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N O N DI M E N SI O N A L A N A L Y SI S O F C L E A R- W A T E R S C O U R A T
B RI D G E C O N T R A C TI O N S I N C O H E SI V E S OI L S

B y

O kt a y G ü v e n 1 , J o el G. M el vill e2 , a n d J o h n E. C urr y3

A B S T R A C T

T his p a p er pr es e nts a n o n di m e nsi o n al f or m ul ati o n f or t h e a n al ysis of t h e ti m e-d e p e n d e nt
d e v el o p m e nt of t h e d e pt h of s c o ur at bri d g e c o ntr a cti o ns i n c o h esi v e s oils u n d er cl e ar-
w at er c o n diti o ns.  T h e a n al ysis is b as e d o n a n e w t h e or y w hi c h is a n e xt e nsi o n of t h e 
cl e ar- w at er s c o ur t h e or y f or a l o n g c o ntr a cti o n t h at is c urr e ntl y us e d f or n o n c o h esi v e b e d 
m at er i als.   T h e  n e w  t h e or y  is  f o u n d e d  o n  t h e  “s c o ur  r at e  i n  c o h esi v e  s oils ”  ( S RI C O S)  
c o n c e pts i ntr o d u c e d r e c e ntl y b y Bri a u d a n d his c oll e a g u es at T e x as A & M U ni v ersit y.
As p art of t h e n o n di m e nsi o n al f or m ul ati o n, t w o n o n di m e nsi o n al s c o ur ti m e f u n cti o ns ar e 
i ntr o d u c e d t o f a cilit at e c al c ul ati o n of t h e ti m e- d e p e n d e nt s c o ur d e pt h i n a c o ntr a cti o n.
A n e x a m pl e is pr es e nt e d t o ill ustr at e t h e us e of t h e n o n di m e nsi o n al s c o ur ti m e f u n cti o ns.

I N T R O D U C TI O N

R e c e nt  st u di es  b y  Bri a u d  et  al.  ( 1 9 9 9,  2 0 0 1 a  a n d  2 0 0 1 b)  h a v e  s h o  w n  t h at  t h e  ti m e-
d e p e n d e nt d e v el o p m e nt of f o u n d ati o n s c o ur ar o u n d bri d g e pi ers at str e a m cr ossi n gs i n 
c o h esi v e  s oils  m a y  b e  esti m at e d  usi n g  er osi o n  r at e  i nf or m ati o n  o bt ai n e d  fr o m  er osi o n  
t ests  c o n d u ct e d  o n  S h el b y-t u b e  s a m pl es  of  t h e  b e d  s oil  b y  m e a ns  of  a n e w  er osi o n  
f u n cti o n a p p ar at us ( E F A) d e v el o p e d b y Bri a u d et al. ( 1 9 9 9, 2 0 0 1 a).  T h e E F A all o ws t h e 
m e as ur e m e nt of t h e criti c al s h e ar str ess ( mi ni m u m b e d s h e ar str ess n e e d e d f or er osi o n) of 
a s a m pl e of t h e b e d s oil a n d t h e er osi o n r at e of t h e s oil as a f u n c ti o n of t h e b e d s h e ar 
str ess i m p os e d b y t h e fl o wi n g str e a m ( Bri a u d et al., 1 9 9 9, 2 0 0 1 a).  Bri a u d et al. ( 1 9 9 9, 
2 0 0 1 a,  2 0 0 1 b)  h a v e  i ntr o d u c e d  a  n e w  m et h o d  of  a n al ysis,  c all e d  t h e  “s c o ur  r at e  i n
c o h esi v e  s oils ”  ( S RI C O S)  m et h o d,  b as e d  o n  t h e  us e  of  t h e  E F A,  t o  e sti m at e  t h e  
d e v el o p m e nt  of  t h e  d e pt h  of  s c o ur  as  a  f u n cti o n  of  ti m e  ar o u n d  a  cir c ul ar  c yli n dri c al  
bri d g e pi er, a n d h a v e a p pli e d t h eir m et h o d s u c c essf ull y t o m a k e pr e di cti o ns of t h e d e pt h 
of  s c o ur  at  bri d g e  pi er s  i n  c o h e si v e  a n d  v er y  fi n e  gr ai n e d  s oil s  at  s e v er al  bri d g e  sit e s  
( Bri a u d  et  al.,  2 0 0 1 b).   As  als o  p oi nt e d  o ut  b y  Bri a u d  et  al.  ( 2 0 0 1 b),  at  pr es e nt  t h e  
S RI C O S  m et h o d  is  li mit e d  t o  l o c al  pi er  s c o ur  ar o u n d  cir c ul ar  c yli n dri c al  pi ers,  a n d  
a d diti o n al w or k is n e e d e d t o e xt e n d t h e m et h o d t o ot h er s c o ur pr o bl e ms.

