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Abstract: For the condition of high shear stresses, sediment particles can be transported in the 

form of sheet flows. Such collective motion of bed particles is described in this paper using a 

simple elastic model. The preliminary result shows that sediment transport rate for sheet flows is 

independent of sediment particle size, which generally agrees with previous observations. For 

comparison, it is also demonstrated that the effect of sediment size is not significant for sediment 

transport over a flat bed in laminar flows. 

 
1.    Introduction 

 
For sediment beds subjected to sufficiently high shear stress, bedforms such as 

ripples and dunes may disappear, being followed by an intensively-moving layer of bed-

load particles. The flow including such a layer is called sheet flow. Such flows are often 

associated with high transport rates, which present in many natural environments 

including rivers in flood, tidal estuaries, and beaches undergoing storm-wave attack, as 

well as in industrial applications such as sludge treatment and food stuff processing. 

Sheet flows have been observed earlier by Wilson (1966), and recently by Sumer et 

al. (1995), Jenkins and Hanes (1998), and Nielsen et al. (2002), among others. Wilson 

(1966) conducted high-shear flow experiments with a pressurized pipe system rather than 

an open channel. His measurements have resulted in a significant improvement in the 

computation of bed load transport for high-shear conditions. Jenkins and Hanes (1998) 

approached the sheet flow problem numerically by applying kinetic theory for collisional 

grains. In addition, sediment transport induced by oscillatory sheet flows has been 

observed by Asano (1995) and Nielson et al. (2002). Other relevant studies are due to 

Wilson (1987, 1989), Wilson and Pugh (1988), Abrahams (2003), and Cheng (2003). 

Since the sheet flow involves collective particle motion, its mechanism may not be 

necessarily explored by examining behaviors of individual particles. For example, the 

collective performance of particles has been examined by Ugawa and Sana (2002) for 

investigating standing waves composed of vertically oscillating particles. They reported 

that their experimental observations could be described reasonably using the theory of 

buckling developed for elastic materials. In this study, an elastic model is proposed for 

formulating sediment transport for the sheet flow condition. 

 

 
2.    Elastic Model 

 
Consider a flat sediment bed subjected to a flow-induced shear stress, τb. As shown 

in Fig. 1, a vertical column is selected. Its height is the same as the thickness of the 

sediment sheet flow, δ. The dimension of the cross-section of the column is denoted as b. 

Here, we consider that b is very small in comparison with the column height but it is 



 2

proportional to the height. Therefore, it can be assumed that b = αδ where α = 

coefficient. This column tends to bend downstream in the presence of the bed shear 

stress. 

 

 
Fig. 1   Sketch of ‘beam model’ for sediment sheet flow. 

 

At the location of y, which is measured from the bottom of the sheet flow, the 

horizontal displacement per unit time is denoted as u. From the theory of mechanics of 

materials (Case et al. 1999), the displacement distribution is expressed as 
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where F = concentrated force exerting at the upper end of the column; E = Young’s 
modulus of elasticity; I = the second moment of the cross section about the principal 

axis; EI = flexural stiffness of the column. By integrating Eq. (1) from y = 0 to y = δ, we 

can express sediment transport per unit width as 
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Since F ~ τbb
2 = ρu*

2b2, where u* = shear velocity, and b = αδ, Eq. (2) can be re-

written as 

EI

u
Cudyq

o

v

62

*
1

δρδ

== ∫  (3) 

 

where C1 = coefficient. It can be seen that further applications of Eq. (3) depend on how 

the essential parameters, E, I and δ, are evaluated.   

 
2.1    Evaluation of Parameters 
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Modulus 

According to Hookean law, as sketched in Fig. 2(a), the modulus of elasticity E is 

equal to the ratio of the stress to the strain, σ/(∆L/L), where σ = normal stress and ∆L/L 

= relative variations in the length of beam. Therefore, E has a dimension of stress. In 

comparison, one of fundamental properties for Newtonian fluid can be measured by the 

ratio of the shear stress to the shear rate, S1, i.e., the dynamic viscosity (µ) of fluid for 

laminar flows (see Fig 2(b)). The viscosity can also be expressed as the product of the 

shear stress and the characteristic time, i.e. 

11 TS bτρνµ ===  (4) 

 

Obviously, the characteristic time, T1, for laminar flows near the bed can be represented 

by ν/u*
2, where ν = kinematic viscosity and u* = shear velocity.   

