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1 INTRODUCTION 

Reservoir operation is a complex problem that involves many decision variables, multiple objectives as 
well as considerable risk and uncertainty (Husain, 2012; Mohan S 2007). Reservoir managers have to 
simultaneously meet requirements for different needs, such as flood control, power generation, and recre-
ational use of the reservoir pool, environmental quality downstream of the reservoir, and the safety and 
structural integrity of the dam itself. In addition, the conflicting objectives lead to significant challenges 
for operators when making operational decisions, and engineers have created reservoir simulation models 
to help develop those release schedules. The desired generation or release scheduling can be checked us-
ing inflow forecasting in order to satisfy the entire set of operational constraints (Cicogna et al., 2009). At 
the real time operation stage, a simulation tool can be used to quickly check operational alternatives due 
to emergency events or planning and real-time incongruence. The operational models were broadly cate-
gorized into descriptive simulation, prescriptive optimization and hybrid simulation and/ or optimization 
models involving elements of both (McMahon, 2009). Descriptive simulation models are most useful for 
studying the operation of complex physical and hydrological characteristics of a reservoir system includ-
ing the experience and evaluation of predefined operating rules. One of the main operational goals in the 
management of reservoirs is to determine a suitable release based on observation data and other condi-
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tions (Kamodkar, 2010). Data-driven models are becoming more common approach in in several water 
management issues. Data-driven modelling (DDM) is based on analyzing of the data characterizing the 
system under study, in particular a model can be defined on the basis of finding connections between the 
system state variables (input, internal and output variables) without explicit knowledge of the physical 
behavior(Abrahart et al., 2008). DMM is focused on computational intelligence, which includes neural 
networks, fuzzy systems and evolutionary computing as well as other areas within artificial intelligence 
and machine learning. The use of ANNs and Fuzzy logic has many successful applications in hydrology, 
in modelling rainfall-runoff processes: Hsu et al. (Hsu et al., 1995); Minns and Hall (Minns AW, 1996); 
Dawson and Wilby (Dawson CW, 1998); Dibike et al. (Dibike Y, 1999 ); Abrahart and See (Abrahart RJ, 
2000); Govindaraju and Ramachandra Rao; replicating the behaviour of hydrodynamic/hydrological 
models of a river basin where ANNs are used to provide optimal control of a reservoir (Solomatine DP, 
1996 ); for modelling stage-discharge relationships(Sudheer KP, 2003 ); simulation of multipurpose res-
ervoir operation  (Fontane, 1997; Shrestha et al., 1996); deriving a rule base  for reservoir operation from 
observed data (Chuntian, 1999 ; Panigrahi and Mujumdar, 2000 ; S.Mohan and Prasad, 2006). In this pa-
per, a simulation model for reservoir operation was developed based on the Integration of Data-Driven 
Modeling (ANFIS) and Stochastic Modeling (Hidden Markov model – HMM, Thomas-Fiering model). 
The applicability and capability of developed model were investigated through the use of a data set of the 
Bigge reservoir in the Ruhr basin, Germany.  

2  METHODOLOGY 

2.1 Study Region and Data Collection 

The study was conducted on the Bigge reservoir which is located in the Ruhr river basin, Germany and 
lies in the southern part of the Sauerland between Olpe and Attendorn. The reservoir serves primarily to 
store and discharge water on demand, thus ensuring a balanced water level of the River Ruhr (Ruhr-
verband, http://www.ruhrverband.de). Up to 40 per cent of the required compensation water for all dams 
and reservoirs can be discharged from the Bigge Reservoir via the Bigge and Lenne rivers into the Ruhr 
river system. The reservoir system in the Ruhr Basin is centrally managed by the Ruhr River Association 
(Ruhrverband), whose major tasks are to provide drinking water and to supply local industry with process 
water within one of the most densely populated and industrialized areas in Europe. Maniak (Maniak, 
1997) reported that 70% of the water demand of the Rhenish-Westphalian industrial zone is covered by 
the Ruhr and this percentage increases in dry periods. In times of extreme droughts it increases up to the 
1.6 fold of the annual average. Table.1 presents some characteristical data of the Bigge reservoir. The sta-
tistical properties of the monthly inflow, monthly storage and the monthly release during the study period 
are listed in Table 2. 

 
Table 1. Main data of the Bigge reservoir.(Renz, 1983) 

Gross storage capacity (m
3
*10

6
) 171.7 

Dead storage capacity (m
3
*10

6
) 7.5 

Net storage  capacity (m
3
*10

6
) 164.2 

Amount of drinking water* (m
3
*10

6
) 4.0 

Effective storage capacity (m
3
*10

6
) 160.2 

Average annual inflow (m
3
*10

6
) 225.25 

Percentage of the effective storage capacity of the system (%) 39.2 

Storage ratio ( storage capacity / annual inflow) o.72 

Surface area at maximum storage 8.76 km
2
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Table 2. Statistical properties of the input data used in this study (1990 -2008)   

Month 
Inflow (million m

3
) Storage (million m

3
) Release(million m

3
) 

Mean Min. Max. Std. Mean Min. Max. Std. Mean Min. Max. Std. 

