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1 INTRODUCTION 

Data based mechanistic, DBM, environmental models able to accurately reproduce input-output behavior 
of natural and man-made systems are still required in practical water quantity and quality real-time con-
trol applications, due to their low computational cost and high efficiency. DBM models are also efficient 
and sufficient accurate tools to be used as the basis of complex decision support systems for the integrated 
management of water resources at the catchment scale. 

According to Young and Garnier (2006), the best known transfer function derived using a DBM ap-
proach for solute transport and longitudinal dispersion in streams, is the Aggregated Dead Zone, ADZ, 
model introduced by Beer and Young (1983). The lumped ADZ framework, represented by an ordinary 
differential equation (Young and Wallis, 1993; Lees et al., 1998), allows effective and efficient use of 
powerful methods of system identification, parameter estimation and uncertainty analysis to be carried 
out. An additional advantage relies on the ADZ measurable and observable parameters using data of field 
tracer experiments, and therefore its underlying potential application to indirectly estimating the space-
average parameters of physically-based frameworks as those derived from the advection-dispersion equa-
tion, ADE, (e.g. transient storage model TS, Bencala and Walters, 1983; Runkel and Chapra, 1993). 

In this work, the relationships between ADZ and TS model parameters obtained by Lees et al., (2000) 
are revisited to include the TS temporal moments deduced by Schmid (2000, 2003) and verified by 
Veling (2005). Though this study does not address the current model theory inconsistency to represent 
observed constant skewness over time (Nordin and Troutman, 1980; Schmid, 2002; González-Pinzón et 
al., 2013), it covers some issues of the dispersive fraction´s physical meaning and its dependence on dead 
zone transport mechanisms. In addition, it is demonstrated that both modeling frameworks closely repro-
duce reactive behavior if conservative transport equivalence is guaranteed. 
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1.1 Solute transport models 

1.1.1 Transient storage TS model  
The TS model was introduced by Bencala and Walters (1983) to physically describe long concentration 
tails observed at breakthrough curves observed from tracer studies in streams. Under steady flow condi-
tions and considering a non-conservative solute with first order decay reaction, the model equations are 
given by: 
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where, c [ML
-3

] is the downstream solute concentration in the main channel; t [T] is time; x [L] is the 
reach length; u [LT

-1
] is the mean velocity in the main channel; A [L

2
] is the cross-sectional area of the 

main channel; E [L
2
T

-1
] is the longitudinal dispersion coefficient; cs [ML

-3
] is the solute concentration in 

the storage zone; α [T
-1

] is the mass-exchange coefficient between the main channel and the storage zone; 
As [L

2
] is the cross-sectional area of the storage zone; and k1 and k2 [T

-1
] are the first order decay rates of 

the main channel and the storage zone, respectively. The mean velocity u is given by the ratio between 
the stream discharge Q [L

3
T

-1
] and the cross-sectional area A. This model requires the definition of 

boundary conditions at the entrance and exit of the reach as well as initial conditions at each calculation 
cell for performing the numerical solution of the differential equations. 

1.1.2 Aggregated Dead Zone ADZ model  
After Young and Wallis (1993) and Lees et al. (1998), the continuous form of ADZ model, considering 
steady flow conditions and first order decay reaction is given by: 
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where, cin [ML
-3

] is the solute concentration boundary condition at the input or upstream location; τ [T] is 
the time delay describing solute advection due to the bulk flow movement; Tr [T] is the ADZ residence 
time at the dead zone representing the component of the overall reach travel time associated with disper-
sion; and k [T

-1
] is the first order decay rate. 

The residence time Tr is the ratio between the active mixing volume V [L
3
] (where dispersion mecha-

nisms take place) and the stream discharge Q. The mean travel time 𝑡̅ is defined as the time taken while 
the solute undergoes pure advection, followed by dispersion in the active mixing volume. It is expressed 
too as the ratio between the overall reach volume Va and the discharge Q, 

( )rt n T τ= +  (4) 

where n represents the number of identical ADZ elements serially connected. Conceptually, the ADZ 
model consist of a linear channel with time delay nτ followed by n completely mixed cells in series with 
identical residence time Tr. 

