
Conference Paper, Published Version

Goeury, Cédric; Audouin, Yoann; Zaoui, F.; Ata, Riadh; El Idrissi
Essebtey, S.; Torossian, A.; Rouge, D.
Interoperability applications of TELEMAC-MASCARET
System
Zur Verfügung gestellt in Kooperation mit/Provided in Cooperation with:
TELEMAC-MASCARET Core Group

Verfügbar unter/Available at: https://hdl.handle.net/20.500.11970/104485

Vorgeschlagene Zitierweise/Suggested citation:
Goeury, Cédric; Audouin, Yoann; Zaoui, F.; Ata, Riadh; El Idrissi Essebtey, S.; Torossian, A.;
Rouge, D. (2017): Interoperability applications of TELEMAC-MASCARET System. In:
Dorfmann, Clemens; Zenz, Gerald (Hg.): Proceedings of the XXIVth TELEMAC-MASCARET
User Conference, 17 to 20 October 2017, Graz University of Technology, Austria. Graz: Graz
University of Technology. S. 57-64.

Standardnutzungsbedingungen/Terms of Use:

Die Dokumente in HENRY stehen unter der Creative Commons Lizenz CC BY 4.0, sofern keine abweichenden
Nutzungsbedingungen getroffen wurden. Damit ist sowohl die kommerzielle Nutzung als auch das Teilen, die
Weiterbearbeitung und Speicherung erlaubt. Das Verwenden und das Bearbeiten stehen unter der Bedingung der
Namensnennung. Im Einzelfall kann eine restriktivere Lizenz gelten; dann gelten abweichend von den obigen
Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

Documents in HENRY are made available under the Creative Commons License CC BY 4.0, if no other license is
applicable. Under CC BY 4.0 commercial use and sharing, remixing, transforming, and building upon the material
of the work is permitted. In some cases a different, more restrictive license may apply; if applicable the terms of
the restrictive license will be binding.

Interoperability applications of
 TELEMAC-MASCARET System

Y. Audouin1, C. Goeury1, F. Zaoui1, R. Ata1, S. El Idrissi Essebtey1, A. Torossian1, D. Rouge1
1EDF R&D National Laboratory for Hydraulics and Environment (LNHE)

6 quai Watier, 78401 Chatou, France

Email: yoann.audouin@edf.fr

Abstract— This paper is focused on the application of the
recently implemented TelApy module (www.opentelemac.org).
TelApy aims to provide a python wrapper of TELEMAC API
(Application Program Interface). The goal of TelApy is to have
a full control on the simulation while running a case. For
example, it must allow the user to stop the simulation at any
time step, get values of some variables and change them. In
order to make this possible, a Fortran structure called
instantiation was developed with the API. It contains a list of
strings pointing to TELEMAC variables. This gives direct
access to the physical memory of variables, and allows
therefore to get and set their values. Furthermore, changes
have been made in TELEMAC main subroutines to make
hydraulic cases execution possible time step by time step. It is
useful to drive the TELEMAC-MASCARET SYSTEM APIs
using Python programming language. In fact, Python is a
portable, dynamic, extensible, free language, which allows
(without imposing) a modular approach and object oriented
programming. In addition of benefits of this programming
language, Python offers a large amounts of interoperable
libraries. The link between various interoperable libraries with
TELEMAC-MASCARET SYSTEM APIs allows the creation of
an ever more efficient computing chain able to more finely
respond to various complex problems. Therefore, the TelApy
module has the ambition to enable a new way of use for the
TELEMAC-MASCARET system. In particular one can think
about high performance computing for the calculation of
uncertainties, optimization, code coupling and so on. The
objectives of the paper are to present some examples of the
TelApy module in the case of Uncertainty Quantification,
Optimization, Reduced Order Model and Monitoring System.

I. INTRODUCTION

This paper will give a short explanation of the new
Python module TelApy which is used to control the APIs of
TELEMAC-MASCARET SYSTEM. The TELEMAC-
MASCARET SYSTEM APIs are developed in Fortran.
However, it is relatively easy to use these Fortran routines
directly in Python using the "f2py" tool of the python Scipy
library [7]. This tool will make it possible to compile Fortran
code such as it is accessible and usable in Python. This
compilation step is directly integrated into the compilation of
the TELEMAC-MASCARET SYSTEM and is thus
transparent to the user. Moreover, in order to make the
TelApy module more user friendly, a python wrapper has
been developed to encapsulate and simplify the different API
Python calls. This set of transformation constitutes the
TelApy module.

The first section of this paper is dedicated to a short
description of how the APIs and TelApy are working, then
four applications of that module are described.