1  Pr of e s s or, D e pt. of Ci vil E n gi n e eri n g, A u b ur n U ni v er sit y, A u b ur n, Al a b a m a, 3 6 8 4 9- 5 3 3 7, U. S. A., 
( g u v e n @ e n g. a u b ur n. e d u)
2  Pr of e s s or, D e pt. of Ci vil E ngi n e eri n g, A u b ur n U ni v er sit y, A u b ur n, Al a b a m a, 3 6 8 4 9- 5 3 3 7, U. S. A., 
(j o el. m el vill e @ e n g. a u b ur n. e d u)
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Encouraged by the availability of the EFA and building on the foundation provided by 
the recent studies of Briaud et al. (1999, 2001a, 2001b), G ven et al. (2001) have 

presented a new, simplified theory for the analysis of the time-dependent deve lopment of 

bed scour at a bridge contraction in a cohesive soil under clear-water conditions.  This 
new theory is founded on the SRICOS concepts introduced by Briaud et al. (1999, 2001a, 
2001b) and is an extension of the clear-water scour theory for a long contraction that is 

currently used for noncohesive bed materials (see, e.g., HEC-18 (Richardson and Davis, 
1995)).  The simplifying assumptions and limitations of the theory are described in detail 

by G ven et al. (2001); these include the assumptions tha t the flow in the contraction is 
subcritical, the flow rate is constant, the channel cross section is rectangular, the width of 

the contracted section remains constant throughout the time-dependent development of 
the scour, and the flow in the contracted reach is such that the bed shear stress may be 

related to the average flow velocity through an expression involving the Darcy-Weisbach
friction factor for uniform flow in an open channel.  While the theory has several
limitations, and has not yet been tested completely with laboratory and field experiments, 

the theory does provide an estimate of an upper bound for the maximum flow depth for a 
given bed soil and a given flow rate at a bridge contraction under clear-water conditions, 

and allows the calculation of the development of the flow depth and the scour depth as a 
function of time for a constant, steady flow rate.  Applications of the theory with actual 
EFA data for two different bed soils and several selected flow conditions have been 

presented by G ven et al. (2001)

The main purpose of this paper is to present a nondimensional formulation for the 
analysis of clear-water contraction scour based on the simplified theory presented by 

G ven et al. (2001).  As part of the nondimensional formulation, two new

nondimensional “scour time functions” are introduced to facilitate the calculation of the 
time-dependent development of the flow depth and the scour depth at a contraction for a 
given steady flow rate.

The next section includes an outline of the simplified theory presented by G ven et al. 

(2001).  Following the outline of the theory, a description of the nondimensional
formulation is presented, and the nondimensional scour time functions are introduced.

An example application with actual EFA data for a particular soil and flow condition is 
included in the paper to illustrate the use of the nondimensional scour time functions.

THEORY

Clear-water scour in a contraction occurs when there is no bed material transport from the 
upstream reach or the bed material being transported from the upstream reach is

transported through the contraction mostly in suspension (Richardson and Davis, 1995).
With clear-water scour, the area of the contracted section increases until the bed shear 

stress, , becomes equal to the critical shear stress, c, of the bed soil.  As in most 

analyses (see, e.g., HEC-18 (Richardson and Davis, 1995)), it is assumed here that the 
width of the contracted section remains constant and the flow in the contraction is 

distributed uniformly along the width of the contraction, with a constant value of the flow 
rate per unit width, q, throughout the time-dependent development of the scour.  This 
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means that, as the scour in the contraction progresses, the flow depth, y, increases and the 
average velocity, V = q/y, decreases with time until the depth of flow approaches its 

maximum value, ymax, corresponding to the limiting condition  = c.

