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Abstract— This paper is focused on the application of the 
recently implemented TelApy module (www.opentelemac.org). 
TelApy aims to provide a python wrapper of TELEMAC API 
(Application Program Interface). The goal of TelApy is to have 
a full control on the simulation while running a case. For 
example, it must allow the user to stop the simulation at any 
time step, get values of some variables and change them. In 
order to make this possible, a Fortran structure called 
instantiation was developed with the API. It contains a list of 
strings pointing to TELEMAC variables. This gives direct 
access to the physical memory of variables, and allows 
therefore to get and set their values. Furthermore, changes 
have been made in TELEMAC main subroutines to make 
hydraulic cases execution possible time step by time step. It is 
useful to drive the TELEMAC-MASCARET SYSTEM APIs 
using Python programming language. In fact, Python is a 
portable, dynamic, extensible, free language, which allows 
(without imposing) a modular approach and object oriented 
programming. In addition of benefits of this programming 
language, Python offers a large amounts of interoperable 
libraries. The link between various interoperable libraries with 
TELEMAC-MASCARET SYSTEM APIs allows the creation of 
an ever more efficient computing chain able to more finely 
respond to various complex problems. Therefore, the TelApy 
module has the ambition to enable a new way of use for the 
TELEMAC-MASCARET system. In particular one can think 
about high performance computing for the calculation of 
uncertainties, optimization, code coupling and so on. The 
objectives of the paper are to present some examples of the 
TelApy module in the case of Uncertainty Quantification, 
Optimization, Reduced Order Model and Monitoring System. 

I. INTRODUCTION 

This paper will give a short explanation of the new 
Python module TelApy which is used to control the APIs of 
TELEMAC-MASCARET SYSTEM. The TELEMAC-
MASCARET SYSTEM APIs are developed in Fortran. 
However, it is relatively easy to use these Fortran routines 
directly in Python using the "f2py" tool of the python Scipy 
library [7]. This tool will make it possible to compile Fortran 
code such as it is accessible and usable in Python. This 
compilation step is directly integrated into the compilation of 
the TELEMAC-MASCARET SYSTEM and is thus 
transparent to the user. Moreover, in order to make the 
TelApy module more user friendly, a python wrapper has 
been developed to encapsulate and simplify the different API 
Python calls. This set of transformation constitutes the 
TelApy module. 

The first section of this paper is dedicated to a short 
description of how the APIs and TelApy are working, then 
four applications of that module are described. 

II. TELAPY PACKAGE 

A.  Fortran APIs 

An API (Application Programming Interface) is a library 
allowing to control the execution of a program. Here is part 
of the definition from Wikipedia: 

“In computer programming, an application programming 
interface (API) specifies a software component in terms of its 
operations, their inputs and outputs and underlying types. Its 
main purpose is to define a set of functionalities that are 
independent of their respective implementation, allowing 
both definition and implementation to vary without 
compromising each other. 

In addition to accessing databases or computer hardware, 
such as hard disk drives or video cards, an API can be used to 
ease the work of programming graphical user interface 
components, to allow integration of new features into 
existing applications (a so-called "plug-in API"), or to share 
data between otherwise distinct applications. In practice, 
many times an API comes in the form of a library that 
includes specifications for routines, data structures, object 
classes, and variables.” 

The API’s main goal is to have control on a simulation 
while running a case. For example, it must allow the user to 
stop the simulation at any time step, retrieve some variables 
values and change them. In order to make this possible, a 
Fortran structure called instance was developed in the API. 
This structure is described later on. The instance structure 
gives direct access to the physical memory of variables, and 
allows therefore the variable control. Furthermore, 
modifications have been made in TELEMAC-MASCARET 
SYSTEM main subroutines to make hydraulic cases 
execution possible time step by time step. All Fortran 
routines are available in the directory "api" of TELEMAC-
MASCARET SYSTEM sources. 

