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ABSTRACT: For years bridge designers in the U.S. have used FHWA 

Publication Hydraulic Engineering Circular No. 18 (HEC 18) as a principal tool 

to determine scour depths. Increasingly, though, practitioners recognize that 

some of the circular' s standard equations over predict scour depth for certain 

geologic and hydraulic conditions. In an effort to improve scour design and 

evaluation methods, the New Jersey Department of Transportation (NJDOT) 

recently conducted a survey of current scour practice of DOTs across the U.S. 

The ten-question survey queried agencies about their design standards, 

experiences with failures, monitoring programs, and countermeasure preferences, 

among other things . This paper presents the results of the nationwide scour 

survey. Highlighted are the creative and diverse approaches by some states to 

either modify HEC 18 procedures or develop alternative scour prediction 

methods. The paper also discusses critical geologic, hydraulic, and hydrologic 

parameters for rational evaluation of scour depth, gleaned from both the survey 

and local experience with New Jersey bridges. 

INTRODUCTION 

Prevention of bridge scour has now been a national pnonty for two full 

decades. Beginning in 1990 with the Federal Highway Administration ' s 

(FHW A's) issuance of Technical Advisory T5140.20, transportation agencies 

across the U.S. have been deliberately engaged in evaluating the scour 

susceptibility of bridges within their inventories . Those bridges found to be scour 

critical are now in various stages of remediation, ranging from monitoring to 

outright replacement. While progress is being made, many state and county DOTs 

are still in the process of implementing their action plans. The reason is the sheer 
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number of bridges that detailed screening has determined to be scour susceptible, 

which number into the hundreds in some states. 

Prudent action is warranted, since scour remains a leading cause of bridge 

failure in the U.S. Fortunately, the large majority of the failures are not sudden or 

catastrophic. More commonly, the responsible agency observes progressive 

erosion and scour, and then decides to repair the bridge or replace it preemptively. 

For riverine flow the principal scour tool for U.S. bridge designers is Hydraulic 

Engineering Circular No. 18 (HEC 18) published by the FHWA. Increasingly, 

though, practitioners recognize that the standard equations in HEC 18 over predict 

scour depth for certain hydraulic and geologic conditions. This is not surprising, 

since most of the HEC 18 relationships are based on laboratory flume studies 

conducted with sand-sized sediments . It is fair to ask whether scale modeling can 

effectively represent a phenomenon as complex as scour, especially in view of the 

wide diversity of hydrologic, hydraulic, and geotechnical conditions that exists 

across the nation. Indeed, the scour behavior of a bridge spanning a mile-wide 

river with silty sediments in the Midwest is quite different from a bridge crossing 

a boulder-filled stream in the Mountain States, which differs yet again from 

another bridge spanning a modest-size river choked with coarse glacial outwash 

in the Northeast. Recognizing such regional differences, and driven by the 

funding limitations, it is prudent to re-examine predictive scour models. 

BACKGROUND 
HEC 18 has been a key companion resource for FHWA's national scour 

program. Now in its fourth edition, HEC 18 remains in wide use by 

transportation agencies and consultants. The scour design relationships contained 

in the publication are an amalgamation of work by various investigators. For 

abutment scour, the principal relationship is the Froehlich Equation, which is 

based on a regression analysis of 170 laboratory flume tests (Froehlich, 1989). 

The alternative HIRE equation is also provided, and it is originally based on field 

data for scour at the end of spurs on the Mississippi River (Richardson, Simons, 

and Lagasse, 2001). Other methods for estimating abutment scour are also cited, 

including Sturm (1999) and Melville (1992) . These are mostly based on 

laboratory flume testing as well. 

The principal design relationship in HEC 18 for estimating pier scour is the 

CSU equation, which was derived from laboratory data by researchers at 

Colorado State University (Richardson, Simons, and Lagasse, 200 I). Other 

relationships developed from laboratory flume testing are also cited but not 

specifically recommended, e.g. Laursen (1983) and Jain and Fischer (1979). 

