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Abstract — Numerical models are nowadays commonly used in 
fluvial and maritime hydraulics as forecasting and assessment 
tools for example. Model results have to be compared against 
measured data in order to assess their accuracy in operational 
conditions. Amongst others, this process touches on the 
calibration, verification and validation. In particular, 
calibration aims at simulating a series of reference events by 
adjusting some uncertain physically based parameters until the 
comparison is as accurate as possible. Calibration is critical to 
all projects based on numerical models as it requires a very large 
proportion of the project lifetime. In this study, the Python 
module TelApy of the TELEMAC system 
(www.opentelemac.org) has been used with the ADAO library of 
the SALOME platform (www.salome-platform.org) to 
automatically calibrate a 2D hydraulic model. based on a 3D-
VAR data assimilation algorithm. The algorithm combines 
mathematical information contained in the hydraulic model and 
physical information coming from observations in order to 
estimate the model input parameters (bathymetry, bed friction, 
inflow discharge, tidal parameter, initial state and so on). 

Keywords: Shallow Water Model, Data Assimilation, Calibration 

I. INTRODUCTION 

Many problems in sciences and engineering require the 
estimation of unknown parameters that will produce a solution 
that best fits a finite set of indirect measurements. Examples 
include hydrology, oceanography and weather forecasting. 
This is also true for fluvial and maritime hydraulics where 
numerical models are used as forecasting and assessment tools 
for example. 

In all case, model results have to be compared against 
measured data in order to ascertain their accuracy in 
operational conditions. Amongst others, this process touches 
on the model calibration, verification and validation tasks. In 
particular, model calibration aims at simulating a series of 
reference events by adjusting some uncertain physically based 
parameters until the comparison is as accurate as possible. 
Calibration is critical to all projects based on numerical 
models as it lasts over a non-negligible proportion of the 
project lifetime. 

The objective of this work is to implement an efficient 
calibration algorithm, based on data assimilation and coupled 
with TELEMAC-2D, capable of processing measurements 
optimally, to estimate the partially known or missing 

parameters (bathymetry, bed friction, inflow discharge, tidal 
parameter, initial state, etc.). 

Section II and III introduce the principle of the calibration 
algorithm and the software tools used for this work 
respectively. Section IV is dedicated to model results obtained 
from different cases. Finally, Section V, offers some 
conclusions and outlook. 

II. CONTEXT AND PRINCIPLE  

A. Context 
Parameter estimation, a subset of the so-called inverse 

problems, consists of evaluating the underlying input data of a 
problem from its solution. For free surface flow hydraulics, 
parameters that are often unknown or difficult-to-assess 
include bathymetry, bed friction, inflow discharge, tidal 
parameter, initial state etc. The calibration of two typical 
projects will be used here for demonstration purposes, one 
schematic river application (fluvial configuration) and one 
actual coastal site application (maritime configuration): 

 Fluvial configuration. In 2D hydraulic solvers such as 
TELEMAC-2D, the nature of the bottom of a 
waterway is modelled by a roughness coefficient. In 
some occasion, this coefficient also takes into account 
the friction of the walls as well as other phenomena 
such as turbulence. Automatic calibration is a reverse 
method which is used to find an "acceptable" friction 
coefficient (here assumed constant by zone) leading to 
a computed water level close to the measured water 
level for a fixed flow [1]. 

 Maritime configuration. Calibrating a hydrodynamic 
model for tide is typically an engaged and difficult 
process due to the tidal flow interaction between 
shoreline, islands, meteorological conditions,... and 
the lack of a reliable tidal observation stations. Thus, 
in addition to the friction coefficients, the tidal 
amplitudes at boundary locations and the water depth 
are considered in this work. 

If done manually, model calibration is time consuming. 
Fortunately, the process can be largely automated to reduce 
human workload significantly. In the following sections, the 
automatic calibration task is explained. 
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B. Automatic calibration algorithm 

Thereafter, all model parameters constitute the 𝑛-
components of the control vector = , ∀i [ , … n]. 