In the rest of the paper we will make reference to the 
TELEMAC-2D part of the API but it is also available for 
other modules (so far for SISYPHE and soon TELEMAC-
3D) 

An instance is a Fortran structure that gathers all the 
variables alterable by the API. The definition of the 
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"instance" structure is made in a Fortran module dedicated to 
this purpose and is composed of: 

 An indice defining the instance I.D. 

 A string which can contain error messages. 

 Some pointers to the concerned module variables. 
This is what makes it possible to manipulate the 
variables of the module by having a direct access to 
their memory location. 

In addition to the instance definition, the module includes 
all routines needed to manipulate it (creation, deletion, and so 
on). 

The way the instance is defined (pointers) allows 
manipulation of variables during the simulation. So, to get 
information on the variables the following set of 
functionalities has been implemented: 

 get the list of variables reachable with the API. 

 get the information on the variable : 

o type of a variable (integer, Boolean, real, 
string). 

o Access (read-only, read-write). 

o Number of dimensions. 

o … 

 get the size of a variable for each of its dimensions. 

 get/set the value of a variable for a given index. 

The list of variables that can be accessed is given in Table 
1. Not every variable within TELEMAC-2D is there. 
However adding a new variable is pretty easy, the 5 steps 
procedure is described in the TelApy user documentation [1]. 

 
MODEL.AT: Current time 
MODEL.BCFILE: Boundary condition file name 
MODEL.BND_TIDE: Option for tidal boundary conditions 
MODEL.BOTTOMELEVATION: Level of the bottom 
MODEL.CHESTR: Strikler on point 
MODEL.FAIR: Fair on point 
MODEL.COTE: Prescribed elevation value 
MODEL.CPL_PERIOD: Coupling period with sisyphe 
MODEL.DEBIT: Discharge on frontier 
MODEL.DEBUG: Activating debug mode 
MODEL.FLUX_BOUNDARIES: Flux at boundaries 
MODEL.GEOMETRYFILE: Name of the geomery file 
MODEL.METEOFILE: Name of the binary atmospheric file 
MODEL.FO2FILE: Name of the formatted data file 2 
MODEL.LIQBCFILE: Name of the liquid boundaries file 
MODEL.GRAPH_PERIOD: Graphical output period 
MODEL.HBOR: Boundary value on h for each boundary point 
MODEL.IKLE: Connectivity table between element and nodes 
MODEL.INCWATERDEPTH: Increase in the the depth of the water 
MODEL.KP1BOR: Points following and preceding a boundary 

point 
MODEL.LIHBOR: Boundary type on h for each boundary point 
MODEL.LISTIN_PERIOD: Listing output period 
MODEL.LIUBOR: Boundary type on u for each boundary point 
MODEL.LIVBOR: Boundary type on v for each boundary point 
MODEL.LT: Current time step 
MODEL.COMPLEO: Graphic output counter 
MODEL.NBOR: Global number of boundary points 

MODEL.NELEM: Number of element in the mesh 
MODEL.NELMAX: Maximum number of elements envisaged 
MODEL.NPOIN: Number of point in the mesh 
MODEL.NPTFR: Number of boundary points 
MODEL.NTIMESTEPS: Number of time steps 
MODEL.NUMLIQ: Liquid boundary numbers 
MODEL.POROSITY: Porosity 
MODEL.RESULTFILE: Name of the result file 
MODEL.SEALEVEL: Coefficient to calibrate sea level 
MODEL.TIDALRANGE: Coefficient to calibrate tidal range 
MODEL.UBOR: Boundary value on u for each boundary point 
MODEL.VBOR: Boundary value on v for each boundary point 
MODEL.VELOCITYU: Velocity on u 
MODEL.VELOCITYV: Velocity on v 
MODEL.WATERDEPTH: Depth of the water 
MODEL.X: X coordinates for each point of the mesh 
MODEL.XNEBOR: Normal X to 1d boundary points 
MODEL.Y: Y coordinates for each point of the mesh 
MODEL.YNEBOR: Normal Y to 1d boundary points 
MODEL.EQUATION: Name of the equation used 

TABLE 1. ACCESSIBLE VARIABLES THROUGH THE API. 