Without question, HEC 18 has served a worthy function in the nation's scour 

safety program by providing agencies and consultants with access to a 

compendium of design relationships. However, HEC 18 was never meant to be a 

mandate, but rather a guidance document that describes the "state of knowledge 

and practice." It does not preclude a transportation agency from applying another 

method of scour prediction as long as it is rational and defensible. 
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A number of states have now opted to either modify the methods in HEC 18 or 

develop entirely new, alternate approaches for scour evaluation. Such efforts are 

typically backed by scientific studies that factor in the geologic and hydrologic 

conditions that exist within the respective state. An important motivation for 

these modified/alternate methods are the results of comparative field studies, 

which consistently show poor correlation between predicted scour using HEC 18 

methods and actual scour observed in the field. And the disparity is becoming 

more apparent as the database of bridge inspection and monitoring data continues 

to expand. 

COMP ARA TIVE SCOUR STUDIES 

In recent years, several studies have compared the field scour observed at 

bridge sites with the scour values predicted by various equations. The studies 

reflect the ever increasing concern that current methods for estimating scour depth 

are principally based on laboratory experiments and do not necessarily correlate 

well with field conditions. These agencies are seeking more realistic procedures 

to estimate scour depth, since resources for construction and repair are chronically 

limited, and bridges need to be better prioritized so that funds are expended where 

they are truly needed. 

Three recent comparative studies of bridge scour will be summarized in this 

section. All studies were rigorous, and in total they comprise more than 200 

bridges located in five states. 

(1) Lombard, P.J. and G.A. Hodgkins (2008) 

This insightful study was recently completed by the U.S. Geological Survey 

(USGS) in cooperation with the Maine Department of Transportation. The 

investigators analyzed 50 bridges that were distributed geographically throughout 

the state. The median age of the bridges was 66 years, and all were single-span 

on non-tidal waterways. Field surveys were conducted to detennine channel 

geometry and characteristics, as well as to measure observed abutment scour, 

which ranged from 0 to 6.8 ft. The average actual observed scour across all the 

sites was less than I ft. Skew angles of the abutments and embankments in 

relation to the channel showed wide variation, ranging from 0 to 50 degrees. 

The four scour estimation methods applied to the bridges in the Maine study 

were the FroehlichlHire method, the Sturm method, the Maryland Department of 

Transportation method, and the Melville method. A summary of the study results 

comparing predicted and observed scour are presented in Table 1. As indicated, 

no significant correlation was found between calculated scour and scour observed 

in the field for any of the four methods. In fact, predicted scour was frequently an 

order of magnitude greater than observed scour. Scour was also underpredicted 

by the equations 4% to 14% of the time. Given the lack of correlation between 

predicted and observed scour, the authors suggest it may be preferable to 

prescribe a single value of abutment scour and apply a suitable factor of safety. 
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TABLE 1: Summary of Predicted vs. Observed Abutment Scour for Maine 

Study (modified from Lombard and Hodgkins, 2008) 

Over predictions Under predictions Corre/. 

Method % Avg (ft) Max (ft) 0/0 Avg (ft) Max (ft) Coeff 

Froehlich 96 10.8 33.2 4 2.2 3.9 0.00 

Sturm 86 8.4 50.9 14 5.5 17.7 0.01 

MDDOT 89 11.8 200.3 II 1.2 3.0 -0.09 

Melville 86 4.3 21.3 14 1.4 3.2 0.08 

(2) Benedict, S.T, N. Deshpande, N. M. Aziz and P.A. Conrads (2006) 

In this study the USGS in cooperation with the FHWA analyzed 144 bridges in 

South Carolina. Scour depth predictions were based on hydraulic conditions 

associated with 100-year flow at all sites and the flood of record at 35 sites. Five 

published scour equations were used to analyze each substructure including the 

original Froehlich equation, the modified Froehlich equation, the Sturm equation, 

the Maryland Department of Transportation equation, and the HIRE equation. 