January 41.58 3.98 74.66 21.27 136.95 113.89 153.07 9.06 41.62 13.02 78.17 20.19 

February 28.56 5.45 75.87 18.70 136.90 103.65 157.20 11.12 22.43 7.27 56.97 14.16 

March 32.07 8.63 52.42 13.98 143.04 103.72 165.26 14.10 20.64 3.70 44.08 11.26 

April 15.29 4.22 27.23 8.22 154.46 114.00 170.11 13.96 14.37 3.27 31.16 8.16 

May 9.69 4.01 24.67 5.51 155.39 115.11 169.79 14.68 10.54 3.81 21.04 3.61 

June 6.54 3.08 18.86 4.10 154.55 115.92 168.72 14.99 13.02 4.65 21.39 4.19 

July 7.68 1.89 28.59 6.84 148.06 114.36 167.30 15.08 14.65 6.44 27.16 4.13 

August 8.70 1.51 48.88 10.71 141.09 108.30 164.04 16.16 17.70 9.43 58.66 10.71 

September 11.04 2.10 43.68 10.50 132.09 93.88 154.26 15.88 16.56 5.26 44.04 8.29 

October 17.15 4.40 75.08 15.93 126.58 85.09 149.93 17.13 18.33 9.52 69.70 13.62 

November 28.21 7.88 55.37 14.86 124.50 91.31 155.31 17.99 24.64 7.28 63.79 15.45 

December 34.81 14.05 69.53 13.93 128.07 93.84 144.88 14.49 25.93 2.44 52.80 14.61 

2.2 Adaptive Neuro-Fuzzy Inference System - ANFIS 

Fuzzy systems present particular problems to a developer then rules have to be determined somehow (Za-
deh, 1973). An adaptive neuro-fuzzy inference system (ANFIS) is a fuzzy inference system formulated as 
a feed-forward neural network. Hence, the advantages of a fuzzy system can be combined with a learning 
algorithm (Venugopal et al., 2010). Neuro-fuzzy modeling is a technique for describing the behavior of a 
system using fuzzy inference rules within a Neural Network (NN) structure. Using a given input/output 
data set, adaptive neuro-fuzzy inference system (ANFIS) constructs a FIS whose member ship function 
parameters are tuned using a back propagation algorithm (Labani M.M., 2010). So, the FIS could learn 
from the training data. In this study, the ANFIS model was developed in the MATLAB environment. 
ANFIS was used to extract the relation of time of year (months), storage, inflow, and Standardized Pre-
cipitation Index (SPI) and release variables and represent them as fuzzy if-then rules. The premise part of 
fuzzy if-then rules is months, inflow, storage, and SPI. The consequent part is the release. The structure of 
the ANFIS model consists of a Sugeno type fuzzy system with generalized bell input membership func-
tions and a linear output membership function. The network consists of 8 inputs, each with 5 input mem-
bership functions, 5 rules and 1 output membership function (figure 1). The training algorithm consists of 
backpropagation and least squares estimation for the adjustment of premise and consequent parameters of 
the ANFIS respectively. 

 

 
Figure 1. Architecture of the proposed Adaptive Neuro-Fuzzy Inference System 

2.3 Thomas-Fiering model for inflow generation 

The historical records of the monthly inflow were used for training and testing the developed model. To 
simulate the reservoir operation, monthly streamflow data were generated by using Thomas-Fiering mod-
el. Basically, this model is of a Markovian nature with periodic parameters, namely, the monthly means, 
standard deviations and the lag-zero cross correlations between successive months(Sen, 1978). In its sim-
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plest form the model consists of twelve regression equations, one for each month. The method of Thomas 
and Fiering implicitly allows for the non-stationarity observed in monthly inflow data (Singhal et al., 
1980). For the Thomas-Fiering model, synthetic monthly series is generated with the following recursive 
relationship: 𝑄 𝑖+1 =   𝑄�𝑗+1 + 𝑏𝑗  �𝑄𝑖 − 𝑄�𝑗� + 𝑡𝑖 ∗ 𝑆𝑗+1 ∗   �1 − 𝑟𝑗2�1 2�  (1) 

