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1 INTRODUCTION 

Pool and riffle morphology is one of a few channel pattern types found in mountain watercourses (Mont-
gomery, Buffington 1997) and the one typical of inhabited, lower sections of mountain and piedmont val-
leys. Pool-riffle sequences occur with an average spacing of five to seven times the channel width (Greg-
ory et al. 1994) and the regular downstream variability in bed morphology is associated with that in bed-
material size, with coarser material forming the bed on riffles than in pools (Keller 1971, Milne 1982). 
According to the velocity reversal hypothesis (Keller 1971), the areal sorting of bed material in pool-riffle 
sequences reflects different patterns of flow velocity at discharges lower and higher than bankfull. Further 
studies confirmed the hypothesis, indicating that not only the zones of different velocity but also those of 
bed shear stress and unit stream power in pool-riffle sequences reverse as flow increases (e.g. Teisseyre 
1984, Radecki-Pawlik 2002). The differentiation of channel bed into pools and riffles exerts a remarkable 
influence on physical and biotic patterns in mountain river channels. Areas with different hydrodynamic 
conditions along pool-riffle sequences provide habitats for varied benthic invertebrate communities (Pas-
tuchová et al. 2008), with riffles supporting the communities especially rich in rheophilic taxa. The undu-
lated morphology of streambeds enables the exchange of water between river channel and hyporheic 
zone, crucial to provide oxygen for incubating eggs and larvae of lithophilic fish spawning in river grav-
els (Boulton 2007). 

In modern river engineering there is often a need to construct hydraulic structures which mimic the 
geometry of natural riffles, while protecting river bed against erosion, directing flow and reducing slope 
of the channel bed. Such structures are rapid hydraulic structures (called later along that paper RHS) with 
artificial roughness provided by the stones installed along the slope apron. In some countries such struc-
tures are called ramps. Hydrodynamic conditions of the flow conveyed over RHS are similar to those typ-
ifying natural riffles. RHS resemble natural riffles also in their high spatial diversity of hydraulic condi-
tions (Radecki-Pawlik et al. 2010), a key factor in creating heterogeneity of physical habitat conditions 
for benthic invertebrate fauna (Kłonowska-Olejnik, Radecki-Pawlik 2000, Zasępa et al. 2006). The aim of 
this paper is to analyse chosen hydraulic parameters of a rapid hydraulic structure constructed in a gravel-
bed Porębianka Stream, Polish Carpathians. 
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2 STUDIED STREAM AND FLOW CONDITIONS DURING MEASUREMENTS 

Porębianka Stream is a 15.4 km long, 4th-order stream draining a flysch part of the Polish Carpathians. 
The area of its catchment amounts to 72 km

2
, and the width of the channel varies from 1 m at the headwa-

ter part of the stream to 140 m at the mouth stretch. Average channel slope equals 56.9‰ (Korpak 2008). 
Hydrological characteristics of Porębianka were determined on the basis of records at a gauging station 
located in the middle course of the stream. The present morphology of the Porębianka channel is influ-
enced by check-dams, with channel incision occurring downstream and bed aggradation upstream of the 
dams (Kościelniak 2004, Korpak 2007). Nowadays, the stream has a single, narrow and winding channel. 
At the beginning of the twentieth century the stream flowed in a a multi-thread channel. Later its channel-
ization was carried out, with the stream course partitioned by check-dams, weirs and rapid hydraulic 
structures (ramps) and channel banks reinforced with riprap, gabions and retaining walls (Kościelniak 
2004, Korpak et al. 2008). In the lower course of the stream, a grade correction with 25 rapid hydraulic 
structures (RHS) of high roughness was applied. While reducing channel slope, the structures operate 
similar to natural riffles and promote accumulation of bed material between them. The paper aims at the 
analysis of hydraulic parameters in the vicinity of one of the RHS.  

Field measurements were made in three series in: April, June and October 2010. At the first series, the 
measurements were performed during the spring thaw, at the flow of Q = 2.25 m

3
 · s

-1
, higher than mean 

annual discharge SSQ = 1.32 m
3
 · s

-1
. Between the first and the second series of measurements, a flood 

with the discharge Q = 55 m
3
 · s

-1
 occurred. During the second series, the discharge amounted to Q = 2.40 

m
3
 · s

-1
 and was also higher than the mean. This elevated flow was caused by long-lasting rainfall that oc-

curred in May and at the beginning of June 2010. In October low flows occurred, reflecting low precipita-
tion in the autumn. The discharge equalled then Q = 1.15 m

3
 · s

-1
. 