Comparisons of predicted and observed scour for all bridge sites led the 

investigators to conclude that all five of the equations frequently over predicted 

scour depth, and at times excessively so. The investigators also reported on the 

difficulty of obtaining representative samples of bed sediment. They cautioned 

against the use of surface "grab" samples to characterize sediment grain size, 

suggesting soil borings instead. 

(3) Wagner, c.R., D.S Mueller, A.C. Paroia, D.J . Hagerty, & S.T Benedict 

(2006) 

This comparative scour study was conducted under the National Cooperative 

Highway Research Program (NCHRP), and its focus was IS bridge sites located 

in the states of Minnesota, Montana, and South Dakota. The scour estimation 

equations applied to the studied bridges included the Stunn equation, the 

Froehlich equation, the modified Froehlich equation, and the HIRE equation. 

Upon comparing the predicted with the observed scour depths, the authors 

concluded that all methods were unreliable. Mostly, the scour equations over 

predicted scour depths, often by a factor of 2 to 40 times. However, under certain 

conditions predicted depths were less than observed depths. The authors cite the 

failure of laboratory research and one-dimensional models to capture the 

complexity of field conditions as the major reason for the unreliability of the 

predictive equations. 
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SCOUR PRACTICE SURVEY: DESIGN AND RESULTS 

During summer 2009, a Scour Practice Survey was sponsored by the New 

Jersey Department of Transportation (NJDOT) in an effort to assess the varied 

scour design and evaluation methods used by transportation agencies. The survey 

objectives were threefold: (1) to compile an updated summary of scour practice as 

related to HEC 18; (2) to query about modified or alternative methods for 

estimating scour depth; and (3) to identify potential best practices that might be 

adopted in New Jersey. 

The ten-question survey was designed and administered by the New Jersey 

Institute of Technology (NJIT). It queried agencies about scour design standards, 

experiences with failures, monitoring programs and countermeasure preferences, 

among other things. In an effort to maximize response rate, participants were 

given the choice of several response modes, including direct on-line (to a server), 

email attachment.mailed hard copy, or any combination of these. Respondents 

were also encouraged to forward files and links describing local scour practice. 

NJDOT distributed the survey to all the State Bridge Engineers via the 

AASHTO Bridge Committee network in late July 2009. Reponses began to 

accumulate on the NJIT server immediately. Over the next 60 days, response to 

the Practice Survey was notably strong with a total of 35 responses received, 

representing a nearly 70% response rate. Some respondents also forwarded 

failure data, photos, and design standards and specifications. The authors believe 

that the favorable response rate reflects, in part, a growing desire by states to seek 

alternatives for the analysis tools in HEC 18. 

The results of the Scour Practice Survey are summarized in Table 2. The first 

question serves to confirm the breadth of the scour problem nationally, with 68% 

of agencies responding that they have had bridges fail due to scour, either by 

outright failure or by preemptive replacement. The most common type of scour 

erosion reported in the survey was local (23 responses), followed by meandering 

(17), contraction (16), debris (15), and degradation (14). Overtopping was 

reported by only six agencies as a problem. About 40% of the respondents 

indicate that they have installed fixed instrumentation to measure scour at 

abutments or piers, while only 17% have actually generated any summaries that 

compare predicted scour with field measurements. A similar number of agencies 

report that they have undertaken either field or laboratory measurement of erosion 

rates for soil or rock materials. 

Among the most interesting result of the survey was the response to the 

Question 6, which asked whether there was a need to modify current HEC 18 

design procedures. An overwhelming 79% of the agencies responded in the 

affirmative. Consistent with this response, nine agencies indicate that they are 

now using modified or alternative scour analysis methods for new bridges, while 

II states indicate that they employ modified/alternative analysis methods for 

existing bridges. 

