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ABSTRACT 

In this paper, methods are presented that combine experimental and micro 

tomographic information to derive parameters of the grain and pore structure of 

wide-gradated soils. For this purpose, samples based on a model soil were prepared 

for special experiments as well as for high-resolution CT imaging. Compacting and 

column experiments were developed to determine specific parameters of the pore 

and grain structure. Among others, the grain size and discharge quantity of 

potentially mobile grains were identified as well as characteristics of the supporting 

skeleton of the model. 

The results of the compaction and column experiments provide suitable 

geometric parameters of realistic grain and pore structures for analyzing suffosive 

erosion phenomena, whereas the CT specimens support the description and 

visualization of representative pore structures. The presented methods contribute to 

a better understanding of the physical processes within the pore structure. As a part 

of the joint project "Conditions of suffosive erosion phenomena in soils", the 

results of this paper can be incorporated into pore-network models to verify and 

simulate existing transport models. 

INTRODUCTION 

Recent extreme flood events suggest that the vulnerability of river basins 

has increased over the past years as a consequence of climate change and 

engineering projects . One of the negative results is that any change of flow 

condition in the subground might trigger internal erosion processes. Any kind of 

particle displacement represents an evident problem for the stability of retaining 

constructions, embankment dams, dykes or tailing impontrnents. In case of unstable 

structure seepage force can displace the fines within the grain skeleton during 

groundwater flow. This process is called suffosion and characterizes the relocation 
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and discharge of fine particles through the pore space. Soils with a relatively large 

degree of nonuniformity as well as gap graded soils are particularly prone to 

suffosion. Initially, the supporting granular skeleton will not be changed. The 

porosity and permeability of the soil, however, increase. Proceeding suffosion and 

additional external mechanical influences may cause instabilities of the supporting 

granular structure and subsequently, other types deformation may occur. 

There are some studies on internal erosion (Bonelli et al. 2006, Bums et al. 

2006, Fell and Fry 2005, Lachouette et al. 2008, Mattsson et al. 2008, Sjo"dahl et 

al. 2008, Vaughan 2000). However, gradated soils have not been included. 

Furthermore, the combinations of CT analysis with experimental derivation of 

geometric parameters on pore structures of gradated soils have not been considered. 

Piping, as a type of internal erosion, was analyzed by (Bonelli et al. 2006, Bryan 

and Jones 1997, Faulkner 2006, Khilar et al. 1985, Lachouette et al. 2008, Ojha et 

al. 2001) taking into account only I D and 2D considerations and ignoring spatial 

and realistic information on the pore space. Although the suffosion controlling 

parts of the pore structure, characterized by their constriction distribution, is 

essential to the explanation of suffosion processes (Witt 1986), only the grain size 

distribution has been used for this purpose in the framework of risk estimation 

regarding internal erosion. 

In this study, spatial and realistic pore structures of gradated soils were 

investigated. This comprises the preparation of model test material and the 

generation of 3D CT data sets. Furthermore, experiments were developed in order 

two determine descriptive parameters on the supporting structure and the mobile 

fraction. 

MATERIAL AND METHODS 

Wide-gradated soils are characterized as coarse grained soils that exhibit an 

asymmetric grain size distribution. They are frequently prone to be suffosive, 

especially if they feature a gap grading or a non steady distributed grain size curve. 

Figure 1 illustrates the model grain size distribution (MGSD) of a suffosive 

noncohesive soil with a gap grading between 0.63 and 2.8 mm that was chosen for 

this study. This kind of distribution is typical for sedimentary soils in the medium 

course of a large river and is considered as a soil with a high risk for suffosion 

(Cistin 1967, Witt 1986, Ziems 1969). Model soil samples exhibiting this grain size 

distribution were processed by sieving. For this purpose, material was taken from a 

fluviatile soil of the Upper-Rhine river area. 

Preparation of samples for CT analysis and column experiments 

To investigate the spatial structure of gradated soils, samples based on the MGSD 

were prepared for CT analysis as well as for column experiments. For both 

approaches, the test samples have to fulfill the following two prerequisites: First, 

the samples should represent the natural bedding and density of the suffosive 

material as realistically as possible. Second, the sample volume should be 

representative and stable. For the CT analysis, the samples were embedded in 
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epoxy resin (Figure 2). 
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Figure 1: Grain size distribution of the investigated soil. 