3 METHODOLOGY 

One of the rapid hydraulic structures of high roughness in Porębianka Stream was chosen for detailed in-
vestigations (Fig. 1). Velocity measurements were carried out upstream and downstream of the structure 
in the area of its influence and on the ramp itself. Depending on the configuration of channel bed and wa-
ter stage, measurements were made at 63 measurement points in the first series, at 57 in the second one 
and at 37 in the third one (Fig. 2). 

Figure 1. Studied rapid hydraulic structure (RHS) in Porębianka Stream 

Momentary flow velocity was measured with OTT Nautilus 2000 electromagnetic current meter. Based 
on the measurements, velocity curves were drawn for the velocities over individual measurement points. 
The momentary flow velocity measurements made it possible to determine the following parameters: 
depth-averaged velocity, dynamic velocity, Reynolds number (vertical and so called particle one), Froude 
number, shear stress, Shields parameter.  

The value of dynamic velocity was calculated from the velocity profile using the formula (1) (Gordon 
et al. 2007): 
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75.5
*

a
v =  [m · s

-1
] (1) 

where a is slope of the straight line v = f(h). 
The calculated value of the dynamic velocity was used to determine the drag force acting on the chan-

nel bed, that is tangential stress, according to the formula (2): 
2)v( *⋅ρ=τ  [N · m

-2
]  (2) 

where ρ = 1000 kg · m
-3

 is water density.  
Froude numbers at average and maximum depth were determined according to the formula (3):  

gh

v
Fr =  [–] (3) 

where v is flow velocity [m · s
-1

], h is water depth [m], and g is gravitational acceleration  [m · s
-2

]. The 
obtained values of Fr showed whether the measurement was made in the layer of supercritical flow, sub-
critical flow and/or critical flow, with the critical Fr value equal 1.  

Figure 2. Arrangement of measurement points. 
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Reynolds numbers were obtained from the formula (4): 

ν
⋅

=
dv

Re  [–] (4) 

where v is flow velocity [m · s
-1

], d is water depth or the diameter of grains on the bed surface [m], and ν 
is the coefficient of kinetic viscosity [m

2
 · s]. 

Grain size of the bed material on bars and riffles was also measured. Surface bed material was sampled 
using the transect Wolman’s method (Wolman 1954) and the effective grain sizes were calculated based 
on the measurements. 

4 RESULTS AND DISCUSSION 

Table 1 presents the results of hydrodynamic calculations based on data obtained in April 2010. The dy-
namic velocities and tangential stresses below the rapid hydraulic structure reached the highest values in 
the cross section “I – I”, amounting to 0.029 m · s

-1
 and 0.86 N · m

-2
, respectively. It reflected high veloc-

ity (vav = 0.540 m · s
-1

) and turbulence of the water flowing down the ramp and out of the energy-
dissipating pool of the structure. Moreover, the highest values of the dynamic velocity and shear stresses 
occurred in the middle part of the channel (points 8, 13, 19). Reynolds numbers indicated that in all the 
measurement points flow was turbulent. The Froude numbers higher than 1 indicated the occurrence of 
supercritical flow on the ramp and in the middle part of the energy-dissipating pool. 

Table 1: Hydrodynamic parameters (series 1). 

Cross- 

section 

Point 

number 

h 

[m] 

vśr 

[m · s
-1

] 

v* 

[m · s
-1

] 

τ 

[N · m
-2

] 

Re 

[-] 

Re* 

[-] 

Fr 

[-] 

Fr* 

[-] 