The final two questions provide insight about natural and artificial scour 

protection means currently in use. Slightly over half (54%) of the agencies 

consider the effects of natural armoring in their scour computations. Natural 
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TABLE 2: Summary of Scour Practice Survey Results 

Q1: Have you had any bridges 

that have failed due to scour, Yes = 69% No = 31% 
including outright failures or 

preemptive replacements? 

Q2: In your experience, what Cl I: L/') I: Cl 
(") 

are the most prevalent types of N I: .2 .... 0 I: L/') 
.;: 

u'" II ~~ '0. II 
erosion that have caused failure II Q) .... c.", 

"l:l .... Ill .... II) "l:l .... .... 
and/or created potential danger iii 

; II !:; II ~ ~ II .g II 
Q) 

U .r:: 

of failure? (may check more than 0 
I: Cl Q) 0 ...J 

Q) 0 Q) 
Q) > 

one; no. of responses is shown) 
~ u c c 0 

Q3: Have you generated any 

summaries that compare field Yes = 17% No = 83% 
measurements with predicted 

scour (either published or 

unpublished)? 

Q4: Have you installed fixed 

instrumentation to measure Yes = 43% No = 57% 
scour at abutments or piers 

(either automated or semi-

automated)? 

Q5: Have you made any field or 
laboratory measurements of Yes = 17% No = 83% 
erosion rates of soil or rock 

materials for the purpose of 
scour evaluation? 

Q6: In the light of your 

experience of different types of Yes = 79% No = 21% 
bridge scour, is there a need to 
modify current HEC-18 design 

procedures? 

Q7: What scour procedures and Standard FHWA Version Modified/Alternate Verso 

equations do you use in the 
75% 25% 

design of new bridges? 

QS: What scour procedures and Standard FHWA Version Modified/Alternate Verso 

equations do you use in the 
69% 31% evaluation of existing bridges? 

Q9: Do you consider the effects 
of natural armoring in your scour Yes = 54% No = 46% 
computations? 

Q10: Does your agency have a 
'" '" preference for particular kinds of N L/') 0 .... 

I: II 
II (") 

(") .... Q) .... 
o . "l:lll) L/') Q) II 

scour counter-measures? (may II II 
; II .- I: ';ti Q;'E Q)- iii Q) 

II 

check more than one; no. of 0. I: C III "l:l.r:: - 0 .... .... Q) 

III 0 > :1- Q) g E 1:- Uln responses is shown) C. :c II) 0 :I Cl .r:: 
. ;: E t: . 0 

o Q) 

III o I: u> ii: (!) 
.c Q) u. ~ <{g III 

~o:: en 0 c-
u 
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armoring occurs when a residual layer of coarse particles is exposed on the stream 

bed due to erosion and removal of fines . With regard to scour countermeasures, 

riprap remains the preferred choice by more than a 2: I ratio. Gabions, debris 

deflection/removal, and foundation strengthening were the next most applied 

countermeasure methods. A small minority of the agencies report use of 

articulated concrete blocks, concrete pavement, or "other" methods. 

Those states that are currently using modified or alternate scour analysis 

methods also generously furnished supporting documentation. In some cases, the 

method changes were for internal agency use only. These included: (1) use of 

100-year flows for existing bridges as a maximum; (2) reduction of the factor of 

safety of the Froehlich equation; and (3) guided application of engineering 

judgment. 

Other states have published fonnal design standards and/or rigorous scientific 

studies supporting their deviations from the standard methods in HEC 18 . 

Selected examples of such modified or alternate scour analysis methods are listed 

and briefly described in Table 3. Reference links are also provided. 

NEW JERSEY'S SCOUR PROGRAM 

In 1990, NJDOT launched a robust statewide Scour Evaluation Program to 

assess the nearly 2,400 existing state and county highway bridges over 

waterways. Based primarily upon underwater inspection reports, the Stage I 

screening studies initially identified 313 state-owned bridges as potentially scour 

susceptible. In-depth Stage II scour evaluations were then carried out in four 

phases following the analysis procedures described in HEC 18. Upon completion 

of the Stage II evaluations, a total of 165 state bridges were determined to be 

scour critical. 