Automatic calibration is a parameter estimation or reverse 
method used to simulate a series of reference events by 
adjusting uncertain physically based parameters contained in 
the control vector  to produce a solution that is as accurate as 
possible. Therefore, the optimal search for the control vector 
takes a minimization form of an objective or cost function 

 given in (1). 

 { 
 J X = J + JJ = X − X B− X − XJ = (Y − H X ) R− (Y − H X ) 

where the components of  represents parameters to be 
estimated / calibrated,  represents the prior knowledge 
about the control vector  ,  is the observation vector, 𝐻 is 
the so-called observation operator enabling the passage of the 
parameter space (where the vector   lives) to the observation 
space (where   lives) such that = 𝐻  and  ,  are the 
background and observation error covariance matrices 
respectively. 

This is a formulation of the optimal search of control 
vector , which must satisfy the background error statistics 
( ), and the equivalent observation error ( ). Eq. (1) is 
known as the traditional variational data assimilation cost 
function, called 3D-VAR [2]. 

Generally, optimisation methods can be used to solve 
minimisation problems. The former can be very different 
according to the form of the cost function to be minimised 
(convex, quadratic, nonlinear, etc.), its regularity and the 
dimension of the space studied. Many deterministic 
optimisation methods are known as gradient descent methods, 
among which is the Broyden-Fletcher-Goldfarb-Shanno 
(BFGS) quasi Newton method [3], [4]. 

For these methods, the estimation of the optimal control 
vector  involves minimising the objective function  (or 
finding its extremes), which requires the computation of its 
gradient with respect to , defined as follows. 

 J X = ℋ R− (Y − H X ) 

with ℋ the adjoint of the observation operator 𝐻 that is to say 
the partial derivatives of the operator’s component with 
respect to its input parameters. It is noted that the observation 
operator  𝐻 represents a call to the hydraulic solver, which 
implies that ℋ represent a call to the adjoint of the hydraulics 
solver. 

C. Constrained BFGS Quasi Newton method  
The optimisation method mentioned above (BFGS) is 

based on the application of the Newton method to the gradient 
of the functional , which involves the computation of the 
first and second derivatives of the cost function. The main 

disadvantage of this type of approach is the computation of the 
second derivative  (or Hessian) and using it to solve a 
linear system at every iteration of the Newton algorithm. For 
large problems, this is computationally out of reach. 

An alternative is to use algorithms such as the Quasi-
Newton algorithm which provides Hessian approximations 
that improve as the iterations progress, for a reasonable cost. 
The method chosen to perform this work is the so-called 
constrained Broyden Fletcher Goldfarb Shanno Quasi-
Newton method (c-BFGS-QN). 

The optimisation problem is formulated as follows (Eq. 
(3), (4) and (5)), starting with the constrained minimisation. 


minX J XX ≤ X ≤ X , ∀i [ , … n]  

If  is the solution at stage , a direction 𝑑  is obtained 
by solving the minimization process defined in (4). 

 mink J(X ) d + d TMd  

where 𝑑 =  if ≈  or ≈ 𝑥 and 𝑀 is the 
approximate Hessian matrix. 

A line search is then performed along the direction 𝑑  to 
find a new feasible solution + . Then 𝑀 is modified by the 
BFGS formula as follows. 


M + = M +            ( + kTMk kXkT k ) Xk XkTXkT k − XkT Mk+MkT kXk k  

with = + −  and = + −  

Using a constrained optimisation method makes it possible 
to impose boundaries during the research process of the model 
parameters guaranteeing their physical values. Because the 
inverse problem (1) is often ill-posed and unstable with 
available data corresponding to more than one solution, small 
changes in model results can lead to very different estimates 
for the input (calibration) parameters. These problems are 
related to the issue of “parameter identifiability” [5].Still, the 
chosen optimisation method involves computing the adjoint ℋ of the observation operator H (or the partial derivatives of 
the operator with respect to its input parameters). In this work, 
the partial derivatives are approximated by using a classical 
finite differences method. While this remains a simple 
solution, numerically sensitive and computationally costly, the 
observation operator can be written to make use of 
multiprocessor parallelism in order to provide an automatic 
calibration algorithm efficient in term of computational cost, 
practical for industrial applications. 

