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2. Basic Storm Surge Equations and Standard Methods 

of Solutions 

2.1 Formulation of the Storm Surge Equations 

In numerical models for storm surges, the equations most frequently used are linearized 

versions of the Navier-Stokes equations in vertically integrated form. MuRTY (1984) has 

given the detailed derivation of these equations. He used a right-handed rectangular Carte- 

sian coordinate system with the origin located at the undisturbed level of the free surface. The 

coordinate system is such that the x-axis points towards east, the y-axis points towards north, 

and the z-axis points upwards. 

Linear Storm Surge Equations and Boundary Conditions 

We will first consider the linear storm surge equation most commonly used, following 

WFF: LANDER (1961). Assume that the water is homogeneous and incompressible, and that fric- 

tion due to vertical shear is much more important than horizontal friction. Then, the equati- 

ons of motion in a right-handed Cartesian coordinate can be written as 

X au +u au +v au +w au 
-fv =-1 

aP +1 aT 
-------- 

at ax ay az PO ax PO az 

av av av av I aP I 
ýyX 

-+u-+v-+w-+fu =---+- 
at ax ay az PO ay PO az 

aw aw aw aw 1 ap 

-+u-+v-+w-=----g 
at ax ay az PO aZ 

The continuity equation is 

(2.1) 

(2.2) 

(2.3) 

au dv aw 

-+-+-=0 
(2.4) 

ON ay az 

where u, v, w are velocity fields in the x, y, and z directions, f is the Coriolis parameter, g is 

gravity, po is the uniform density of water, P is the pressure and TY and -r, are the x and y com- 

ponents of the frictional stress. 
With reference to the origin of the coordinate system located at the undisturbed level of 

the free surface (z = 0), the free surface can be denoted by z=h (x, y, t) and the bottom by 

z= -D 
(x, y). Let T5X and Tsy denote the tangential wind stress components and let Pa be the 

atmospheric pressure on the water surface. Then, the following boundary conditions must 
be satisfied. At the free surface z=h: 

TX - TSX, Ty -TSy (2.5) 

P=P, (2.6) 
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Since the free surface has to follow the fluid, we have an additional condition given by 

ah 
+uah+vah =w at z=h (2.7) 

at ax ay 

At the bottom, all the velocity components have to vanish. Thus 

u=v=w=Oatz=-D 
(2.8) 

The traditional storm surge equations are derived by performing two operations of ver- 

tical integration and linearization. To perform the vertical integration, we define the x and y 

components of horizontal transport as follows: 

hh 

M= fudz and N=f vdz 

z=-D z=-D 

(2.9) 

Integrating the horizontal equations of motion (2.1) and (2.2) and the continuity equa- 

tion (2.4) with respect to z from z= -D to h and using the boundary conditions defined by 

equations (2.5)-(2.8) gives 

am aaIh ap 1 

-+-u2 +-uv-fN =-- J 
-dz +-(tisx -csx ) (2.10) 

ci[ ax vy N0 L= v ox NO 

aN aý aIh ap I 

-+-v2 +-üv+fM -- 
f -dz +-(tsy -isy 

at ay ax p0 z=-D ay p0 
) (2.11) 

ah am aN 
-+-+-=0 

(2.12) 

ar ax ay 
where, r and'r,, are the x and y components of the bottom stress Tg. In equations (2.10) and 

(2.11), the following notation was used: 

h a 

u2 =a Ju2dz 
ax ax 

-D 

aah 
- 

üv 
=-J uvaz 

ay ay 
-D 

(2.13) 

Next, the hydrostatic approximation will be made ignoring the nonlinear acceleration 

terms. To justify this, two assumptions are made: (a) the amplitude of surge is small with the 

water depth and (b) horizontal scale of the surge is large compared with the water depth. Fol- 

lowing CHARNOCK and CREASE (1957), the following scale analysis can be performed to as- 

certain the relative importance of the various terms. Let L and H represent the characteristic 
horizontal scale and depth, respectively. The vertical velocity varies from zero at the bottom 

to about Z/T at the surface, where Z is characteristic amplitude of the surge and T is a cha- 

racteristic period. The horizontal velocity is of the order of L/H. Z/T. 
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From equations (2.1) and (2.3), the pressure field is eliminated to obtain the following 

equation: 

2u 

a2 2 a2 a2 av a2w a2 a2 a2 2 
-+-u +-uv+-uw-f-=-+uw+-vw+-w 

ataZ axaz 
ayaz 

aZ2 aZ acaZ aX2 axay aXaZ 

I 
ZZzH2ZH2ZH2ZH2 

--- ff (-) -(-) -(-) -(-) 
HHHLHLHLHL 

(2.14) 

In equation (2.14), the order of magnitude of each term relative to the first term is indi- 

cated under the term. If (H/L)2 is small, all the term on right hand side of equation (2.14) can 
be neglected. This means that the amplitude of the surge is at most equal to water depth. 

Ignoring these terms amounts to the hydrostatic approximation. If Z/H is small, one can 
ignore the three nonlinear terms on the left side of equation (2.14). 