Where: 𝑄𝑖   = the inflow during the i month record from the start of the synthetic sequence. 𝑄 𝑖+1  = the inflow during the (i+1) month. 𝑄�𝑗  = the mean monthly inflow during the j month with a repetitive cycle of 12 months. 𝑄�𝑗+1 = the mean monthly inflow during the month (j+1). 𝑏𝑗   = the regression coefficient for estimating the flow in the month j+1 from the month j. 𝑡𝑖    = a normal random deviate with mean equal to zero and unit variance. 𝑆𝑗+1  = the standard deviation of the inflow in the month j+1. 𝑟𝑗     = the correlation coefficient between the inflows of the j and j+1 month. 
Initially a known streamflow of any month (say, January) along with the mean and standard deviation 

of historical streamflow for that month were fed to equation 1. The output produced by this equation is 
the streamflow of the succeeding month. The sequence of the inflow generated by equation 1 possesses 
the same general statistical properties as those representing natural inflow. 

2.4 HMM for SPI forecasting 

The Markov chain is a probabilistic model used to represent dependences between successive observa-
tions of a random variable (Keilson, 1979). In this study, a Hidden Markov Model (HMM) with 7 states 
to forecast SPI values at short-medium term has was developed. States 1 to 7 - according to SPI classifi-
cation-can be interpreted as extreme events, namely extremely wet event (possible flood) and respectively 
meteorological severe drought (Khadr et al., 2009). The SPI was calculated for different time scales 
(1month, 3 months, 12 months, 48 months, etc.) based on streamflow data series which means that the 
drought index from the streamflow series was used as one of measures for streamflow deficit. The distinc-
tive feature of this method is that the drought management and monitoring would be effective because of 
the more realistic judgment on the drought severity (Yoo et al.). The HMM was tested and results of test-
ing periods show that Hidden Markov Model provides a good agreement between observed and forecast-
ed values. The forecasted values of SPI (SPI (i+1)) were then used as input for the ANFIS model shown 
in figure 1.  

3 RESULTS AND DISCUSSION 

In this study, the developed simulation model consists of two stages. In the first stage, operation rules 
were developed using fuzzy approach, then the developed fuzzy inference system “FIS” was an input to 
the ANFIS system. In second stage, the operation of reservoirs was simulated for any required number of 
years using the final FIS developed by using ANFIS. Thomas-Fiering model was used to generate month-
ly inflow, and a HMM model was developed to forecast SPI index. In order to begin the training using 
ANFIS, an initial fuzzy inference system “FIS” was needed first. In the present study 42 years of histori-
cal data of inflow and 18 years of historical data of storage and release were collected. From this data, 14 
years of data were used for building (training) the model and 4 years of data were used to test the model 
on monthly basis. As shown in table 3, the data set contains 8 input data and one output (reservoir re-
lease). FIS, fuzzy inference system, was generated using fuzzy subtractive clustering to develop a set of 
rules and membership functions that models the data behavior. Then the generated FIS was used as an ini-
tial FIS, initial conditions, for ANFIS training. The FIS was then evaluated to obtained output data which 
is the predicted value of the release. Forecasted release values and observed release values for training pe-
riod and test period are shown in figure 2 and 3 respectively. In order to evaluate the performance of the 
ANFIS system, it is necessary to introduce evaluation criteria. In this study, the performance of the mod-
els was assessed using four statistical criteria include; Mean Absolute Deviations (MAD), R-squared, 
Root Mean Square Error (RMSE) and correlation coefficient (Cr) were used (table 4).   
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Table 3. Typical one year sample of input and output data of the simulation model  

Model Input Output 

Month (i) Inflow (i) Storage (i-1) Storage (i) Storage (i+1) SPI (i-1) SPI (i) SPI (i+1) Release (i+1) 

1 38.95 128.66 145.47 132.08 0.34 0.45 -0.58 10.60 

2 6.64 145.47 132.08 128.12 0.45 -0.58 -1.06 6.33 

3 16.99 132.08 128.12 138.78 -0.58 -1.06 -2.17 8.87 

4 5.55 128.12 138.78 135.46 -1.06 -2.17 -1.56 7.88 

5 5.85 138.78 135.46 133.43 -2.17 -1.56 -0.87 8.34 

6 11.06 135.46 133.43 136.16 -1.56 -0.87 -0.11 11.97 

7 7.26 133.43 136.16 131.45 -0.87 -0.11 -0.11 16.81 

8 2.57 136.16 131.45 117.21 -0.11 -0.11 -0.78 16.16 

9 2.15 131.45 117.21 103.21 -0.11 -0.78 -1.43 12.25 

10 4.40 117.21 103.21 95.36 -0.78 -1.43 0.23 10.25 

11 46.05 103.21 95.36 131.16 -1.43 0.23 0.67 30.51 

12 43.48 95.36 131.16 144.13 0.23 0.67 0.46 25.99 

 

 
Figure 2. Comparison of historical reservoir release and ANFIS output (training period) 

 

 
Figure 3. Comparison of historical reservoir release and ANFIS output (test period). 