The individual preparation steps were : 

1. Assembling the material: The grain fractions according to the MGSD were 

merged yielding a mass of 6000 g and filled into the column. The diameter of 

the column was 139 mm. 

2. Compaction and homogenization: The sample was compacted and homogenized 

by rotating the column and compressing the material at the same time. This is 

necessary because the fine grain material has a high mobility in the 

uncompacted sample. The compaction was achieved by applying a uniform 

pressure of2.5 N/cffi1. For the compression, a plunger was constructed with four 

springs (Figure 2a-b). 

3. Embedding the material: The sample was slowly embedded in epoxy resin from 

bottom to top in order to avoid air bubbles within the resin and to avoid the 

relocation of grains (Figure 2c) . 

4. Cutting the sample: The hardened cylindrical sample was cut to a size of 110 mm 

in diameter and 110 mm in height using water jet technique (Figure 2d), taking 

into account the requirements on the specimen size for CT scans. 

A second preparation process was carried out for the column experiments. 

Step 1 and 2 are analog to the CT preparation steps. The further steps ensure that 

the column material is permeable to water. 

1. Assembling the material. 

2. Compaction and homogenization. 

3. Inserting a perforated plate: Up to now, a synthetic liner had closed the column 

during the compaction and homogenization process. The column with the 

unstressed plunger was rotated and the liner was replaced by a perforated plate 

and funnel at the bottom of the column (Figure 3c). Both are needed for the 

column experiment. 

4. Inserting a filter layer: A further condition for the experiment is a filter layer 
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upon the material. After rotating the column and replacing the plunger, the filter 

layer was inserted (Figure 3e-f). The filter consists of a perforated plate and a 

layer of glass spheres. The latter enables a laminar flow during the experiment. 

(c) (d) 

Figure 2: Preparation of specimens for the CT scan, a) detail of the plunger with the 

compression springs, b) compaction and homogenization, c) embedding in epoxy resin, d) 

cylindrical specimen. 

CT Analysis 
For analyzing and visualizing the spatial structure of the soil, specimens 

were prepared for CT analysis. In a previous study (Homberg et al. 2008), 

specimens of a height and a diameter of 6 cm each were used and acquired at a 

resolution of 35 /lm for analyzing the grains structure. The results show that 

specimens of 6 cm diameter cannot be used to determine a representative picture of 

the geometric structure at the given resolution. Because there is a trade-off 

between spatial resolution and size of specimen, a double-stage CT acquisition was 

developed. In a first step, a cylindrical overview specimen of llxll cm was cut 

out from the original specimen using water jet technique and acquired at a 

resolution of 209 /lm (Figure 4a-b). This specimen was cut into 6 parts (Figure 4c

d). The resulting parts had an edge length of 5.5 cm and were scanned at a 

resolution of39 /lm. 

Compaction experiments: Determining the structure-bearing grain fractions 

The aim of this experiment is to determine the grain size fractions that fonn 

the supporting skeleton. This experiment was performed assuming that the grain 

fractions which do not belong to the supporting skeleton will not change the filling 

height. The filling height h is the distance between the bottom and the plunger of 

the column (Figure 5) . For this purpose, grain fractions of a 6 kg sample were split 

according to the MGSD. Then, the column was filled successively in top down 

order: 
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Figure 3: Workflow of column packing, a) homogen ization and compaction, b) turning the 

column, c-d) replacing the synthetic liner by a perforated plate, e) turning the column, f) 

replacing the plunger by a perforated plate and g) inserting a filter layer of glass spheres 

and a cap with a water inlet. 

(a) (b) (c) (d) 

Figure 4: Double-staged CT scan, a-b) the overview specimen scanned at a resolution of 

209 flm, c-d) a part cut out from the overview specimen scanned at a resolution of 39 flm. 

from the large fractions to the finer fractions . After each adding step, the material 

in the column was homogenized and compacted as described in the CT sample 

preparation. Subsequently, the filling height of the compacted material was 

measured (Figure 5). 