III. SOFTWARE TOOLS 

The automatic calibration algorithm presented in the 
previous section (section II) combines different skills such as 
optimisation, numerical analysis, parameter estimation, and 
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free surface flow hydraulics. The software implementation of 
the algorithm has to be based, therefore, on open source and 
flexible architecture with reusable components. This study 
was performed by coupling the hydrodynamic solver 
TELEMAC-2D and the data assimilation library ADAO 
within the SALOME platform, through the component TelApy 
of the TELEMAC system. 

A. The SALOME platform 

SALOME is an open source platform (www.salome-
platform.org) for pre and post processing of numerical 
simulations, enabling the chaining or the coupling of various 
software tools and codes. SALOME is developed by EDF, the 
CEA and OPENCASCADE S.A.S. under the GNU LGPL 
license. It is based on an open and flexible architecture with 
reusable components, which can be used together to build a 
computation scheme assembling each module or external 
codes together through specific communication protocols. In 
our case, the TELEMAC-2D model is driven through the 
TelApy component and dynamically linked to ADAO within 
SALOME (See Fig. 1). 

 

Figure 1. The SALOME composition linking TelApy to ADAO 

B. The TelApy component of the TELEMAC system 

The recently implemented TelApy component is 
distributed with the open source TELEMAC system 
(www.opentelemac.org). It aims at providing python source 
code that wraps and controls a TELEMAC simulation through 
a Fortran API (Application Program Interface) [6]. The API’s 
main goal is to have control over a simulation while running a 
case. For example, it allows the user to hold the simulation at 
any time step, retrieve some variables and / or change them. 
The links between the various interoperable scientific libraries 
available within the Python language allows the creation of an 
ever more efficient computing chain able to more finely 
respond to various complex problems. The TelApy component 
has the capability to be expended to new types of TELEMAC 
simulations use including high performance computing for the 
computation of uncertainties, other optimization methods, 
coupling, etc. 

C. The Data Assimilation library ADAO 

The ADAO library provides modular data assimilation and 
optimization features within the SALOME platform [2]. It can 
be coupled with other modules or external simulation codes 
while providing a number of standard and advanced data 
assimilation or optimization methods. The ADAO library also 
covers a wide variety of practical applications, from real 
engineering to quick experimental methodologies. Its 
architechture and numerical scalability gives way to extend 
the field of application. 

IV. APPLICATIONS  

In the previous section, the software tools used to 
implement the computing chain of the automatic calibration 
algorithm have been presented. In order to demonstrate its 
application some case are presented in the following section. 

A. Fluvial configuration 

Within this fluvial configuration, the implementation 
within SALOME of the automatic calibration algorithm is 
applied to two of the standard TELEMAC-2D test cases: the 
so-called “estimation” and “verysimple” test cases. The aim of 
this configuration is to find optimal friction coefficients based 
on a numerically generated synthetic data from the so-called 
“identical-twin-experiment”, in which true state is known. 

1) Parameter estimation: friction coefficient 
Friction comes into the momentum equations of the 

shallow water equations and is treated in a semi-implicit form 
within TELEMAC-2D [7]. The two components of friction 
force are given in Eq. (6). 

 {F = − C √u + vF = − C √u + v  

where ℎ is the water depth,  a dimensionless friction 
coefficient and   and  are the horizontal  and  components 
of the current velocity. 

The roughness coefficient often takes into account the 
friction by the walls on the fluid or other phenomena such as 
turbulence. Thus it is difficult to define directly from available 
data and must be adjusted using the water surface profiles 
measured for a given flow rate. 

2) Test case “estimation” 
This first test case is based on a schematic rectangular 

channel of varying mesh resolution. The channel is 500 m long 
and 100 m wide. The finite element mesh consists of 551 
triangles (Fig. 2). 