Table 4. Results of the simulation model performance  

Studied data 
Model evaluation criteria 

RMSE R
2
 MAD Cr 

Training data 5.17 0.95 3.92 0.93 

Test data 7.82 0.90 5.75 0.79 

After evaluation of the ANFIS model, the FIS system could be used for simulation of reservoir operation 
for any required number of years as shown in figure 4. The simulation process could be illustrated as fol-
low: In the model the set of input consists of 8 variables (table 3). At any month t, it is required to predict 
reservoir release at the next month t+1.The inflow of month t+1 is unknown, therefore Thomas-Fiering 
model was used to generate monthly inflow for the month t+1; from historical data, storages of previous, 
current, and next month are known. As mentioned before, the storage volume is the storage at the begin-
ning of any month so storage at months t-1, t and t+1 are known. After holding the previous steps, three 
input variables were remaining unknown, namely SPI index for months t-1, t, and t+1. SPI for month t-1 
was calculated from historical data, and SPI for month t was calculated based on the generated inflow 
from Thomas-Fiering Model. SPI index for month t+1 is predicted using the HMM. 

Once the input data were available, the developed FIS system predicted the release and this process 
could be repeated for any number of months. The simulation model of a reservoir system is based on wa-
ter balance of reservoirs. The output of the model (release) must satisfy the constraints of storage and de-
mands. The simulation model subject several constraints such as Storage Continuity, Storage Limits, De-
mands limit which is identified by the reservoir operator. Figure 5 presents comparison between historical 
and simulated reservoir release for a period of 20 years. To simulate the behavior of the reservoir storage, 
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Table 5. The driest year in 500 simulated years using ANFIS, Thomas-Fiering and HMM models  

Model Input Output 

Month (i) Inflow (i) Storage (i-1) Storage(i) Storage (i+1) SPI (i-1) SPI (i) SPI (i+1) Release (i+1) 

1 33.03  138.00 131.71 0.24 0.16 0.00 20.17 

2 8.52 138.00 131.71 120.06 0.16 -0.48 0.32 20.88 

3 10.48 131.71 120.06 109.67 -0.48 -0.84 -0.56 12.47 

4 5.91 120.06 109.67 103.10 -0.84 -0.99 -0.40 10.75 

5 4.62 109.67 103.10 96.97 -0.99 -0.99 0.08 9.71 

6 3.36 103.10 96.97 90.61 -0.99 -1.22 -1.39 11.99 

7 1.89 96.97 90.61 80.52 -1.22 -1.32 -1.27 17.12 

8 1.51 90.61 80.52 75.00 -1.32 -1.86 * -1.77* 12.17 

9 6.66 80.52 75.00 75.00 -1.86* -2.51 ** -2.62** 5.00 

10 4.40 75.00 75.00 74.40 -2.51** -2.80 ** -2.10** 5.70 

11 12.12 75.00 74.40 80.82 -2.80** -2.60 ** -2.30** 7.08 

12 26.51 74.40 80.82 101.43 -2.60** -2.11 ** -2.34** 12.50 

* Severely dry event        ** Extremely dry event 

 

To assess the model performance during actual drought periods, the year 1976 (which was an extremely 

dry period) was selected as a case study. At the first step, The ANFIS system was developed. After that, a 

period of 24 months, starting from January 1976, was generated to be the first input of the simulation 

model. Inflow records were assumed to be the same as historical inflow records during this period and the 

storage of the first month (January 1976) was the same as historical one. To get SPI values for the simu-

lated periods, the SPI values were forecasted using HMM. After a simulation run, the simulated monthly 

release and monthly storage were then obtained. The comparisons of the observed and simulated results 

of the ANFIS model for the 1976 drought event are depicted in figures 6 and 7. Results showed that the 

reservoir release and storage were well reproduced by the simulation model during this dry period. 
 

 
Figure 6. Comparison of the reservoir releases during the dry period 1976 and output of the simulation model  

 

 
Figure 7. Comparison of the reservoir storages during the dry period 1976 and output of the simulation model  

4 CONCLUSION 

In this study, artificial intelligence tools and stochastic methods were used to construct a model for simu-
lation of reservoir operation. The applicability and capability of the ANFIS model were investigated 
through the use of a set of data included monthly records of inflow, storage, SPI and reservoir release. 
The results of model performance show that integration of Neural Networks, ANFIS, Thomas-Fiering 
model, and HMM could provide very useful data for reservoir characterization and development.  
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The main conclusion of this paper is that ANFIS and Neural Networks have a great ability in determining 
relationships between a series of inflow, storage, and SPI data and reservoir release as target. The devel-
oped model could be used to check and evaluate different operational policies and to compare planning 
strategies for operation. 
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