Scour Depth

In a typical analysis of contraction scour at a bridge site, a flow model, such as HEC-

RAS or WSPRO, is used to estimate the water surface elevation, the flow distribution, 
and the width and the average depth and velocity of flow in the main channel and 
overbank portions, if any, of the contracted section prior to the beginning of scour (see, 

e.g., HEC-18 (Richardson and Davis, 1995), and the references therein).  The flow
conditions at the contracted section at a bridge site are typically estimated (see, e.g., 

HEC-RAS (Brunner, 2001)) using the energy equation between the contracted section 
(section 2 in Fig. 1) and a section downstream from the bridge (section 1 in Fig. 1) at the 
end of the expansion reach.  In current analyses of contraction scour with noncohesive 

materials, the time-dependent development of the flow depth is not considered, and 
assuming that the flow depth reaches its ultimate, maximum value, ymax, in a short period 

of time, the scour depth for a given flow condition is estimated as (Richardson and Davis, 
1995)

s max iy y y= − (1)

where ys is the estimate of the scour depth, and yi is the initial flow depth at the 

contracted section before scour begins.  It should be noted also that the scour depth 
estimate given by Equation 1 is based on the assumption that the elevation of the water 
surface in the contracted section remains constant during the development of the scour.

As also indicated in HEC-18 (Richardson and Davis, 1995; page 13 of the original 
reference), this means that the velocity head, defined as V2/(2g) where g is the

gravitational acceleration, is assumed to be negligible compared with the depth of flow, 
y, or that the Froude number, Fr, defined as 1 / 2Fr V/(gy)=  is nearly zero; furthermore, all 

possible head losses (hL) which may occur in the expansion reach (Fig. 1) are assumed to 
be negligible.

If, as done in HEC-18 (Richard and Davis, 1995) to obtain Equation 1, it is assumed that 
the water surface elevation in the contraction remains constant during the development of 

the scour, the scour depth at any instant of time may be expressed as

1 1 is y y= − (2)

where subscripted symbols have been used to denote the scour depth (s1) and the flow 

depth (y1) at the contracted section at any instant of time corresponding to the assumption 
of a constant water surface eleva tion.

If the velocity head is not negligible for a given flow condition, a possible assumption is 
that the total head remains constant during the development of the scour in the
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contraction.  This assumption leads to the following expression for the depth of scour at 
any instant of time:

2 2

2 2 i2 2

2 i

q q
s y y

2gy 2gy

 
= + − + 

 
(3)

where s2, and y2, are, respectively, the scour depth and the flow depth at the contracted 
section at any instant of time, corresponding to the assumption of a constant total head at 

the contraction.  A definition sketch for the scour depth s2 is given in Fig. 1.

The assumptions of a constant water surface elevation or a constant total head at the 

contraction during the development of scour are not entirely consistent with the energy 
principle, since the head loss, hL, is expected to change as the scour develops.  If the 

changes in hL which occur during the development of the scour are taken into account, 
the scour depth at any instant of time may be expressed as:

( )
2 2

3 3 i Li L2 2

3 i

q q
s y y h h

2gy 2gy

 
= + − + + − 

 
(4)

where s3 and y3 are, respectively, the scour depth and the flow depth at the contracted 
section which are consistent with the energy principle, and hLi is the head loss at the 
initial instant before scour begins.

In this paper, we consider only the development of s2, and as a special case, of s1; the 

analysis of the development of s3 is not included as the analysis of s3 is somewhat more 
complicated due to the head loss terms appearing in Equation 4.

Bed Shear Stress

It is assumed here that the bed shear stress, , may be expressed as

2 2

2

V q
f f

8 8y

ρ ρ
τ = = (5)

where f is the bed friction factor and  is the fluid density.  Following Henderson (1966), 
and Chow et al. (1988), and assuming that the contracted section is sufficiently wide so 
that the hydraulic radius is equal to the depth, the friction factor may be expressed as

r

1
f

k 2.5
2 log

3 Re f

−
=

  +  
  

(6)

where Re and kr are, respectively, the Reynolds number and the relative roughness 
defined by
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( )V 4y
Re =

ν
(7)

s
r

k
k

4y
= (8)

where ks is the effect

viscosity.  Using Equations 6 and 8, the friction factor may be expressed also as