The computation control is carried out using some 
specific routines to launch the simulation. These actions 
constitute a decomposition of the main function of each 
TELEMAC-MASCARET modules considered 
corresponding to the following different computation steps: 

 Configuration setup. This function initialises the 
instance and the output. The instance, characterised 
by the ID integer parameter, represents a run of 
TELEMAC-2D. 

 Reading the steering file. This function reads the 
case file and set the variables of the TELEMAC-2D 
steering file accordingly. 

 Memory allocation. This function runs the 
allocation of all the data needed in TELEMAC-2D. 
Any modifications to quantities of TELEMAC-2D 
should be done before the call to that function. 

 Initialization. This function will do the setting of the 
initial conditions of TELEMAC-2D. It corresponds 
to the time-step 0 of a TELEMAC-2D run. 

 Computation function that runs one time-step of 
TELEMAC -2D. To compute all time steps, a loop 
on this function must be done. 

 Finalization. This function concludes the run of 
TELEMAC -2D and will delete the instance. To start 
a new execution of TELEMAC-2D the configuration 
step must be run again. 

For each action defined above, the identity number of the 
instance is used as an input argument allowing all 
computation variables to be linked with the corresponding 
instance pointers. These actions must be done in that 
particular order to insure a proper execution of the 
computation in the API main program. 

The API being entirely in Fortran the preparation for a 
parallel run that is done by the Python script in a standard 
TELEMAC-2D run is not done. The partitioning and 
merging can be done using the API with the “partel” and 
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function of N: if the convergence is not visible, it is 
necessary to increase N or if needed to choose another 
propagation method to estimate the uncertainty [8]. 

Fig. 7 shows the convergence of the dispersion 
coefficient and the mean of the water depth at the node 
number 37 242 located on Fig. 6. 

 

 
 

Figure 7. Convergence graphs of the dispersion coefficient and the mean 

according to the logarithm of the number of simulations 

These graphics show that the convergence of results are 
guaranteed from 30,000 simulations of Monte Carlo 
Technique. These results are then used to provide reference 
statistical estimators in the comparison of the efficiency of 
the Monte Carlo-like methods. 

For a more detailed explanation of the study you can 
read the article written by C. Goeury, et al [5]. 

B. Automatic Calibration 

Two sensitive tidal parameters concerning the inflow 
conditions of a maritime case are optimized to better model 
the sea behaviour. The case is the Alderney race as described 
in [6]. 

Figure 8. Bottom and a velocity field in the strait between the Alderney 
Channel Island and Cap de La Hague 

The problem is mathematically formulated as given by 
(2). Here the boundaries are [-50, 50] for both parameters. min𝑥אℝమ ݂ሺݔሻݏ. ݔ  .ݐ ≤ ݔ ≤  (2)  ݔ

Where x-components are tidal parameters and stand for 
the difference between the Telemac results and 
measurements: ݂ሺݔሻ = ሻݔሺݕሻ‖ଶݔሺݕ‖ = (𝑇ଵሺݔሻ − 𝑀ଵ, 𝑇ଶሺݔሻ − 𝑀ଶ, … , 𝑇𝑝ሺݔሻ − 𝑀𝑝)(3) 

With 𝑇 the Telemac operator, 𝑀 the measurement for the 
water level and velocity, and 𝑝 the number of time steps. 

(2) is numerically solved with the help of the TelApy 
tools newop and genop for comparison. An important 
difference between these tools is that one requires derivative 
values and the other is a derivative-free optimizer. For the 
actual version of newop, derivatives are estimated only by 
numerical differentiation. Computations for successive 
evaluations of ݂ሺݔሻ or ݂׏ሺݔሻ are done automatically in 
parallel mode using the Python module multiprocessing. 