II. TELAPY PACKAGE

A. Fortran APIs

An API (Application Programming Interface) is a library
allowing to control the execution of a program. Here is part
of the definition from Wikipedia:

“In computer programming, an application programming
interface (API) specifies a software component in terms of its
operations, their inputs and outputs and underlying types. Its
main purpose is to define a set of functionalities that are
independent of their respective implementation, allowing
both definition and implementation to vary without
compromising each other.

In addition to accessing databases or computer hardware,
such as hard disk drives or video cards, an API can be used to
ease the work of programming graphical user interface
components, to allow integration of new features into
existing applications (a so-called "plug-in API"), or to share
data between otherwise distinct applications. In practice,
many times an API comes in the form of a library that
includes specifications for routines, data structures, object
classes, and variables.”

The API’s main goal is to have control on a simulation
while running a case. For example, it must allow the user to
stop the simulation at any time step, retrieve some variables
values and change them. In order to make this possible, a
Fortran structure called instance was developed in the API.
This structure is described later on. The instance structure
gives direct access to the physical memory of variables, and
allows therefore the variable control. Furthermore,
modifications have been made in TELEMAC-MASCARET
SYSTEM main subroutines to make hydraulic cases
execution possible time step by time step. All Fortran
routines are available in the directory "api" of TELEMAC-
MASCARET SYSTEM sources.

In the rest of the paper we will make reference to the
TELEMAC-2D part of the API but it is also available for
other modules (so far for SISYPHE and soon TELEMAC-
3D)

An instance is a Fortran structure that gathers all the
variables alterable by the API. The definition of the

57

mailto:yoann.audouin@edf
http://www.opentelemac.org/

24th Telemac-Mascaret User Conference Graz, Austria, 17-20 October, 2017

"instance" structure is made in a Fortran module dedicated to
this purpose and is composed of:

 An indice defining the instance I.D.

 A string which can contain error messages.

 Some pointers to the concerned module variables.
This is what makes it possible to manipulate the
variables of the module by having a direct access to
their memory location.

In addition to the instance definition, the module includes
all routines needed to manipulate it (creation, deletion, and so
on).

The way the instance is defined (pointers) allows
manipulation of variables during the simulation. So, to get
information on the variables the following set of
functionalities has been implemented:

 get the list of variables reachable with the API.

 get the information on the variable :

o type of a variable (integer, Boolean, real,
string).

o Access (read-only, read-write).

o Number of dimensions.

o …

 get the size of a variable for each of its dimensions.

 get/set the value of a variable for a given index.

The list of variables that can be accessed is given in Table
1. Not every variable within TELEMAC-2D is there.
However adding a new variable is pretty easy, the 5 steps
procedure is described in the TelApy user documentation [1].

MODEL.AT: Current time
MODEL.BCFILE: Boundary condition file name
MODEL.BND_TIDE: Option for tidal boundary conditions
MODEL.BOTTOMELEVATION: Level of the bottom
MODEL.CHESTR: Strikler on point
MODEL.FAIR: Fair on point
MODEL.COTE: Prescribed elevation value
MODEL.CPL_PERIOD: Coupling period with sisyphe
MODEL.DEBIT: Discharge on frontier
MODEL.DEBUG: Activating debug mode
MODEL.FLUX_BOUNDARIES: Flux at boundaries
MODEL.GEOMETRYFILE: Name of the geomery file
MODEL.METEOFILE: Name of the binary atmospheric file
MODEL.FO2FILE: Name of the formatted data file 2
MODEL.LIQBCFILE: Name of the liquid boundaries file
MODEL.GRAPH_PERIOD: Graphical output period
MODEL.HBOR: Boundary value on h for each boundary point
MODEL.IKLE: Connectivity table between element and nodes
MODEL.INCWATERDEPTH: Increase in the the depth of the water
MODEL.KP1BOR: Points following and preceding a boundary

point
MODEL.LIHBOR: Boundary type on h for each boundary point
MODEL.LISTIN_PERIOD: Listing output period
MODEL.LIUBOR: Boundary type on u for each boundary point
MODEL.LIVBOR: Boundary type on v for each boundary point
MODEL.LT: Current time step
MODEL.COMPLEO: Graphic output counter
MODEL.NBOR: Global number of boundary points