2

s

0.25
f

k 2.5
log

12y Re f

=
  

+  
  

(9)

Following Roberson and Crowe (1997), G ven et al. (2001) have used an explicit 
equation given by Swamee and Jain (1976) to approximate the dependence of f on Re and 

kr instead of Equation 6.  The approximate, explicit relation of Swamee and Jain (1976) is 
expressed as

2

r

0.9

0.25
f

k 5.74
log

3.7 Re

=
  +    

(10)

Strictly, Equation 10 was developed for pipe flow; however, it may also be used, as an 

approximation, for open channel flow as may be verified by comparison of the f values 
obtained with Equations 9 and 10.

It may be useful to note that since the unit discharge, q, in the contraction is assumed to 
be constant throughout the development of scour, the Reynolds number, Re = 4 q/í, is 

also constant.  Regarding the effective roughness height of the bed material, Briaud et al. 
(2001a, 2001b) have suggested that ks = 0.5D50 for the cohesive soils which they studied, 
where D50 is the median soil size.

In the present study, one of the soils for which EFA data are available from Briaud et al. 
(2001a) is considered in the applications of the theory developed here.  The soil

considered here is a low plasticity clay soil from the Trinity River (Briaud et al., 2001a).
As done by G ven et al. (2001), this soil will be referred to as Soil No. 1, for brevity.

The median size, D50, of the soil, is given as D50=0.06 mm by Briaud et al. (2001a).
The erosion function of Soil No. 1 is linear (Briaud et al, 2001a).  The linear erosion 

function of Soil No. 1 may be expressed as (G ven et al., 2001)

( )i c cR( ) S forτ = τ − τ τ > τ (11)

where c = 2.74 N/m2 and Si = 0.51 (mm/hr)/(N/m2), and R( ) = 0 for c.
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In general, the erosion function of a soil may be nonlinear (Briaud et al., 2001a).  In the 
present study, it is assumed that any erosion function may be approximated as a

piecewise linear function over specified ranges of the bed shear stress as follows:

( ) ( )j j j j kR R S forτ = + τ − τ τ ≤ τ < τ (12)

where Sj is the slope of the erosion function over the range j  < k, and Rj is the 

erosion rate at  = j.

Limits of the Flow Depth

It is assumed in this study that the flow in the contraction is subcritical.  Therefore, the 
lower limit of the flow depth is the critical depth, ycr, corresponding to the unit discharge, 

q, in the contraction:

( )1 / 32

cry q / g= (13)

For subcritical flow, the Froude number, Fr, is less than one (Fr<1), and the flow depth, 
y, is greater than the critical depth (y>ycr) (Henderson, 1966).

If there is scour in the contraction, the upper limit of the flow depth is the maximum flow 

depth, ymax, which occurs when the bed shear stress, , equals the critical shear stress, c,
for the bed soil.  At this limit, using Equations 5, 6, 7 and 8, and rearranging, one obtains 

1 / 2
2

max

c

q
y f

8

 ρ
=  τ 

(14)

where

s

max

1
f

k 2.5
2 log

12y Re f

−
=

  
+  

  

(15)

For known values of q, c, Re and ks, Equations 14 and 15 may be solved simultaneously 
for ymax.

Development of Scour with Time

The time-dependent behavior of scour depends on the rate of scour, ¿, of the bed soil.  It 
is assumed here that the rate of scour is given by the erosion function determined from 
the EFA,

¿  = R( ) (16)
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where R( ) is the erosion function which gives the rate of scour as a function of the bed 

shear stress, , in the contraction.  The development of scour depends furthermore on the 
particular assumptions and relation used for estimating the scour depth.  In this paper, we 

consider only the development of the flow depth y2, and as a special case, of y1.

