction of the streamlines 

in the scour hole towards the pile. 

7. Computations with a rigid plane bed reveal that the steady flow calculations give 

practically the same bed shear stress as the time-averaged bed shear stress obtained 

from the transient flow calculation. 
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Fig. 1. Definition sketch. 
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Fig. 2. Detail of mesh and block structure. 

Fig. 3. Force balance on a single bed-load particle on a sloping bed. 

Fig. 4.  Sand slide. 
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Fig. 5. A sequence of the bed morphology calculated from the present model. 
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Fig. 6. Amplification in the bed shear stress. 

Fig. 7. Amplification in the bed shear stress. Plane bed. Comparison between the steady 

flow calculation and the transient flow calculation. ReD = 4.6×10
4
, δ/D = 2, D/ks = 140 

and ks
+
 = 15. 
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