MODEL.NELEM: Number of element in the mesh
MODEL.NELMAX: Maximum number of elements envisaged
MODEL.NPOIN: Number of point in the mesh
MODEL.NPTFR: Number of boundary points
MODEL.NTIMESTEPS: Number of time steps
MODEL.NUMLIQ: Liquid boundary numbers
MODEL.POROSITY: Porosity
MODEL.RESULTFILE: Name of the result file
MODEL.SEALEVEL: Coefficient to calibrate sea level
MODEL.TIDALRANGE: Coefficient to calibrate tidal range
MODEL.UBOR: Boundary value on u for each boundary point
MODEL.VBOR: Boundary value on v for each boundary point
MODEL.VELOCITYU: Velocity on u
MODEL.VELOCITYV: Velocity on v
MODEL.WATERDEPTH: Depth of the water
MODEL.X: X coordinates for each point of the mesh
MODEL.XNEBOR: Normal X to 1d boundary points
MODEL.Y: Y coordinates for each point of the mesh
MODEL.YNEBOR: Normal Y to 1d boundary points
MODEL.EQUATION: Name of the equation used

TABLE 1. ACCESSIBLE VARIABLES THROUGH THE API.

The computation control is carried out using some
specific routines to launch the simulation. These actions
constitute a decomposition of the main function of each
TELEMAC-MASCARET modules considered
corresponding to the following different computation steps:

 Configuration setup. This function initialises the
instance and the output. The instance, characterised
by the ID integer parameter, represents a run of
TELEMAC-2D.

 Reading the steering file. This function reads the
case file and set the variables of the TELEMAC-2D
steering file accordingly.

 Memory allocation. This function runs the
allocation of all the data needed in TELEMAC-2D.
Any modifications to quantities of TELEMAC-2D
should be done before the call to that function.

 Initialization. This function will do the setting of the
initial conditions of TELEMAC-2D. It corresponds
to the time-step 0 of a TELEMAC-2D run.

 Computation function that runs one time-step of
TELEMAC -2D. To compute all time steps, a loop
on this function must be done.

 Finalization. This function concludes the run of
TELEMAC -2D and will delete the instance. To start
a new execution of TELEMAC-2D the configuration
step must be run again.

For each action defined above, the identity number of the
instance is used as an input argument allowing all
computation variables to be linked with the corresponding
instance pointers. These actions must be done in that
particular order to insure a proper execution of the
computation in the API main program.

The API being entirely in Fortran the preparation for a
parallel run that is done by the Python script in a standard
TELEMAC-2D run is not done. The partitioning and
merging can be done using the API with the “partel” and

58

24th Telemac-Mascaret User Conference Graz, Austria, 17-20 October, 2017

function of N: if the convergence is not visible, it is
necessary to increase N or if needed to choose another
propagation method to estimate the uncertainty [8].

Fig. 7 shows the convergence of the dispersion
coefficient and the mean of the water depth at the node
number 37 242 located on Fig. 6.

Figure 7. Convergence graphs of the dispersion coefficient and the mean

according to the logarithm of the number of simulations

These graphics show that the convergence of results are
guaranteed from 30,000 simulations of Monte Carlo
Technique. These results are then used to provide reference
statistical estimators in the comparison of the efficiency of
the Monte Carlo-like methods.

For a more detailed explanation of the study you can
read the article written by C. Goeury, et al [5].

B. Automatic Calibration

Two sensitive tidal parameters concerning the inflow
conditions of a maritime case are optimized to better model
the sea behaviour. The case is the Alderney race as described
in [6].

Figure 8. Bottom and a velocity field in the strait between the Alderney
Channel Island and Cap de La Hague

The problem is mathematically formulated as given by
(2). Here the boundaries are [-50, 50] for both parameters. min𝑥אℝమ ݂ሺݔሻݏ. ݔ .ݐ ≤ ݔ ≤ (2) ݔ

Where x-components are tidal parameters and stand for
the difference between the Telemac results and
measurements: ݂ሺݔሻ = ሻݔሺݕሻ‖ଶݔሺݕ‖ = (𝑇ଵሺݔሻ − 𝑀ଵ, 𝑇ଶሺݔሻ − 𝑀ଶ, … , 𝑇𝑝ሺݔሻ − 𝑀𝑝)(3)

With 𝑇 the Telemac operator, 𝑀 the measurement for the
water level and velocity, and 𝑝 the number of time steps.

(2) is numerically solved with the help of the TelApy
tools newop and genop for comparison. An important
difference between these tools is that one requires derivative
values and the other is a derivative-free optimizer. For the
actual version of newop, derivatives are estimated only by
numerical differentiation. Computations for successive
evaluations of ݂ሺݔሻ or ݂׏ሺݔሻ are done automatically in
parallel mode using the Python module multiprocessing.