The most representative parameter of the ADZ model is known as the dispersive fraction DF and it 
represents the fraction from the overall reach volume that is completely mixed, or the overall time frac-
tion in which the solute is dispersed: 
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Results reported by Wallis et al. (1989), Young and Wallis (1993) and Camacho (2000) suggest that 
the dispersive fraction is constant under broad discharge intervals in alluvial streams. Also, Camacho and 
Lees (2000) show that DF can be estimated from field hydraulic data and velocity profiles, through the 
physical relationship of transport parameters 𝑡̅ and nτ with the mean velocity u and the maximum velocity 
umax, respectively, and reach length, 
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If the terms containing TS model parameters, which reflect storage zone effects, are neglected (i.e., 𝜀=T=0), temporal moment equations for the ADE model are obtained. These expressions only depend on 
the parameters u and E and the distance x (Nordin and Troutman, 1980), 
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Following Lees et al. (2000), ADZ model parameters could be estimated according to, 
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Beyond the parameter estimation from one modelling framework to another, one practical use of the 
equations obtained above, is the study of the physical meaning of the lumped model parameters. Combin-
ing Eq. (5) and Eq. (7) with Eq.(17), the following relationship for the dispersive fraction can be derived, 
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When the mass-exchange coefficient between the main channel and the storage zone α acquires a value 
near to zero (i.e. T→∞), the DF is defined by, 
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This is equivalent to say that the trapped solute in the storage zone takes much time leaving it and the 
concentration tail of the downstream breakthrough curve becomes longer. Eq. (19) indicates that, under 
the outlined conditions, DF is exclusively a function of the ratio between the cross-sectional area of the 
storage zone and the cross-sectional area of the main channel. As it will be shown later, when α decreas-
es, the DF variation as a function of stream discharge is less evident, until reaching a limit value given by 
Eq. (19). This result can partially explain experimental results about a constant dispersive fraction value 
under broad discharge intervals. 

Otherwise, it is possible to demonstrate that when the cross-sectional area of the storage zone is negli-
gible (i.e. As→0), or the α coefficient is larger (α→ ∞), DF acquires a constant value equal to 2/3, with-
out any dependence on the channel geometry. Both conditions described above are equivalent to applying 
the ADE model. With DF constant and equal to 2/3, the expressions to obtain ADE model parameter as a 
function of ADZ model parameters become: 

ADZu x t=  (20) 

2
 

9

u x
E

n

⋅
=  (21) 

According to the expressions presented above, to obtain ADE model parameters, it is necessary to set 𝑡̅ 
and n as ADZ model calibration parameters with DF fixed and equal to 2/3. These relationships were ap-
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It is worth noting that when the first order decay rate at the storage zone is equal to zero, this zone does 
not have any effect on the solute concentration at the main channel and the steady-state solutions become 
equal to the ADE model solutions. 

3.3.2 ADZ modeling framework 
The general solution for mixed-flow steady-state condition under the ADZ modeling framework, consid-
ering n ADZ elements in series, is given by: 
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Solving for well-mixed conditions, DF = 1 (pure dispersion) which means that 𝜏 = 0, the corresponding 
solution is given by: 
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Under plug-flow conditions, DF = 0 (pure advection) and 𝜏 = 𝑡̅, the following expression is obtained: 

k t
inc c e−=  

3.4 Discussion 

Comparison between non-conservative TS and ADZ model responses using mathematical relationships 
between model parameters, show that both frameworks are able to generate the same results. It is possible 
to conclude that the k parameter has the same physical and mathematical meaning for both modeling 
frameworks. This verification suggest that a reliable application of complex processes (reaeration, oxida-
tion, hydrolysis, sorption, volatilization, settling, etc.) based on the ADZ modeling framework is possible. 
These approaches will produce similar responses to mechanistic formulations derived from the traditional 
advection-dispersion equation if conservative solute transport parameters equivalence is guaranteed. 
Nash-Sutcliffe efficiency coefficients R

2
 found for non-conservative responses under both frameworks 

range from 0.9961 to 0.9999, with mean value of 0.9993 for the 75 simulated cases. Also, it was observed 
that the n values monotonically increase with reach length. Furthermore, it was found for the 75 synthetic 
cases that the corresponding equations produce practically the same results applying the solutions of 
mixed-flow under both modeling frameworks with equivalent conservative transport parameters. 

From the theoretical relationships found between ADZ and TS models parameters, using synthetic data 
from the five studied channels for non-conservative solute transport models comparison, curves relating 
the DF as a function of discharge and α were constructed and are shown in Figure 4. According to Figure 
4 (left), the DF is not modified drastically with discharge (maximum change in the order of 0.15 for 
channel 3 in a range from 10 to 400 m

3
/s). It is observed that while the discharge increases, DF’s rate of 

change decreases. It is worth noting that channels 3 and 4 show the greatest change with discharge and 
have the steepest longitudinal slope. Channels 1, 2 and 5, with slopes similar to those of alluvial rivers, 
show the lowest DF variation. Figure 4 (right) was constructed with data obtained from channel 3 to show 
the change of DF with different values of the α parameter. It is shown that while α decreases, the DF 
curve becomes flatter, until it reaches a constant and discharge-independent value, as it has been observed 
in natural channels. This constant value is given by Eq. (19). The results shown in Figure 4 are valid if it 
is supposed that the ratio between the cross-sectional area of the main channel and the cross-sectional ar-
ea of the storage zone ε is constant over time. The latter must be experimentally investigated because it is 
not a necessarily a practical condition. If ε is variable with stream flow, the measured constant values for 
DF possibly respond to interdependence between the water body hydrodynamics and the transport mech-
anisms in the storage zone. 
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