As an example, Fig. 9 shows how using the TelApy tools 
on (2) is straightforward. The convergence of genop is 
presented in the Fig. 10 for a maximum number of 20 
iterations. At the end of the convergence, 3,500 calls to 
TELEMAC-2D have been necessary. This large number can 
be easily divided by two with a stopping criteria of 10 
iterations. Moreover, using a surrogate model for faster 
simulations, computational costs could also be reduced.  

Figure 9. Example of an automatic calibration using TelApy on the 
Alderney TELEMAC-2D case 
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Figure 10. Convergence of genop. 

C. Surrogate model 
Many problems in the sciences and engineering require 

the determination of an unknown field from a finite set of 
indirect measurements. Examples include hydrology, 
oceanography, weather forecasts and hydraulic. In fact, 
numerical models are nowadays commonly used in fluvial 
and maritime hydraulics as prevention tools for example. 
Parameter estimation, also called inverse problem, consists 
of retrieving data of a problem from its solution. For free 
surface flow hydraulics, it involves assessing hidden or 
difficult-to-access parameters, such as bathymetry, bed 
friction, inflow discharge, tidal parameter, initial state and so 
on. In this work, an optimization process has been carried 
out to find initial state of a TELEMAC-2D computation. The 
fidelity of the optimized initial state is investigated with 
numerically generated synthetic data from so-called 
“identical-twin-experiments”, in which true state is known. 
Thus, the test case “gouttedo” is studied in this work. This 
TELEMAC-2D model simulates the circular spreading of a 
wave. The domain is square with a size of 20.1 m x 20.1 m 
with a flat bottom. It is meshed with 8,978 triangular 
elements and 4,624 nodes. Triangles are obtained by 
dividing rectangular elements on their diagonals. The mean 
size of obtained triangles is about 0.3 m. The boundary 
conditions of the model are considered as solid walls with 
perfect slip conditions. The observation data used to retrieve 
the initial state are water depth synthetic data generated 
numerically. The water is initially at rest with a Gaussian 
free surface in the centre of a square domain such as the 
water depth is given by (4).  ℎ଴𝑡 ሺݔሻ  = ʹ.Ͷ݁−[ሺೣ−భబሻమ+ሺ೤−భబሻమ]4   (4) 

So, the objective of this test case is to recover this initial 
state ℎ଴𝑡  constituent the true state using an optimization 
chain. The observations considered in this case are the water 
depth on all mesh nodes at different times in second 𝑇 ={0.Ͷ; 0.ͺ; … ; ͵.͸; Ͷ}. The initial guess of the initial state is 
set to a constant water depth of 2.4 m on each computational 
nodes. This inverse problem is solved computing variational 
data assimilation algorithm 3D-VAR. However, this 

algorithm consumes an important CPU time due to the large 
dimension of the system and the need for running it several 
times during the minimization of the cost function. Hence, 
we conclude the need to reduce the dimension of the initial 
model in order to alleviate the computational cost of the data 
assimilation process. The idea of order reduction is to search 
an optimal increment, not in the initial space of large 
dimension (dimension of nodes number), but in a space of 
reduced dimension. More precisely, we will look for an 
initial state ℎ଴ሺݔሻ in the form given by (5). ℎ଴ ሺݔሻ = ℎ଴𝑏ሺݔሻ + ∑ 𝛼𝑖Φ𝑖𝑟𝑖=ଵ  (5) 

Where, ℎ଴𝑏ሺݔሻ is a fixed reference state, and ሺΦଵ, … , Φ𝑟ሻ 
is the basis of the reduced space. 
Then, the minimization process is done using the cost 
function 𝐽 ቀℎ଴ ሺݔሻቁ = 𝐽ሺ𝛼ଵ, … , 𝛼𝑟ሻ. 