Figure 2. Mesh and layout of the test case “estimation” 

 

Upstream and downstream of the model, the boundary 
conditions used are the imposed flow rate and water level, 
respectively set to 50 m3s-1 and 1 m. A single Strickler friction 
value is set for the entire domain. 

Regarding the automatic calibration, the initial guess of the 
Strickler is set to 15 m1/3s-1. The “observations” used to 
calibrate the model are synthetic water depth generated 
numerically with a Strickler coefficient of 35 m1/3s-1. The 
objective of this test case is to recover the synthetic value 
defined as the true state using the automatic calibration 
algorithm chain. The observation considered in this case are 
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the water depth on all mesh nodes at different times in 
second = { , ; , ;  , ;  , ; , }. 

Regarding the optimization search , the friction parameter 
is constrained between 5 m1/3s-1 and 90 m1/3s-1 and the 
differential increment is set to 10-4 for the computation of the 
observation operator approximated derivatives. 

Fig. 3 shows the Strickler coefficient and the associated 
cost function evolution as a function of the number of 
iterations of the automatic minimization algorithm. 

 

Figure 3. Value of the cost function and the Strickler coefficient according 

to number of algorithmic calibration iterations 

Regarding the convergence speed of the automatic 
calibration method, Fig. 3 highlights a fast convergence and 
accuracy for the automatic calibration method developed in 
this work. The calibration tool finds an optimal solution in 
about 10 iterations with a cost function less than 10-2 
corresponding to a Strickler coefficient of 34.998 m1/3s-1. This 
test case demonstrates that the data assimilation chain is well 
implemented. 

3) Test case “verysimple” 
For real applications, there are often a few measurements 

available at different locations. Additionally, bed properties 
often varies over the entire domain (rock, vegetation, sand, 
mud, etc.), for which a unique friction coefficient may not be 
appropriate. 

This test case defines a limited number of zones (as many 
as the measurements), within which the friction coefficient is 
a constant parameter, independent of one another. 

The “verysimple” test case is a rectangular channel of 50 
m long and 1 m wide with a constant slope of 0.1 degree. The 
TELEMAC-2D model, constituted by a triangular mesh of 
some 5010 nodes (Fig. 4), has a constant discharge upstream 
and a water level downstream imposed, respectively set to 
2.38 m3s-1 and 1 m. 

In this test case, 5 friction zones of equal sizes, numbered 
1 to 5, are considered every 10 m of the channel. At the middle 
of each friction zone, one observation node is considered. 

 
Figure 4. Zoom of the test case “verysimple”(∎observation node) 

Similar to the previous schematic application, the 
“observations” are water depth synthetic data generated 
numerically. The initial guess of Strickler (in m1/3s-1) is set 
to [ = ; = ; = ; = ; = ], 
whereas the value used to compute the synthetic data is [ 𝑡 = . = 𝑡 = 𝑡 = 𝑡 = 𝑡] (where the t and b 
exponents denote respectively true and background state). 

This value of Strickler coefficient corresponds to a sub-
critical flow with constant depth over the full length of the 
channel. The observation considered in this case are the water 
depth on observation nodes at different times in second ={ , ; , ;  , ;  , ; , }. 

As for the previous test case, the optimal friction 
parameters are constrained between 5 m1/3s-1 and 90 m1/3s-1 and 
the differential increment is imposed to 10-4 for the 
computation of the observation operator approximated 
derivatives. 

Fig. 5 shows the Strickler coefficients and the associated 
cost function evolution as a function of the number of 
minimization algorithm iterations. 

 

Figure 5. Value of the cost function and the Strickler coefficients according 

to number of algorithmic calibration iterations 

As shown in the previous test case, the optimization 
process presents a fast convergence. In fact, the optimal 
solution is reached in about 15 iterations with a set of Strickler 
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coefficient values in m1/3s-1 such as [ 𝑡 = . ; 𝑡 =. ; 𝑡 = . ; 𝑡 = . ; 𝑡 = . ] 
corresponding to a cost function value less than 10-1. 