Column experiments: Identification of the mobile grain fractions 

The objective of the experiment is to determine the mobile grain fractions 

of the MGSD. The assumption is that there are potentially mobile grains within the 

supporting skeleton and a possible discharge of these grains does not change the 

supporting skeleton. This experiment was carried out on two samples which were 

prepared as described in the preparation section. Note that the perforation size of 

the inserted perforated plate depends on the results of the compaction experiment. 

That is, the perforated plate has to retain the smallest grain of the supporting 

skeleton. 



402 SCOUR AND EROSION 

.... .... 

Figure 5: Scheme of the compaction experiment to determine the structure-bearing grain 

size fractions. 

To move the potential mobile grains, water was supplied to the column using an 

immersion pump at a flow rate of 8.0 IImin (Figure 6). This flow rate corresponds to 

flow rates within embankment dams, which was found by (Cistin 1967). The 

discharge containing the mobile grains was collected in a 63 11m sieve, which was 

emptied after certain time intervals (5 , 10, 30, 60 min, 24, 24, 24 h . .. ). The 

experiment was finished when there was no material discharge for 24 h. Finally, the 

total discharge was analyzed according to (DIN-18123 1996) using sieving sizes of 

0.2,0 .355,0.63, 1.0, lA, 2.0, and 2.8 mm. 

RESULTS 

The compaction experiment was performed for three material samples of the 

MGSD. The final filling height (sample mass) in the column resulted in 18.9 cm 

(6034 g), 18.6 cm (5804 g), and 20.0 cm (6336 g) respectively. Figure 7 shows the 

filling height per fraction related to the total filling height. The different icons 

represent three replicates. Regarding the height percentages and the course of the 

filling height per fraction, one can distinguish three groups: 

I. The large fractions 20/25 and 16/20 mm form the main part of the sample with 

about 80 %. They contribute a double-digit height percentage each. 

2. The second group consists of the grain fractions of 12.5116 mm to 4/6.3 mm. 

These fractions nearly complete the filling height up to 99 % in average, whereas 

each fraction makes up a few percent of the filling height. 

3. Finally, there are the finer fractions. Two of the tests had already achieved the full 

height, whereas one test still converges to the full height. These fractions do not 

influence the filling height significantly. 

The full filling height is composed of the first (20/25 and 16120 mm) and the 

second (12 .5116 to 4/6.3 mm) group, whereas the third group smaller than 4 mm 

does not contribute to the filling height significantly. They are assumed to be 

potential mobile within the skeleton of course fractions. In the following, this size of 

4 mm was used to prepare the perforated plate for the column experiment. 
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Figure 6: Setup of the column experiment, a) test sample with MSGD, b) perforated plate 

and funnel , c) layer of glass spheres and perforated plate, d) water meter, e) flow meter, f) 

water reservoir, g) electric pump, h) sieve, i) plug cock. 

Two replicates of the column experiment were carried out, lasting about 70 h. 

Figure 8 shows the percentage per fraction that was discharged as well as the entire 

discharge related to the total sample mass. Again, one can distinguish three groups. 

In the first group, the discharge dominates. Nearly two-thirds and more than a half of 

the fine fractions 010.335 and 0.33510.63 mm were discharged. That is, one-third to a 

half of these fractions was retained during the experiment. For the second group, the 

retained percentage dominates. It contains the fractions between 0.63 to 2.8 mm. The 

discharge ranges from 8 to 34 %. Third, the fraction 2.8/4.0 mm exhibit sparse 

discharges: 2.2 % and 1.4 %, respectively. 

The prepared CT scans allow visualizing the structures of the investigated 

soil. The overview scan reveals the whole structure at a low resolution (Figure 4b). 

Finer structures can be viewed using the detailed scans, which contain the structure 

parts of the overview scan at a higher resolution (Figure 4d). Figure 9 shows 4 

detailed slices out of a CT scan in lateral view, which represent 22x22 mm each and 

are taken from a range of 3.3 mm. The slices show 4 large grains of the fractions 

12.5/16 and 16/20 mm. These large grains fonn cavities, wherein small grains of the 

fractions 0.33510.63 to 2/2.8 mm were enclosed. 