V – V 

30 m 

downstream 

of the pool 

1 0.04 0.036 0.007 0.05 1101 1065 0.06 0.005 

2 0.20 0.460 0.009 0.08 70331 1356 0.33 0.007 

3 0.12 0.352 0.003 0.01 32291 544 0.32 0.002 

4 0.18 0.470 0.012 0.14 64674 2472 0.35 0.007 

5 0.10 0.420 0.007 0.05 10091 1474 0.42 0.004 

IV – IV 

22 m 

downstream 

of the pool 

6 0.05 0.264 0.004 0.02 10091 503 0.38 0.003 

7 0.19 0.710 0.009 0.09 103127 1168 0.52 0.007 

8 0.20 0.450 0.012 0.15 68802 2523 0.32 0.007 

9 0.13 0.402 0.006 0.04 39951 755 0.36 0.005 

10 0.13 0.396 0.005 0.03 39355 656 0.35 0.004 

III – III 

15 m 

downstream 

of the pool 

11 0.08 0.264 0.005 0.03 16146 691 0.30 0.004 

12 0.05 0.302 0.016 0.26 11543 2019 0.43 0.013 

13 0.27 0.402 0.009 0.08 82975 1869 0.25 0.005 

14 0.22 0.650 0.017 0.29 109319 3575 0.44 0.010 

15 0.19 0.460 0.003 0.01 66814 343 0.34 0.002 

16 0.05 0.105 0.003 0.01 4013 363 0.15 0.002 

II – II 

8 m 

downstream 

of the pool 

17 0.20 0.212 0.003 0.01 32413 396 0.15 0.002 

18 0.23 0.354 0.014 0.20 62243 2962 0.24 0.009 

19 0.48 0.324 0.018 0.31 118890 3655 0.15 0.011 

20 0.45 0.334 0.011 0.13 114899 2366 0.16 0.007 

21 0.09 0.044 0.001 0.01 3027 215 0.05 0.001 

I – I 

4 m 

downstream 

of the pool 

22 0.35 0.338 0.009 0.08 90437 1142 0.18 0.007 

23 0.12 0.113 0.007 0.05 10366 903 0.10 0.006 

24 0.53 0.640 0.029 0.86 259307 6115 0.28 0.033 

25 0.19 0.101 0.004 0.02 14670 617 0.07 0.003 

26 0.09 0.216 0.011 0.13 14861 1653 0.23 0.008 

N 

centre of the  

energy-dissipating 

pool 

27 0.10 0.460 0.008 0.06 35166 2057 0.46 0.004 

28 0.13 0.400 0.010 0.11 39752 2769 0.35 0.006 

29 0.10 1.740 0.053 2.85 133017 14276 1.76 0.029 

30 0.15 0.206 0.010 0.10 23622 2685 0.17 0.005 

31 0.12 0.530 0.009 0.07 48620 2285 0.49 0.005 

GD 

lower concrete sill 

of the RHS 

32 0.08 0.630 0.003 0.01 38529 805 0.71 0.002 

33 0.04 1.480 0.012 0.14 45256 3215 2.36 0.006 

34 0.10 2.160 0.040 1.61 165125 10730 2.18 0.022 

35 0.03 0.840 0.013 0.18 19265 3564 1.55 0.007 

36 0.03 0.470 0.003 0.01 10779 870 0.87 0.002 
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Cross- 

section 

Point 

number 

h 

[m] 

vśr 

[m · s
-1

] 

v* 

[m · s
-1

] 

τ 

[N · m
-2

] 

Re 

[-] 

Re* 

[-] 

Fr 

[-] 

Fr* 

[-] 

PS 

ramp 

of the RHS 

37 0.14 2.380 0.024 0.58 254721 6422 2.03 0.013 

38 0.08 1.150 0.009 0.08 70331 2382 1.30 0.005 

39 0.08 1.140 0.008 0.06 69719 2089 1.29 0.004 

40 0.10 2.450 0.036 1.28 187295 9567 2.47 0.019 

41 0.05 0.254 0.009 0.08 9709 2401 0.36 0.005 

42 0.03 0.950 0.009 0.08 21787 2382 1.75 0.005 

43 0.10 2.270 0.034 1.16 173534 9097 2.29 0.018 

GG 

upper concrete sill 

of the RHS 

44 0.05 0.540 0.014 0.19 41205 3704 0.77 0.007 

45 0.04 0.320 0.007 0.04 7935 1778 0.51 0.004 

46 0.17 0.920 0.022 0.51 119563 6017 0.71 0.012 

47 0.03 0.346 0.003 0.01 9785 870 0.64 0.002 

48 0.07 0.770 0.004 0.01 20641 1010 0.93 0.002 

I’ – I’ 

4 m 

upstream 

of the RHS 

49 0.12 0.360 0.010 0.09 33025 1272 0.33 0.007 

50 0.10 0.212 0.038 0.01 18729 498 0.25 0.005 

51 0.16 0.460 0.008 0.06 56265 1651 0.37 0.005 

52 0.10 0.245 0.004 0.01 18729 524 0.25 0.003 

53 0.12 0.185 0.002 0.005 16971 256 0.17 0.001 

II’ – II’ 