Furthermore, the results shown in Fig. 5 emphasise the 
complexity of determining a set of optimal friction 
coefficients. Indeed, the uniqueness of a solution of this type 
of problem is not mathematically proven and different sets of 
parameters can give analogous results. In fact, even in the 
framework of a simplify test case, the optimal friction 
parameters stabilize close but not exactly at the true state 
value. Thus it is important to set bounds on the search for 
optimal friction coefficients to avoid all the outliers and non-
physical values [1]. This is why the automatic calibration 
method developed here uses a constrained optimisation 
approach. 

B. Maritime configuration 

A real maritime configuration is presented and calibrated 
using measurement data. Contrarily to the fluvial 
configuration, the identification of the most influential 
parameters was carried out through a sensitivity analysis. 
Indeed, it is essential to understand the relationship between 
the modelling inputs and the simulated variables which 
describe the system's dynamic. Subsequently, the automated 
calibration method was used for the estimation of those 
influential parameters. 

1) Context and available data 
The Alderney Race (also as known as “Raz Blanchard”) is 

located between the Island of Alderney, UK, and the western 
tip of the Cotentin peninsula in Normandy, France. The 
maritime model includes Alderney and the tip of the Cotentin 
peninsula and covers an area roughly 55 km x 35 km. The 
finite element mesh is composed of 17,983 nodes and 35,361 
triangular elements (Fig. 6). The mesh size varies from 100 m, 
at the shoreline and within the areas of interest, to 1.8 km 
offshore (western and northern sectors of the model). 

 

Figure 6. Model mesh and friction coefficients (Lambert 1 North coordinate 

system) 

The boundary conditions of the model have been set up 
using depth-averaged velocities and water levels from the 
TPXO dataset (8 primary, 2 long-period and 3 nonlinear 
constituents). The TPXO dataset is an accurate global models 
of ocean tides based on a best-fit of tidal levels measured along 
remote sensing tracks from the TOPEX/POSEIDON satellite 
project in operation since 2002. Moreover, velocities and 
water depths are imposed along the marine borders of the 
model using Thompson-type boundary conditions that allows 
internal waves to leave the domain with little or no reflection. 

Several measurement campaigns were carried out to the 
west of Cap de la Hague. For this study, only the results of one 
of these (a campaign lasting six months) are used over a 5 days 
period from October 15th to 20th. This six-month campaign 
was carried out during summer of 2009 (from the end of July 
to the end of January). Two ADCPs were deployed to measure 
flow velocity (magnitude and direction) and water depth with 
1 measurement every 10 minutes and one hour respectively. 

2) Sensitivity analysis 
Calibrating a hydrodynamic model (here for a real tidal 

site) is typically an engaged and difficult process due to the 
complexity of the flows and their interaction with the 
shoreline, the bathymetry, islands, etc. Thus, it is essential to 
understand in depth the relationship between the modelling 
calibration parameters and the simulated state variables which 
are compared to the observations. 

In this case, the identification of the most influential input 
parameters by sensitivity analysis has been led to target the 
calibration parameters when observations are available. In 
particular, both friction and tidal amplification were 
highlighted. 

a. Friction parameter 
As shown in Fig. 6, the model is composed of two friction 

zones, roughly along the French-UK border, where the 
Strickler friction coefficients are imposed to =  
and =  m1/3s-1. The approach here is similar to that 
used in the schematic fluvial configuration. 

b. Tidal amplification parameter 
Tidal characteristics are imposed using a database of 

harmonic constituents to force the open boundary conditions. 
For each harmonic constituent, the water depth ℎ and 
horizontal components of velocity  and  are calculated, at 
point 𝑀 and time  by Eq. (7). 

{F M, t = ∑ F M, tF M, t =            f t AFi M cos πi − φFi M + u + v t  

where  is either the water level (referenced to mean sea level) 
 or one of the horizontal components of velocity  or , i 

refers to the considered constituent,  is the period of the 
constituent, 𝐹𝑖 is the amplitude of the water level or one of 
the horizontal components of velocity, 𝜙𝐹𝑖is the phase, 𝑓  
and  are the nodal factors and  is the phase at the 
original time of the simulation. 
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The water level and velocities of each constituent are then 
summed to obtain the water depths and velocities for the open 
boundary conditions (8). 