Thus, the minimization takes place in a space of 
dimension ݎ with ݎ ≪ ,The vector basis ሺΦଵ .ݔ … , Φ𝑟ሻ 
represents the modes of the system variability. The 
computation of this basis has been done in this work based 
on the classical Proper Orthogonal Decomposition method. 
By evaluating the energy captured by the proper vectors, 
only 7 modes are required to capture 99.9% of the total 
system variability. Thus, the truncation order of the 
approximation based of the proper orthogonal 
decomposition is fixed at ݎ = ͹. Generally, optimisation 
methods are used to solve minimisation problems. Many 
deterministic optimisation methods are known as gradient 
descent methods, among which the well-known BFGS 
quasi-Newton method, which is the approach used in this 
work. The inverse problem is solved in about 10 
minimization iterations. Fig 8. displays the inverse problem 
results obtained when considering the minimization in the 
POD reduced space (green curve with circle markers) and in 
the initial space of large dimension (dimension of nodes 
number) (blue curve with square markers) over a slice along 
the axis x in the middle of the computational domain. 

 

 

Figure 8. Initial state results obtained by minimization process in the POD 
reduced space (green curve with circle markers) and in the initial space of 
large dimension (blue curve with square markers) over a slice along the x-

axis in the middle of the computational domain. In comparison with the true 
state (red curve with diamonds)  
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As shown in Fig. 8, the initial state obtained with the 
minimization in the initial space is close to the true state. 
Whereas the initial state obtained by solving the 
minimization in the reduced space presents more water 
depth oscillation, but the main behaviour is close to the true 
state. However, the computational cost is drastically reduced 
using the reduced space. In fact, the minimization process in 
the initial space takes about 5 days for 10 iterations. This is 
induced by the finite difference approximation of the 
observation operator adjoint. In the reduced space, this 
computational time is reduced to 17 minutes. This proves 
the efficiency of reduced order model when considering 
optimization in huge dimension problem. 

D. Monitoring tool 
The goal for that application was to create an autonomous 

software that will:  

 Gather data to build the bathymetry of the 
model. 

 Define the input parameters of the study. 

 Run the TELEMAC-2D study. 

 Display results informations. 

 And a couple other functionalities such as 
automatic report generation, archives… 

All these functionalities must be accessible through a user 
friendly GUI written in PyQt that could be used by someone 
not familiar with the TELEMAC-MASCARET system. The 
aim of this tool is to be able to control that the stream flows 
within the channels of the station are always fluvial. This 
taking into account the expected sedimentation and low 
water levels. If not, a dredging operation is required. So, the 
objective of this work is to provide a functional software able 
to analyse and forecast the water flow in order to anticipate 
the dredging operation. In order to evaluate this risk a 
simulation is ran to estimate the current number in the canal 
for the next months. Fig. 9 is an example of such a 
computation.  

 

Figure 9. Bathymetry estimation on the computational model 

TelApy is used here to have control on different 
computation parameters such as the date of the simulation, 
the sea level, the pump to take into account… 

Fig. 10 displays a screenshot of the bathymetry built from 
the data available. Fig. 11 presents the GUI part where the 
study input parameters are defined. Finally, Fig. 12 displays 
simulation results of the Froude number on the 
computational model. 

 

Figure 10. Bathymetry on the model window 

 

Figure 11. Input parameters window 
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Figure 12. Froude on the model window 

CONCLUSIONS AND OUTLOOKS 

Interoperability has become an important factor for codes 
to evolve and interact with others. With this module we are 
beginning to scratch the surface of what it is possible to do. 
We have here four applications in multiple domains: 
Uncertainty Quantification, Optimization, Reduced Order 
Model and Surveillance System. Interaction with outside 
software is now facilitate with TelApy. 

The documentations (Doxygen and user documentation) 
and examples will be available in the v7p3 release of 
TELEMAC-MASCARET. Examples can be found within the 
source code in notebook format, a practical interactive format 
to manipulate Python scriptsa.   

This new tool will allow us, in the future, to remove “user 
fortran” because all the modifications can be done directly 
via the APIs. Also we could rewrite the coupling between 
modules using the APIs. In the next versions of the 
TELEMAC-MASCARET SYSTEM more complex 
examples will be added to the ones already available in 
notebook format. 
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