Starting with the definition of the scour depth, s2, given by Equation 3 and taking the 
derivative of s2 with respect to time, and rearranging, one obtains

2

2 2

3

2

ds dy q
1

dt dt gy

 
= − 

 
(17)

Dropping the subscript 2 from s2 and y2, for simplicity of notation, and also using

Equation 13 ( )2 3

crq gy= , Equation 17 may be transformed as

3

cr

3

yds dy
1

dt dt y

 
= − 

 
(18)

Since ( )ds/dt R= = τ , Equations (16) and (18) may be combined to obtain

( )
( )3 3

cr

Rdy

dt 1 y / y

τ
=

−
(19)

or

( ) ( )
3

cr

3

ydy dy
dt

R y R
= −

τ τ
(20)

Since the shear stress, , is a function of the flow depth (Equation 5), the erosion rate, 

R( ), depends on the depth, y, also; hence, the right-hand side of Equation 19 is a 
function of y.  Equation 19 may be solved to obtain y as a function of time, t, or equation 
20 may be integrated to obtain time as a function of the flow depth.  It may be useful to 

note also that the term 3 3

cry / y  which appears in Equations 18, 19, or 20 would be

negligible if the velocity head is small compared to the depth.  This means that solutions 
of Equations 19 or 20 which neglect this term give the development of y1 with time, 

whereas solutions which do not neglect this term give the development of y2 with time.
Once the flow depth (y2 or y1) is obtained as a function of time, the corresponding scour 

depth (s2 and s1) may be determined using Equation 3 or 2 (G ven et al., 2001).
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NONDIMENSIONAL FORMULATION

Various expressions obtained for the relations between the flow depth and the bed shear 
stress (Equation 5) or between the maximum flow depth and the critical shear stress 

(Equation 14), and for the time-dependent development of the flow depth (Equation 20) 
may be transformed into nondimensional forms if certain reference parameters and
nondimensional variables are defined.  The following parameters and nondimensional 

variables are introduced for this purpose:

1 / 2
2

RJ

j

1 q
y

10 8

 ρ
=   τ 

(21)

1 / 2

j

2

RJ

8y
u 10y

y q

τ 
= =  ρ 

(22)

( ) /

cr
cr

RJ RJ

q / gy
u

y y
= =

1 3
2

(23)

RJ

RJ

j j

y
t

S
=

τ
(24)

j j

R RJJ

tS t
T

y t

τ
= = (25)

1 / 2

j s
j s 2

RJ

8 k
10k

q y

τ 
κ = = ρ 

(26)

where yRJ is a reference depth (length) based on j; u is the nondimensional flow depth 
relative to the reference length, yRJ; ucr is the nondimensional critical flow depth; tRJ is a 

reference time; T is the nondimensional time relative to the reference time, tRJ; and j is 

the nondimensional roughness height relative to the reference length, yRJ.

Time-Dependent Development of Scour

Using Equations 21, 22, 25 and 26, Equation 20 may be transformed as

( )
3

cr 3

R R

du du
dT u

g (u) u g u
= − (27)

where
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( ) ( ) ( )j

R 2

j j

100f Re, , uR
g u a

S u

κτ
= = +

τ
(28)

j

j j

R
a 1

S
= −

τ
(29)

( )j 2

j

0.25
f Re, , u

2.5
log

12u Re f

κ =
 κ  

+  
  

(30)

Integration of Equation 27 gives

( ) ( )3

e b b e cr b eT T G u ,u u H u ,u− = − (31)

where the subscripts b and e, respectively, denote the beginning and end of a time 

interval, t = te – tb, and

( ) ( )
e

b

u

b e
u

R

du
G u ,u

g u
= (32)

( ) ( )
e

b

u

b e 3u
R

du
H u ,u

u g u
= (33)

b
b

RJ

y
u

y
= (34)

e
e

RJ

y
u

y
= (35)

The actual time difference, e bt t t∆ = − , required for the flow depth to increase from yb to 

ye (ye > yb) may be obtained as 

[ ] [ ]RJ

e b e b RJ e b

j j

y
t t t T T t T T

S
∆ = − = − = −

τ
(36)

or

( ) ( )3

RJ b e cr b et t G u ,u u H u ,u ∆ = −  (37)
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NONDIMENSIONAL SCOUR TIME FUNCTIONS

The nondimensional functions G(ub,ue) and H(ub,  ue) depend on the Reynolds number, 

Re, the roughness parameter, j, and the nondimensional flow depths ub and ue.  These 
functions, which may be called “scour time functions” may be evaluated by means of 

numerical integration for specified values of the Reynolds number and the roughness 

parameter.  However, as several nondimensional parameters (Re, j, u) are involved, 
numerical evaluation of the nondimensional integrals defined by Equations 32 and 33 

may not provide any appreciable advantage over direct numerical solution of the original 
governing differential equations (Equation 19 or 20) on a computer.