 {h = ∑z − z + z= ∑= ∑  

where  is the bottom elevation and z the mean reference 
level. 

In Eq. (8), the tidal amplitudes multiplier coefficient of 
tidal range and velocity, respectively  and , at boundary 
locations and the sea level   are assumed to be the tidal 
calibration parameters [8]. 

c. Analysis of variance 
The sensibility analysis aims at quantifying the relative 

importance of each input parameter of a model. The variance-
based methods aim at decomposing the variance of the output 
to quantify the participation of each variable. Generally, these 
techniques compute sensitivity indices called Sobol Indices. 
The definition of Sobol Indices is a result of the ANOVA 
(Analysis Of VAriance) variance decomposition. In fact, given 
a set of independent uncertain parameters = ,… , , 
the variance of the output = 𝑀  can be expressed based 
on the total variance theorem by Eq. (9). Var[Y] = ∑ V Yp= + ∑ V Y< + + V …P Y  

where: 

{V Y = Var[E Y|X ]V Y = Var[E(Y|X , X )] − V Y − V Y  

The term |  represents the conditional expectation 
of the output  under the assumption that the uncertain 
variable  remains constant. The resulting decomposition of 
the variance can then be used to compute the sensitivity 
indices called Sobol Indices. In the framework of this study, 
only the first order  and the total  Sobol sensitivity indices 
are studied. The definition of these two indices is given by 
Eq. (11). 

 { S = Var E[Y|X ] Var Y   ⁄S = Var E[Y|X− ] Var Y⁄  

where  is the uncertain variable  and −  refers to the set of 
uncertain input factors excluding . 

d. Polynomial Chaos method 
In this work, a polynomial chaos expansion has been 

carried out to estimate Sobol sensitivity indices. This 
technique consists in looking for a functional representation of 
the output response of the system in the form of the 
development described by Eq. (12). 

 M X ζ ≈ MPC X ζ = ∑ y ϕ ζ| |<  

where {𝜙 , ℕ } is a multivariate polynomial basis, 𝑑 the 
maximum polynomial order and  adequate coefficients for 
the estimation of the model’s response that can be determined 
using projection or least square methods. 

In this work, the coefficients  are determined using the 
leat-square approach. In the following, the random variables 
in  defined in the input physical space are rescaled in the 
standard probabilistic space noted 𝜁 ≡ 𝜁 𝜔 = [𝜁 , … , 𝜁 ]  (0 
mean and unit variance), to which the Polynomial Chaos 
framework applies. The fruitful link between Polynomial 
Chaos expansion and the formalism of Sobol indices has been 
established by [9]. 

e. Results 
In this paper, we investigate the effect of three sources of 

uncertainty: the friction coefficients (  and ), the tidal 
amplification coefficients along the marine boundaries (  
and ) and the reference mean water level . All input 
parameters are described by uniform probability density 
functions such that  , = [ ; ] in m1/3s-1; , =[ . ; . ] and  = [− ; ] in m. 

To handle the sensitivity analysis with the polynomial 
chaos expansion, it is important to run a lot of simulations in 
order to have reliable results. In this work, around 2,000 
Monte-Carlo computations have been carried out based on 
TELEMAC-2D through the SALOME platform described in 
[10]. Since, the sensitivity analysis results obtained for the 
water depth and velocity variables are similar to each other 
with a ranking variable without any time dependency, only the 
results for water depth at the last time step are presented here. 
Fig. 7 displays the first order and the total Sobol sensitivity 
indices (respectively  and ) obtained at the ADCP 
measurement point with a polynomial chaos expansion of 
degree 5. 