8 m 

upstream 

of the RHS 

54 0.17 0.420 0.011 0.12 54583 1455 0.33 0.009 

55 0.14 0.410 0.011 0.13 43880 1489 0.35 0.009 

56 0.17 0.530 0.017 0.31 68879 3651 0.41 0.011 

57 0.06 0.161 0.005 0.03 7385 688 0.21 0.004 

58 0.16 0.109 0.007 0.04 12499 909 0.09 0.005 

III’ – III’ 

15 m 

upstream 

of the RHS 

59 0.07 0.010 0.001 0.005 535 43 0.01 0.001 

60 0.30 0.500 0.003 0.01 114670 385 0.29 0.002 

61 0.14 0.396 0.010 0.10 42382 1304 0.34 0.008 

62 0.12 0.220 0.0003 0.001 20182 45 0.20 0.001 

63 0.05 0.224 0.005 0.03 8562 707 0.32 0.004 

The highest values of depth-averaged velocity were recorded on the ramp of the structure in its central, 
lowered part, causing concentration of the flow. At points: 34, 37, 40 and 43, the velocities were above 
2.00 m · s

-1
 (maximum 2.45 m · s

-1
 at point 40). Also in the energy-dissipating pool and in the marginal 

parts of the ramp, the velocities were quite high, amounting to 1.00–2.00 m · s
-1

. At point 29 (in the cen-
tral part of the energy-dissipating pool) the highest values of depth-averaged velocity and bed shear stress 
were observed, amounting to 0.053 m · s

-1 
and 2.85 N · m

-2
, respectively. Also above, in the central, low-

ered part of the ramp (points 34, 40, 43), high values of shear stress (1.16–1.61 N · m
-2

) were recorded. 
Among all the measurement points on the rapid hydraulic structure, the lowest values of tangential stress 
(0.01–0.51 N · m

-2
) were those recorded on the upper concrete sill. The highest value of Froude number, 

2.47, was recorded at point 40 (the middle of the ramp in its central, lowered part). Subcritical flow over 
the structure occurred at the points situated on the upper sill and at the marginal parts of the lower sill and 
the energy-dissipating pool. 

Table 2: Hydrodynamic parameters (series 2). 

Cross- 

section 

Point 

number 

h 

[m] 

vśr 

[m · s
-1

] 

v* 

[m · s
-1

] 

τ 

[N · m
-2

] 

Re 

[–] 

Re* 

[–] 

Fr 

[–] 

Fr* 

[–] 

V – V 

30 m downstream 

1 0.40 0.780 0.014 0.20 238514 2060 0.39 0.010 

2 0.44 0.760 0.026 0.69 255638 5462 0.37 0.016 

3 0.30 0.530 0.031 0.94 121550 4350 0.31 0.023 

IV – IV 

22 m 

downstream 

of the pool 

4 0.05 0.264 0.028 0.77 10091 4090 0.38 0.020 

5 0.50 0.780 0.024 0.58 298142 5005 0.35 0.015 

6 0.28 0.570 0.017 0.28 122009 3513 0.34 0.010 

7 0.10 0.248 0.008 0.06 18959 1085 0.25 0.006 

III – III 

15 m 

downstream 

8 0.50 0.430 0.021 0.43 164361 3063 0.19 0.015 

9 0.76 0.520 0.019 0.37 302118 4029 0.19 0.012 

10 0.36 0.390 0.027 0.73 107331 3840 0.21 0.020 

II – II 

8 m 

downstream 

of the pool 

11 0.44 0.045 0.002 0.005 15136 250 0.02 0.002 

12 0.40 0.270 0.020 0.41 82562 4218 0.14 0.012 

13 0.83 0.960 0.026 0.74 609128 12083 0.34 0.035 

14 0.12 0.158 0.006 0.03 14494 1234 0.15 0.004 

15 0.50 0.074 0.011 0.13 28285 1261 0.03 0.009 
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Cross- 

section 

Point 

number 

h 

[m] 

vśr 

[m · s
-1

] 

v* 

[m · s
-1

] 

τ 

[N · m
-2

] 

Re 

[–] 

Re* 

[–] 

Fr 

[–] 

Fr* 

[–] 