As an example, Fig. 9 shows how using the TelApy tools
on (2) is straightforward. The convergence of genop is
presented in the Fig. 10 for a maximum number of 20
iterations. At the end of the convergence, 3,500 calls to
TELEMAC-2D have been necessary. This large number can
be easily divided by two with a stopping criteria of 10
iterations. Moreover, using a surrogate model for faster
simulations, computational costs could also be reduced.

Figure 9. Example of an automatic calibration using TelApy on the
Alderney TELEMAC-2D case

61

24th Telemac-Mascaret User Conference Graz, Austria, 17-20 October, 2017

Figure 10. Convergence of genop.

C. Surrogate model
Many problems in the sciences and engineering require

the determination of an unknown field from a finite set of
indirect measurements. Examples include hydrology,
oceanography, weather forecasts and hydraulic. In fact,
numerical models are nowadays commonly used in fluvial
and maritime hydraulics as prevention tools for example.
Parameter estimation, also called inverse problem, consists
of retrieving data of a problem from its solution. For free
surface flow hydraulics, it involves assessing hidden or
difficult-to-access parameters, such as bathymetry, bed
friction, inflow discharge, tidal parameter, initial state and so
on. In this work, an optimization process has been carried
out to find initial state of a TELEMAC-2D computation. The
fidelity of the optimized initial state is investigated with
numerically generated synthetic data from so-called
“identical-twin-experiments”, in which true state is known.
Thus, the test case “gouttedo” is studied in this work. This
TELEMAC-2D model simulates the circular spreading of a
wave. The domain is square with a size of 20.1 m x 20.1 m
with a flat bottom. It is meshed with 8,978 triangular
elements and 4,624 nodes. Triangles are obtained by
dividing rectangular elements on their diagonals. The mean
size of obtained triangles is about 0.3 m. The boundary
conditions of the model are considered as solid walls with
perfect slip conditions. The observation data used to retrieve
the initial state are water depth synthetic data generated
numerically. The water is initially at rest with a Gaussian
free surface in the centre of a square domain such as the
water depth is given by (4). ℎ଴𝑡 ሺݔሻ = ʹ.Ͷ݁−[ሺೣ−భబሻమ+ሺ೤−భబሻమ]4 (4)

So, the objective of this test case is to recover this initial
state ℎ଴𝑡 constituent the true state using an optimization
chain. The observations considered in this case are the water
depth on all mesh nodes at different times in second 𝑇 ={0.Ͷ; 0.ͺ; … ; ͵.͸; Ͷ}. The initial guess of the initial state is
set to a constant water depth of 2.4 m on each computational
nodes. This inverse problem is solved computing variational
data assimilation algorithm 3D-VAR. However, this

algorithm consumes an important CPU time due to the large
dimension of the system and the need for running it several
times during the minimization of the cost function. Hence,
we conclude the need to reduce the dimension of the initial
model in order to alleviate the computational cost of the data
assimilation process. The idea of order reduction is to search
an optimal increment, not in the initial space of large
dimension (dimension of nodes number), but in a space of
reduced dimension. More precisely, we will look for an
initial state ℎ଴ሺݔሻ in the form given by (5). ℎ଴ ሺݔሻ = ℎ଴𝑏ሺݔሻ + ∑ 𝛼𝑖Φ𝑖𝑟𝑖=ଵ (5)

Where, ℎ଴𝑏ሺݔሻ is a fixed reference state, and ሺΦଵ, … , Φ𝑟ሻ
is the basis of the reduced space.
Then, the minimization process is done using the cost
function 𝐽 ቀℎ଴ ሺݔሻቁ = 𝐽ሺ𝛼ଵ, … , 𝛼𝑟ሻ.

Thus, the minimization takes place in a space of
dimension ݎ with ݎ ≪ ,The vector basis ሺΦଵ .ݔ … , Φ𝑟ሻ
represents the modes of the system variability. The
computation of this basis has been done in this work based
on the classical Proper Orthogonal Decomposition method.
By evaluating the energy captured by the proper vectors,
only 7 modes are required to capture 99.9% of the total
system variability. Thus, the truncation order of the
approximation based of the proper orthogonal
decomposition is fixed at ݎ = ͹. Generally, optimisation
methods are used to solve minimisation problems. Many
deterministic optimisation methods are known as gradient
descent methods, among which the well-known BFGS
quasi-Newton method, which is the approach used in this
work. The inverse problem is solved in about 10
minimization iterations. Fig 8. displays the inverse problem
results obtained when considering the minimization in the
POD reduced space (green curve with circle markers) and in
the initial space of large dimension (dimension of nodes
number) (blue curve with square markers) over a slice along
the axis x in the middle of the computational domain.