In 2006, the Department launched a Plan of Action for the state's scour critical 

bridges. The Plan addressed corrective work for all scour critical structures, 

which is currently underway. The Plan also prescribed a new real-time flood 

monitoring program for bridges on the State Watch List to help safeguard the 

traveling public until corrective work was completed. The real-time monitoring 

program is Internet-based and is currently in operation. It is triggered by flood 

warnings and stream gauges located in the major watersheds around the state. 

Field crews are automatically dispatched to potentially affected bridges, and they 

are authorized to take preventive and/or corrective actions, as required. The real­

time program is a cooperative effort between NJDOT's Structural Evaluation 

Group, Operations Group, and Regional Maintenance Engineers. 

The Department has also recently engaged the USGS West Trenton Office to 

conduct erosion monitoring at selected scour critical bridges. These bridges, 

located along watercourses with high environmental sensitivity, have no history 

of observed scour and were placed on the critical list solely based on HEC 18 

analysis methods . Assuming that no significant erosion is recorded over a several 

year period, consideration will be given to removal from the scour critical list. 

A research study is also currently underway by NJIT to review and revise 

NJDOT's scour evaluation. Although the study is only about half-completed, the 
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TABLE 3: Selected Examples of Modified or Alternative Scour Evaluation 

Methods across the U.S. 

State Method Description 

Alabama This USGS Scientific Investigations Report published in 2008 provides an 

altemate method to assess scour depth in the Black Prairie Belt soil , a 
consolidated, highly cohesive, organic clay within Alabama's Coastal Plain. 

Envelope curves are presented based on observations of clear-water 
contraction scour at 25 bridge sites. 

Related link: hUp:!/pubs.usgs.gov/sir/2007/5260/ 

Illinois Illinois DOT permits reduction in scour depth computed by HEC 18 methods 
for bridges founded in cohesive soil or rock. Such reductions are graduated 

from 0 to 100%, depending on soil strength or degree of lithification of rock. 

Maine 

Pennsyl-

vania 

Related link: hUp:!/www.dot.state.il.us/bridges/brmanuals.html 

This USGS Water Resources Investigations Report collected and analyzed 
pier-scour data for eight bridges across Maine over a four year period. 

Observed maximum scour depths were compared with predictions using the 
CSU equation in HEC-18. The relation performed well for rivers in Maine, 

and MaineDOT currently uses it for evaluation of existing and new bridges. 

Related link: hUp://me.water.usgs .gov/reports/wrir02-4229.pdf 

PennDOT scour design method recognizes the variable erosion behavior of 

geologic materials in scour design. It establishes three classifications: sound 
bedrock, erodible bedrock and coarse soil (gravel, cobbles and boulders), and 

specific embedment depths and footing details are prescribed for each. 

Related link: 
flp:! /flp.dot.state .pa .us/public/PubsForms/Publications/PU B %20 15M. pdf 

South A recently published USGS Report of Investigation extends the earlier 2006 

Carolina USGS study described above in "Comparative Scour Studies." It 
recommends use of envelope design curves to estimate scour depth . The 

curves are rigorously justified with field observations and laboratory data. 
SCDOT has incorporated the method into their latest scour design standards. 

Related links: hUp://pubs.usgs.gov/sir/2009/5099/ 

hUp://www.scdot.org/doing/pdfs/reguirements2009.pdf 

Texas This comprehensive study performed by Texas Transportation Institute 
summarizes a new method to assess a bridge for scour. It uses three levels of 
bridge scour assessment (BSA 1, 2, & 3) and erosion classification charts. 