I – I 

4 m 

downstream 

of the pool 

16 1.05 0.010 0.001 0.001 8027 131 0.01 0.001 

17 0.16 0.128 0.008 0.06 15656 901 0.10 0.007 

18 0.60 1.120 0.030 0.87 513722 6167 0.46 0.018 

19 0.09 0.042 0.006 0.04 2890 698 0.04 0.005 

20 0.94 0.148 0.007 0.04 106353 737 0.05 0.005 

N 

centre of the  

energy-dissipating 

pool 

21 0.10 0.770 0.016 0.27 58864 4388 0.78 0.009 

22 0.14 0.650 0.028 0.81 69567 7594 0.55 0.015 

23 0.18 2.100 0.050 2.48 288969 13313 1.58 0.027 

24 0.15 0.330 0.009 0.07 37841 2308 0.27 0.005 

25 0.05 0.780 0.015 0.23 29814 4081 1.11 0.008 

GD 

lower concrete sill 

of the RHS 

26 0.08 0.770 0.006 0.04 47091 1661 0.87 0.003 

27 0.06 1.420 0.013 0.16 65133 3402 1.85 0.007 

28 0.12 2.860 0.069 4.82 262365 18585 2.64 0.037 

29 0.03 0.680 0.011 0.11 15595 2834 1.25 0.006 

30 0.06 0.860 0.012 0.15 39447 3257 1.12 0.007 

PS 

ramp 

of the RHS 

31 0.12 2.050 0.038 1.45 94030 10181 2.67 0.021 

32 0.08 0.960 0.013 0.16 58711 3360 1.08 0.007 

33 0.08 1.140 0.040 1.57 69719 10605 1.29 0.021 

34 0.10 1.980 0.051 2.59 105955 13615 2.39 0.027 

35 0.05 1.040 0.044 1.97 39752 11871 1.48 0.024 

36 0.05 0.930 0.025 0.60 35548 6566 1.33 0.013 

37 0.15 1.560 0.045 2.04 178885 12071 1.29 0.024 

GG 

upper concrete sill 

of the RHS 

38 0.08 0.870 0.014 0.20 53207 3820 0.98 0.008 

39 0.06 0.660 0.007 0.04 30273 1778 0.89 0.004 

40 0.20 1.070 0.034 1.12 163596 8967 0.76 0.018 

41 0.05 0.600 0.012 0.15 22934 3267 0.86 0.007 

42 0.05 0.570 0.007 0.06 21787 2006 0.81 0.004 

I’ – I’ 

4 m 

upstream 

of the RHS 

43 0.21 0.400 0.024 0.56 64215 4954 0.28 0.015 

44 0.14 0.169 0.008 0.06 18087 1582 0.14 0.005 

45 0.32 0.690 0.018 0.31 168794 3677 0.39 0.011 

46 0.14 0.368 0.015 0.23 39385 3147 0.31 0.009 

47 0.12 0.164 0.009 0.08 15045 1898 0.15 0.006 

II’ – II’ 

8 m 

upstream 

of the RHS 

48 0.24 0.540 0.025 0.62 99075 5201 0.35 0.015 

49 0.10 0.330 0.012 0.13 25227 2425 0.33 0.007 

50 0.20 0.530 0.015 0.23 81034 3194 0.38 0.009 

51 0.15 0.246 0.012 0.15 28209 2515 0.20 0.007 

52 0.12 0.152 0.008 0.06 13944 1670 0.14 0.005 

III’ – III’ 

15 m 

upstream 

of the RHS 

53 0.28 0.680 0.012 0.14 145555 1592 0.41 0.009 

54 0.11 0.400 0.038 1.45 33637 5193 0.39 0.029 

55 0.20 0.600 0.023 0.51 91736 4729 0.43 0.014 

56 0.16 0.264 0.020 0.40 32291 2722 0.21 0.015 

57 0.12 0.344 0.019 0.36 31557 2594 0.32 0.014 

Table 2 presents hydrodynamic parameters determined during the second series of measurements in June 
2010. During the flood in May 2010, the channel changed its geometry. Directly downstream of the RHS 
(cross-section “I – I”), pools formed at both sides of the channel (0.94 m and 1.05 m deep), with low val-
ues of depth-averaged velocity (0.148 m · s

-1 
and 0.010 m · s

-1
 for the right and left pool, respectively) 

and tangential stress (0.001 – 0.005 N · m
-2

 for the right pool and 0.04 – 0.13 N · m
-2 

for the left one). 
Downstream of the structure, dynamic velocity attained the highest values of the 0.026–0.031 m · s

-1 
and 

shear stress those of 0.69 – 0.94 N · m
-2

. Closer to the banks, where the flow velocity was lower, the val-
ues of shear stress were lower than in the middle part of the channel (0.13 – 0.62 N · m

-2
). Turbulent and 

subcritical flow occurred at all investigated points.  
The highest values of depth-averaged velocity, 2.86 m · s

-1
, and shear stress, 4.82 N · m

-2
, were rec-

orded on the lower sill (point 28). At the majority of the remaining points, high values of tangential stress 
occurred as well (2.48 at point 23 in the energy-dissipating pool, 1.45, 1.57, 2.59, 1.97 and 2.04 N · m

-2

respectively
 
at points 31, 33, 34, 35, 37 on the ramp and 1.12 N · m

-2 
at point 40 on the upper sill). The 

high values of this parameter are connected with the high values of depth-averaged and dynamic velocity, 
and the large water turbulence. Such conditions on the RHS were created pools to the lowering applied in 
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order to concentrate the stream. In the energy-dissipating pool, supercritical flow occurred only at two 
points (23, 25), at the remaining ones subcritical flow occurred.  