Figure 8. Initial state results obtained by minimization process in the POD
reduced space (green curve with circle markers) and in the initial space of
large dimension (blue curve with square markers) over a slice along the x-

axis in the middle of the computational domain. In comparison with the true
state (red curve with diamonds)

62

24th Telemac-Mascaret User Conference Graz, Austria, 17-20 October, 2017

As shown in Fig. 8, the initial state obtained with the
minimization in the initial space is close to the true state.
Whereas the initial state obtained by solving the
minimization in the reduced space presents more water
depth oscillation, but the main behaviour is close to the true
state. However, the computational cost is drastically reduced
using the reduced space. In fact, the minimization process in
the initial space takes about 5 days for 10 iterations. This is
induced by the finite difference approximation of the
observation operator adjoint. In the reduced space, this
computational time is reduced to 17 minutes. This proves
the efficiency of reduced order model when considering
optimization in huge dimension problem.

D. Monitoring tool
The goal for that application was to create an autonomous

software that will:

 Gather data to build the bathymetry of the
model.

 Define the input parameters of the study.

 Run the TELEMAC-2D study.

 Display results informations.

 And a couple other functionalities such as
automatic report generation, archives…

All these functionalities must be accessible through a user
friendly GUI written in PyQt that could be used by someone
not familiar with the TELEMAC-MASCARET system. The
aim of this tool is to be able to control that the stream flows
within the channels of the station are always fluvial. This
taking into account the expected sedimentation and low
water levels. If not, a dredging operation is required. So, the
objective of this work is to provide a functional software able
to analyse and forecast the water flow in order to anticipate
the dredging operation. In order to evaluate this risk a
simulation is ran to estimate the current number in the canal
for the next months. Fig. 9 is an example of such a
computation.

Figure 9. Bathymetry estimation on the computational model

TelApy is used here to have control on different
computation parameters such as the date of the simulation,
the sea level, the pump to take into account…

Fig. 10 displays a screenshot of the bathymetry built from
the data available. Fig. 11 presents the GUI part where the
study input parameters are defined. Finally, Fig. 12 displays
simulation results of the Froude number on the
computational model.

Figure 10. Bathymetry on the model window

Figure 11. Input parameters window

63

24th Telemac-Mascaret User Conference Graz, Austria, 17-20 October, 2017

Figure 12. Froude on the model window

CONCLUSIONS AND OUTLOOKS

Interoperability has become an important factor for codes
to evolve and interact with others. With this module we are
beginning to scratch the surface of what it is possible to do.
We have here four applications in multiple domains:
Uncertainty Quantification, Optimization, Reduced Order
Model and Surveillance System. Interaction with outside
software is now facilitate with TelApy.

The documentations (Doxygen and user documentation)
and examples will be available in the v7p3 release of
TELEMAC-MASCARET. Examples can be found within the
source code in notebook format, a practical interactive format
to manipulate Python scriptsa.

This new tool will allow us, in the future, to remove “user
fortran” because all the modifications can be done directly
via the APIs. Also we could rewrite the coupling between
modules using the APIs. In the next versions of the
TELEMAC-MASCARET SYSTEM more complex
examples will be added to the ones already available in
notebook format.

REFERENCES

[1] A. Bernard and N. Goutal, “Comparison between 1D and 2D models
for hydraulic modeling of a floodplain: case of Garonne
river”,proceedings of River Flow conference, 2008, in press.

[2] C. Goeury, Y.Audouin, F. Zaoui, “User documentation v7p3 of
TelApy module”, 2017

[3] J-M. Hervouet, “Hydrodynamics of Free Surface Flows”, Wiley,
2007, pp. 83–130.

[4] EDF-EADS-PHIMECA, “Reference guide”, OpenTURNS version
1.1, 2013.

[5] C. Goeury, T. David, R. Ata, S. Boyaval, Y. Audouin, N. Goutal, A-L.
Popelin, M. Couplet, M. Baudin, R. Barate “Uncertatiny
quantification on a real cas with TELEMAC-2D” Proceeding of the
2015 Telemac User Conference, October 2015

[6] C. Goeury, A. Ponçot, J.-P. Argaud, F. Zaoui, R. Ata, Y. Audouin,
“Optimal calibration of Telemac-2D models based on a data
assimilation algorithm”, XXIVth Telemac & Mascaret User Club,
Graz, Austria, October 2017

awww.jupyter.org

[7] PETERSON P. F2py: a tool for connecting fortran and python
programs. International Journal of Computational Science and
Engineering, 4(4):296–305, January 2009

64