Scour vulnerability is determined by comparing the predicted scour depth with 

allowable scour depth of the foundation. The method is relatively simple to 
apply, and it overcomes some of the over-conservatism in current methods. 

Related link: hUp://Ui.tamu.edu/documents/0-5505-1 .pdf 

NJIT Team has already reached several preliminary conclusions: 

(l) The HEC 18 equations have led to excessively conservative design values for 

some state bridges. Revised computational procedures are needed to permit 

designers to adjust safety factors according to field performance and risk leveL 

(2) The bed materials in New Jersey' s rivers are geologically diverse, and they 

often contain scour-resistant materials such as boulder trains, stiff clay, and shale. 
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Revised analysis procedures are being developed to reflect New Jersey geology, 

which will reduce predicted scour depths for some sites. 

(3) A review of the Stage II studies indicates that better standardization is needed 

in sampling and analysis of the stream bed materials. It appears that Dso values 

used for analysis are biased towards finer grain sizes on account of wide use of 

surface grab sampling and lack of consideration for cobbles and boulders when 

present. In view of these findings, an important focus of the current study will be 

to develop a viable and unifonn geotechnical sampling protocol so that scour 

analyses are based on a deeper vertical profile of actual stream bed sediments. 

(4) The stream discharges used in the Stage II studies were developed using 

different methodologies (e.g. extreme value, regression analysis) and data from 

different agencies (e.g. FEMA, USSCS, USGS) . Recently, the USGS has 

published a report (Watson and Schopp, 2009) providing an updated methodology 

for estimating flood magnitude and frequency for New Jersey streams, which 

reflects changes in factors such as impervious cover and population density. 

Differences between the flow data generated using the new USGS model and the 

original Stage II data are being investigated and assessed. 

I 
Input Bridge Data I 

including age , configuration , span , foundation 

details, redundancy, ADT, scour history 

~-------- ~~ ~ ~--~ ~ ~------~ I Geotechnical Assessment I I HydrauliclHydrologic Assessment I 
I~I~ II~I I~I~II~I 

I I I I I I 
I EnterRisk 

'" Decision Matrix 

Geotechnical Risk 
~ .............. .. 
: Geotechnical : 

: Sampling • 
Low High Med 

Insta I / 
"" 

..c: 
CountermE asures 

'" 
Cl 

Q: :f orMan tor / 
CJ 

~ ';;, 
0 

/ Conduct / ~ 
" Additional 

" 
., 

/ / >. ::;: Evaluation 
:I: '/ ~, ] 
'5 / r: 
" 3: / 

Remove from 
>. 0 Sc ur Critical :I: ...J 

~ list 

: with New : 

<- - ~ Protocol : 
Interacti::· .A: ••••••••••• 

1--t----+""-----t---- ~9 Analvsis ~ 
1.--_ •••• 1 ••••••••••• 

,,- -;.: Scour Analysis 

: by Alternate 
• Methods 
................. 

~ 
Recommended Actions 

Depending on dual risk level, to include increased inspection, new geotech. sampling, erosion 
monitoring, alternate analysis, countermeasures, or removal from scour critical list. 

FIGURE 1: NJDOT Decision Matrix Model for Scour Evaluation 
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A "Decision Matrix Model" is also being developed as part ofNIDOT's scour 

research project. The tiered, risk-based model will allow the Department to 

reassess the bridges on the state's Scour Critical List. It is expected its application 

will better prioritize bridges and permit selection of more appropriate corrective 

actions. An abbreviated flowchart of the model is shown in Figure 1. The first 

step is to input relevant data including age, configuration, span, ADT and scour 

history. The next step is to perform geotechnical and hydraulic/hydrologic risk 

assessments using existing and new data. This information is the entered into the 

Risk Decision Matrix to determine overall scour risk. In the final step, one or 

more recommended actions are taken depending on risk level, which may include 

modification of inspection frequency, additional analyses, erosion monitoring, 

installation of countermeasures, or removal from the list. 
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