DISCUSSION 

Considering the results of the experiments, the grains of the MGSD can be 

distinguished by their behavior during suffosion processes: structure-bearing, 

mobile, and retained grains. The compaction experiments showed which grain 

fractions influence the filling height and fonn the supporting skeleton, respectively. 
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Figure 8: Column experiment: percentage of discharge per fraction and final discharge 

related to the total sample mass. 

Transfonned to erosion phenomena this test procedure corresponds to volume 

change due to a successive erosion of fines. As there is no or less volume change, 

the eroded particles are embedded within the space of the statical overall structure 

without fixing. The test shows that the supporting skeleton is dominated by the 

fractions from 20/25 to 4/6.3 mm. The grain of these fractions governs the structure. 

The remaining fractions are embedded and potential mobile. That is, they can be 

discharged or retained depending of the opening size of the structure. The colwnn 

experiment identifies the mobile and the retained grains of the potential mobile 

fractions. The resulting groups of this experiment were distinguished by their 

discharged percentage. The first group exhibits the largest discharge and thus a high 

mobility. The pore structure mostly seems to consist of connected pore paths with 

constrictions equal or larger than 0.63 mm. The second group has a minor discharge 

and thus shows a lower mobility. This indicates that the pore structure contains only 

a few preferential paths with adequate sized constrictions related to the particular 

fractions. Considering possible boundary effects and measuring uncertainties, the 

discharge of the third group (fraction 2.8/4 mm) is too sparse to assign it to the 

mobile fraction. 
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Figure 9: Potential mobile grains retained by structure-bearing grains in a detail of 22x22 

mm at a resolution of39 flm 

That is, the largest mobile grains are 2.8 mm. The results of the column experiments 

suggest that the two smallest fractions are highly mobile in the entire pore space. 

The complete percentage of these fractions was not discharged. This is due to the 

irregular shape of real grains and their arrangement, possibly. The analysis of the CT 

scans encourages this suspicion (Figure 9). The large grains contain concave, 

convex, and flat surfaces that form cavities and gaps, which retain the potential 

mobile grains. The mobility could be investigated shape independent using samples 

of glass spheres to estimate the order of magnitude of this effect. As discussed 

above, the fraction of 2.8/4 mm can be assigned neither to the overall mobile 

fractions nor to the structure-bearing fractions. The fraction seems to be a transition 

between both of them embedded into the coarser pore space of the structure. 

Possibly, the boundary is located somewhere in this size range. To narrow down this 

boundary, this fraction could be subdivided into smaller fractions for further 

experiments. On the other hand, possible boundary effects may appear because the 

perforated plate does not represent the structure of soil and may impact the soil 

structure at the bottom of the sample and thus the discharge of this region. This 

could be investigated with different samples masses or different perforated plates . 

Furthermore, the results of the compaction experiments exhibit some uncertainty in 

the range of the lower skeleton boundary and should be validated by further 

experiments. 

CONCLUSIONS 

Methods for preparing soil samples and generating CT data as well as 

experiments that detennine geometrical parameters of gradated soils were presented. 

A compaction experiment was designed and replicated to approximate the lower size 

boundary of the statically structure-bearing grain fractions. It separates the structure

bearing fractions that might be the effective grain size distribution related to the 

common criteria from the potentially mobile fractions which not contribute to the 

structure. This boundary further was used to design the column experiment. By 

means of the column experiment, the potentially mobile fractions were analyzed by 
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detennining the percentages of the mobile and the retained grains. This led to the 

size of the largest mobile grains within the soil structure and moreover to a size 

boundary between high mobile and less mobile fractions . In tum, this allows 

drawing conclusions on the relevant pore structure concerning its connectivity and 

constriction sizes. The double-staged CT scans allow capturing large and 

representative specimens at a high resolution. By transfonning the scans into a 

mathematical and numerical model this technique can be used to estimate and 

analyze the spatial soil structures visually. 
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