Upstream of the structure, depth-average velocity varied between  0.164 and 0.690 m · s
-1

, dynamic 
velocity was in the range of 0.008 –0.038 m · s

-1
, and tangential stress – 0.06 – 0.62 N · m

-2
. Here, the 

highest value of the stress, 1.45 N · m
-2

, was recorded at point 54.  
The whole set of hydrodynamic data collected during the third series of measurements is not presented 

in the paper but their analysis is presented below. Directly downstream of the RHS (cross-section “I – I”), 
further scour of the pools occurred between the second and the third series of measurements. In spite of 
the low water level, their depth increased (right pool) or remained the same (left pool) in comparison with 
the series 2. Now the smallest values of dynamic velocity and tangential stress occurred at the pools, and 
they equalled 0.001 m · s

-1
 and 0.001 N · m

-2
,
 
respectively, for both pools. At the remaining points down-

stream of the structure, the values of tangential stress were lower than during the second series, which is 
connected with the lower discharge and and dynamic velocity. Here, the highest values of shear stress 
(0.38 N · m

-2 
at point 10 and 0.32 N · m

-2 
at point 4) were recorded in the thalweg. Turbulent flow oc-

curred at all points except the pools in which transitional flow was observed. At all points below the 
structure, the Froude number was below 1, so the subcritical flow occurred. The highest depth-averaged 
velocity was recorded at point 18 (2.16 m · s

-1
) and point 20 (2.23 m · s

-1
). The highest dynamic velocity 

and tangential stress occurred on the lower sill and in the central, lowered part of the ramp, amounting to 
0.062 m · s

-1
 and 3.90 N · m

-2
, respectively. At the remaining measurement points, the stress values var-

ied between 0.21 and 0.91 N · m
-2

. The exception was point 24 in the energy-dissipating pool, where the 
value of this parameter equalled 0.03 N · m

-2
. The Reynolds number showed the occurrence of turbulent 

flow. Supercritical flow occurred almost on the whole ramp and the highest value of Froude number, 
3.18, was recorded at point 20.  

The values of Froude number, Reynolds number and flow velocity measured on the structure are very 
important for evaluation of the possibilities of migration of aquatic animals through the ramp. The eco-
logical requirements that must be fulfilled by fish passes and similar structures, such as RHS, are formu-
lated by DVWK (2002). The obtained data indicate that the RHS constructed on Porębianka Stream meets 
these requirements. 

5 CONCLUSIONS 

1 Hydrodynamic parameters in the area of the rapid hydraulic structures which mimic natural riffles in 
gravel-bed rivers depend closely on the location of the measurement point in relation to the individual 
parts of the structure. 

2 Hydrodynamic conditions in the areas of rapid hydraulic structures are highly diversified, which in-
creases heterogeneity of the habitat conditions for benthic invertebrate fauna. 

3 The highest velocities were observed on the slope apron of the RHS in the place of flow concentration. 
At the same time, it is the place where fish and invertebrate can migrate along the structure under low-
flow conditions. 

4 The maximum, medium and dynamic velocities recorded upstream and downstream of the structure 
are similar, which shows the proper functioning of the RHS. 

5 The values of the shear stress depend directly on flow velocity and water turbulence as well as on the 
dynamic velocity in all measured places of the investigated RHS. 

6 Rapid hydraulic structures (sometimes called ramps) operate as low transversal structures mimicking 
natural riffles, and thus they conform with the requirements of the Water Framework Directive of the 
EU. 

NOTATION 

v flow velocity [m · s-1] 
h water depth [m] 
g gravitational acceleration  [m · s-2] 
d diameter of the grains on the channel bed [m] 
ν coefficient of kinetic viscosity [m2 · s] 
νsr depth-averaged flow velocity [m · s-1] 
Re* particle Reynolds number 
Fr* particle Froude number 
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