The nondimensional formulation may still be quite useful in some cases.  In cases where 
the Reynolds number and the roughness parameter are such that the bed behaves as a 

smooth boundary for the range of u, ub  u  ue, considered, closed-form expressions 

may be obtained for the integrals appearing in Equations 32 and 33.  If the bed behaves as 
a smooth boundary, then the friction factor, f, depends only on the Reynolds number, Re.

Since Re = 4q/í = constant throughout the development of the scour, the friction factor 
remains constant also, if the bed behaves as a smooth boundary.  In such cases, the 
function gR(u) defined by Equation 28 may be expressed as

( )R 2

c
g u a

u
= + (38)

where a is a constant defined by Equation 29

and

c 100f constant 0= = > (39)

If the function gR(u) is given by Equation (38), closed-form expressions may be obtained 
for the integrals appearing in Equations (32) and (33), as follows:

( )
2

2

R

du u du
IG

g u au c
= =

+
(40)

( )3 2

R

du du
IH

u g (u) u au c
= =

+
(41)

Since c > 0, the indefinite integrals IG and IH may be expressed as (Selby, 1972, pages 

399, 400 of the original reference):

( ) 1u c / a u
IG u tan if a 0

a a c / a

−  
= − > 

 
(42)
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( )
3u

IG u if a 0
3c

= = (43)

( ) u 1 c c u a
IG u ln if a 0

a 2a a c u a

 + −
= − <  − − − 

(44)

( )
2

2

1 u
IH u ln

2c au c

 
=  + 

(45)

In terms of the functions IG and IH, the nondimensional scour time functions G and H 
may be expressed as

( ) ( ) ( )b e e bG u ,u IG u IG u= − (46)

( ) ( ) ( )b e e bH u ,u IH u IH u= − (47)

so that (see Equation 41)

( ) ( ) ( ) ( )3

e b e b cr e bT T IG u IG u u IH u IH u− = − − −       (48)

and

( )RJ e bt t T T∆ = − (49)

The solution given by Equation 48 is an exact solution if f is constant.  If f is not constant 
over the range of u considered (ub  u ue), it is thought that the closed-form solution 

may still be useful to obtain an approximate estimate of t, provided that f does not vary 
excessively over the range of u (ub to ue) considered.

ILLUSTRATIVE EXAMPLE

G ven et al. (2001) have presented several applications with three different flow

conditions and two different soils for which EFA data are available.  In this section, an 
example is presented to illustrate the use of the nondimensional scour time functions for 
one case; namely, the case of flow condition FC1 and Soil No. 1 studied previously by 

G ven et al. (2001).

For this case, the unit discharge is q = 10.59 m2/s, and the initial depth at the contraction 

is yi = 2.84 m.  The soil has a median size of D50 = 0.00006 m, a critical shear stress of c

= 2.74 N/m2, and a linear erosion function with Rj = 0, j = c = 2.74 N/m2 and a slope of 

Sj = Si = 0.51 (mm/hr)/(N/m2) = 0.01244 (m/day)/(N/m2).  Using a density of  = 1000 
kg/m3 and a kinematic viscosity of í = 10-6 m2/s for the fluid (water), and assuming that 

 

302



the roughness height is ks = 0.50D50 = 0.00003 m, as suggested by Briaud et al.  (2001a, 
2001b), the values of various parameters are obtained as follows:

Reynolds number, Re = 4q/í = 4.236 x 107

Reference depth, 

1 / 2
2

RJ

c

1 q
y 7.153m

10 8

 ρ
= = τ 

Nondimensional roughness, j = ks/yRJ = 4.2 x 10-6

Nondimensional critical depth, 
( )1 / 32

cr

RJ

q / g
u 0.31493

y
= =

Nondimensional critical flow parameter, 3

cru 0.03124=

Reference time, tRJ = yRJ/(Sj j) = 213.3 days

Nondimensional erosion parameter, a = Rj/(Sj j) – 1 = –1

Since a = – 1, the forms of the nondimensional functions IG(u) and IH(u) fo r this case are 

as follows:

( ) c c u
IG u u ln

2 c u

 +
= − +   − 

(50)

( )
2

2

1 u
IH u ln

2c c u

 
=  − 

(51)

Using the Swamee-Jain equation (Equation 10) for the friction factor, f, G ven et al. 