 

 
Fig. 2   Modulus of elasticity compared to shear-induced diffusion coefficients. 

 

Similarly, for the case of elastic particulate flows, the ratio of the shear stress to the 

shear rate, S2, can be assumed being proportional to the shear stress and the 

shear rate 

stress 

strain 
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= modulus (E)

shear stress 
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shear stress 
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(c) Particulate material 
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corresponding characteristic time, T2 (see Fig. 2(c)). For sheet flows, the characteristic 

length for the collective particle motion is the thickness of the sheet layer, and therefore 

it may be further assumed that T2 is proportional to δ/u*. With this consideration, we get  

δρτ *22 uTS b ==  (5) 

 

By comparing Fig. 2(a) and Fig. 2(c), the modulus ‘E’ applicable for the particulate 

material can be taken as the slope, S2, i.e. 

δρ *uE =  (6) 

 

 

Second Moment 

Since the dimension of the cross-section is b, and the second moment I is 

proportional to b4, we may assume that 

4

2bCI =  
(7) 

 

where C2 = coefficient. 

Substituting Eqs. (6) and (7) into Eq. (3) gives 

δ*3uCqv =  (8) 

Experimental studies by Wilson (1989) and Sumer et al. (1995) have suggested that the 

ratio of the thickness of the sheet flow to the particle diameter, δ/D, can be linearly 

related to the dimensionless shear stress, τ*. With this result, Eq. (8) can also expressed 
as  

g

u
qb ∆
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3
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where ∆ = (ρs - ρ)/ρ; ρs = particle density; ρ = fluid density; g = gravitational acceleration  

and β = coefficient. 

Eq. (9) indicates that the bedload transport rate for high shear stresses is independent 

of the size of sediment grains. This result may be against what we expect for other flow 

conditions, but it indicates that when sediment particles move in layers, the effect of 

sediment size can be ignored. In other words, for the sediment sheet flow, the average 

sediment velocity can be characterized by u*, while the thickness of the mobile sediment 

layer can be characterized by u*
2/(∆g).   

In Fig. 3, Eq. (9) is further compared with experimental data provided by Nnadi and 

Wilson (1992). In spite of two different particle sizes, Fig. 3 shows that all data points 

generally follow the same linear trend. 

In the dimensionless form, Eq. (9) can be re-written as 

5.1

*βτφ =  
(10) 
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where φ = qv/(∆gD3)0.5 = dimensionless sediment transport rate. Actually, the power 
function given by Eq. (10) for the high-shear flow condition has been confirmed 

previously by several studies (see a summary provided by Cheng (2002)).  

 

 

3.    Discussion 

  

Within the sheet flow, the sediment concentration decreases almost linearly from the 

top of sediment bed to the stationary layer (Wilson 1987). This variation definitely has 

some effects on the assumptions, which are made for the derivation of Eq. (1) and 

evaluations of the relevant parameters. However, such effects are not considered in the 

present study.  
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Fig. 3  Transport rates independent of particle diameters. Data were collected by Nnadi and Wilson 

(1992) for particles with specific gravity of 1.56. 

 

 

On the other hand, the phenomena of sediment transport without bedforms also 

occur for laminar flows. Yalin and Karahan (1979) observed that sediment in laminar 

flows moves in layers at the initial motion condition. It is interesting to note that 
sediment transport over a flat bed in laminar flows has a weak dependence on the 

sediment size. Cheng (2004) demonstrated that for a flat bed, the dimensionless transport 

rate can be generally related to the dimensionless particle diameter, D*, and the 

dimensionless shear stress, τ*, as follows 
4
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where D* = D(∆g/ν2)1/3. However, in the dimensional form, Eq. (11) can be changed to 
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From Eq. (12), it can be seen that the power related to the particle diameter is much 

smaller than the others and thus the particle size effect is also insignificant. 

 

4.    Conclusions 

 

A simple elastic model that is derived from the theory of beam deflection is used to 

evaluate sediment transport rates for the condition of high bed shear stresses. The 

collective sheet motion of sediment particles is shown to be independent of the particle 

size. Similar phenomena can be also found for sediment transport in laminar flows. This 

implies that for such sheet flow conditions, it may not be necessary to examine behaviors 

of individual particles.  
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