 

Figure 7. First order and total Sobol sensitivity indices (respectively  and ) obtained by a degrees 5 chaos polynomial expansion 

As shown, the sea level calibration factor is by far the most 
influencing variable. This uncertain variable explains more 
than 95% of the output variation. Then, the tidal amplitude 
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multiplier coefficient  explains some percent of the output 
variation. The other variables can be considered negligible in 
comparison. These results depend, of course, on the 
hypothesis on the input random variables and especially on the 
choice of their distributions. Consequently, the calibration of 
the model is focused on these tidal parameters. 

3) Tidal parameters estimation 
The initial guess of the tidal parameters is set to the 

value [ = − . ,   = ,    = ] as prescribed by the 
original study with this model. The constrains of the search 
taken from the sensitivity analysis (section IV.B.2.e). 
Similarly to the fluvial configuration, the differential 
increment is set to 10-4 for the computation of the observation 
operator approximated derivatives. 

The automatic calibration algorithm finds an optimal 
solution in about 16 iterations with the following set of 
parameters [ = − . , = . , = . ]. 

Fig. 8 and Fig. 9 display the results of the automatic 
calibration over a 5 days period. As shown in Fig. 8, the water 
surface profiles calculated are much closer to the ADCP 
measurements than the original model calibration. The final 
results emphasises the efficiency of the automatic calibration 
tool in the framework of a maritime configuration. 

 
Figure 8. Comparison of the water depth evolution with and without 

calibration (respectively - Opt and - Bgd) with respect to the ADCP 

measurements (- Obs) 

 
Figure 9. Comparison of the water depth evolution with and without 

calibration (respectively - Opt and - Bgd) with respect to the ADCP 

measurements (- Obs) 

As expected, the velocity results are also closer to the 
measures but some differences can be observed (Fig. 9). These 
differences can be explained given the degree of uncertainty 
in the ADCP instrument or the influence of the bathymetry on 
the 3D structure of the flow with turbulent structure not well 
represented with 2D hydraulic model. 

Finally, the computation time is a crucial point from 
operational point of view. Thus, the algorithmic calibration 
tool implemented in this work has been written to make use of 
multiprocessor parallelism in order to be efficient and 
compatible with industrial needs. Tab. 1 below summarizes the 
computation time in scalar and parallel modes obtained with 
processor Intel®Xeon®CPU E5-2620v3@2.40Ghz. 

Number of processors CPU time 

1 9h6min26s 

8 1h40min38s 

TABLE 1. COMPARISON OF CPU TIME 

Together with the chosen software tools and platform, the 
implementation of the automatic calibration algorithm 
remains efficient in term of computational cost for practical 
and industrial applications. 

V. CONCLUSIONS AND OUTLOOK 

Numerical models are nowadays commonly used in fluvial 
and maritime hydraulics as forecasting and assessment tools. 
Model results have to be compared against measured data in 
order to assess their accuracy in operational conditions. 
Amongst others, this process touches on model calibration, 
verification and validation. In particular, calibration aims at 
simulating a series of reference events by adjusting some 
uncertain physically based parameters until the comparison is 
as accurate as possible. However, if done manually, model 
calibration is time consuming. Fortunately, the process can be 
largely automated to reduce human workload significantly. 

This article presented an automatic calibration algorithm 
and it implementation as a series of coupled tools. The optimal 
search for the parameters takes the form of minimising a cost 
function, which led to the implementation of a constrained 
BFGS Quasi-Newton method. Using a constrained 
optimisation method (setting bounds over the parameters) 
helped in finding an optimal friction coefficient in a complex, 
sometimes ill-posed problem for which different sets of 
parameters can provide analogous results. 

In order to demonstrate the applicability of the automatic 
calibration method to converge to a known solution (“identical 
twin experiment”), tests on two fluvial schematic test cases 
were carried out. A real maritime configuration was also 
further calibrated against ADCP measurement with better 
results than originally obtained. Computation time also 
emphasised the efficiency of the automatic calibration tool in 
the framework of TELEMAC-2D. 

Future works will include the replacement of the classical 
finite differences method, for the gradient computation of the 
cost function in the optimisation method, by a gradient based 
on algorithmic differentiation. 
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