(2001) obtained ymax = 6.01 m.  Using the Henderson equation (Equation 9) for f, one 
obtains ymax = 6.01 m, again.  At this depth, both equations give f = 0.00706, for this 

case.

G ven et al. (2001) studied the time-dependent development of the flow depths y2 and y1,
and the scour depths s2 and s1 for this case, and several other cases, by direct numerical 

integration of the governing differential equation.  Here, we focus only on the
development of y2, for brevity.

Table 1 shows the results obtained for the development of the flow depth y2 for the flow 
condition FC1 and Soil No. 1.  Table 1 includes several flow depths and the

corresponding scour times obtained by various means, for comparison.  In Table 1, tA is 
the scour time calculated by G ven et al. (2001) by direct numerical integration using the 

Swamee-Jain equation for f, tB is the scour time obtained by means of the present closed-
form nondimensional scour functions using the Swamee-Jain equation for f, and tC is the 

scour time obtained by means of the closed-form scour functions using the Henderson 
equation for f.  It may be seen from Table 1 that the scour times (tB and tC) obtained with 
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the closed-form scour time functions differ from the times (tA) obtained by direct 
numerical integration; this is because the friction factor f is not constant and varies with 

the depth of flow for this case (see Table 2).  However, the results indicate that the 
closed-form nondimensional scour time functions may be useful even when the friction 

factor f is not constant.  A tabulation of the actual calculations performed to obtain the 
scour times tC presented in Table 1 is shown in Table 2.  All the calculations shown in 
Table 2 were performed using a hand-held calculator.  For brevity, details of the 

calculations for the scour time, tB, obtained with the Swamee-Jain equation for f are not 
shown in this paper.

Table 1.  Scour times for various flow depths for flow condition FC1 and Soil No.1

Flow Depth

y
(m)

Remark Time(1)

tA
(days)

Time(2)

tB
(days)

Time(3)

tC
(days)

2.84 yi 0 0 0
3.02 y2 1.00 0.90 0.90

3.33 y2 3.00 3.20 3.19
3.53 y2 5.00 5.25 5.22
5.95 y2 250 262 266

6.01 ymax

(1)
Obtained by direct numerical integration, using the Swamee-Jain equation for f (G ven et al., 2001).

(2)
Obtained by means of the closed-form scour time functions, using the Swamee-Jain equation for f.

(3)
Obtained by means of the closed-form scour time functions, using the Henderson equation for f.

Table 2.  Calculations table for scour time tC

Flow Depth
y

(m)

u(1) f(2) c(3) IG(u)(4) IH(u)(5) T(u)(6)
Time
tC

(7)

(days)

2.84 0.397 0.00742 0.742 0.03234 –0.88305 0.05993 0
3.02 0.422 0.00738 0.738 0.03990 –0.77611 0.06415 0.90
3.33 0.466 0.00733 0.733 0.05646 –0.59017 0.07490 3.19

3.53 0.494 0.00730 0.730 0.06967 –0.47179 0.08441 5.22
5.95 0.832 0.007063 0.7063 1.39167 2.75764 1.30552 266

(1) RJ RJu y / y ; y 7.153m= = (2) 6

j2

j

0.25
f ; 4.2 x 10

2.5
log

12u Re f

−= κ =
 κ  

+  
  

(3) c = 100f (4) ( ) c c u
IG u u ln

2 c u

 +
= − +   − 

(5) ( )
2

2

1 u
IH u ln

2c c u

 
=  − 

(6) ( ) ( ) ( )3 3

cr crT u IG u u IH u ; u 0.03124= − =

( ) ( )(7)

C RJ i i i RJ RJt t T u T u ; u y / y 0.397; t 213.3days= − = = =  
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CONCLUSION

The results indicate that the nondimensional scour time functions introduced here may be 
useful to obtain estimates of the scour time for clear-water scour at bridge contractions in 

cohesive soils.
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Fig. 1 – Schematic diagram of flow at a bridge contraction and definition sketch for 

contraction scour depth s2 (E.G.L. denotes the “energy grade line”; W.S.
denotes the “water surface”; HD is the total head at section 1).
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