The pressure terms can be evaluated follows: 

aP ah aPa 

ax 
= gP pý+ 

ax 
=0 

On vertical integration 

h aP ah aPa 
f 

-dz.,, gPpD-+D- 

-D ax ax ax 

(2.15) 

(2.16) 

Note that, here, h relative to D is ignored, which is consistent with the above approxi- 

mation. Under the above simplifications, equations (2.14) and (2.12) finally reduce to so cal- 
led linear storm surge prediction equations: 

am ah D DPa 
+I 

at 
-fN=-gDý-- 

ax 
-(rsX - tiBX) 

PD P0 

aN ah D aPa I 

-+fM=-gD- +-(tis -TB) 
at ay Pp ay Pp YY 

(2.17) 

(z. 1 g) 

ah am aN 

at ax ay 

For convenience, hereafter, the subscript on the density field will be omitted. 
In this linear storm surge prediction equations, the dependent variables are the transport 

components M and N and the water level h. The forcing functions are the atmospheric pres- 

sure gradients given by dPa/(ix and R, /ay and the wind stress components TSx, and T,,. The 

retarding force is the bottom stress. At this stage, there are more unknowns than the avail- 

able equations. To get a closed system of equations, the bottom stress must be expressed in 

terms of the known parameters, such as the volume transports. 
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Bottom Stress 

Here, parameterization of bottom stress, based on SIMONS (1973), will be discussed. 

Let VB denote the velocity vector near the bottom. Then, the bottom stress rB can be ex- 

pressed as 

TB - PkI VBI VB (2.20) 

where, k is a non dimensional coefficient referred to as skin friction; the value of k is about 
2.6 x 10-3. If one assumes a uniform velocity distribution in the vertical and nothing that the 
horizontal transport vector M is given by 

hh 
M= (M, N) =J VB dz =f (u, v)dz 

-D -D 

one obtains 

TR 

. -... .ý 
kIM 

_= rinn wnere Ei = 
P 

ý. _. .....,... ý 
(D + h)2 

(2.21) 

(2.22) 

In most storm surge studies, either for obtaining analytical solutions or for economizing 

on computer time in numerical models, the bottom stress relation (2.20) is linearized by as- 

suming typical values either for the average velocities or the transport components. For a mo- 
del of Lake Ontario, SIMONS (1973) assumed average velocities of the order of 10 cros ' in the 

shallow waters and about 1 cros-' in the deep waters of the lake. Thus, B varies from 0.0025/D 

to 0.025/D in C. G. S. units. RAO and MuRTY (1970) used value of 0.01/D for B in their mo- 
del for Lake Ontario. 

Instead of the average velocity field, one can examine the mass transport, which varies 

more smoothly, for Lake Ontario, SIMONS (1973) gave a value of 2X 104 to 4X 104 cmzs 
' 

in the shallow as well as deep water, and this leads to B= 50/D2 to 100/D2 in C. G. S. units. 

Another approach to prescribing the bottom stress is to specify the vertical turbulent diffu- 

sion of momentum by a constant eddy viscosity v. PLATZMAN (1963) deduced bottom fric- 

tion coefficients as a 
function 

of the Ekman number, D\/f/2 v, in such a way that B- 10 for 

grate 
depth 

and gives B=2.5 v/D2 
for shallow water. For lake Erie, PLATZMAN (1958a) took 

v= 40 cmzs ', 
which gives B= 100/D2 in C. G. S. units. 

Thus the alternative for the bottom friction can be summarized 

linear form B= a/D, a-0.01 cros 

quasilinear form B= b/D2, b- 100 cm2s 

non linear form B= kIVI/D2, k-0.0025 

(2.23) 

In most early storm surge studies the linear form has been used. FISCHER (1959) used the 

quasi-linear form, where as HANSEN (1956), UENO (1964), and JOHNS et. al (1981) used the 

nonlinear forms. 
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Forcing Terms and Lateral Boundary Conditions 

In eq. (2.17) and (2.18), the forcing terms are gradients of the atmospheric pressure, 

8P, /bx and 8P, /8y, and the components of the wind stress, Tsx and Ts, In chapter 5, the me- 

teorological problems will be considered in detail; here the forcing term will be discussed 

briefly. In principle, the atmospheric pressure gradients can be prescribed either from obser- 

vations or from the prognosis of numerical weather prediction models. However, the wind 

stress is not routinely measured and must be deduced from 
wind observations or predicted 

winds. The wind stress is usually expressed as 

'ES = Pak Va I Va (2.24) 

where, p, is the density of air (1.2 X 10-3 gm. cm-3) and V. is the wind velocity at the anemo- 

meter level. The parameter K is the drag coefficient (non dimensional) and is usually given a 

value of about 3X 10-3 (PLATZMAN, 1958a; UENO, 1964). However, SIMONS (1973) suggested 

that for the Great Lakes, a more appropriate value for k is about 1.2 X 10-3. 

Next follows a brief consideration of the lateral boundary conditions to be specified so 

that the system of equations described by equation (2.17) and (2.19) is complete (details of 

the lateral boundary conditions will be discussed later). The main lateral boundary condition 
is that the transport normal to the coastline is zero, i. e. 

M cos(ý +N sin(ý =0 (2.25) 

where, 4) is the angle between the x-axis and the normal to the coastline. If it is assumed that 

the depth of the water is zero at the shoreline, then the tangential component of the volume 

transport vector must also be zero. The boundary condition in the open part of the water 
body is more difficult to prescribe. Since the contribution to the storm surges comes mainly 
from the shallow water region, a generally followed procedure is to locate the outer bound- 

ary in the deep water and assume that the water level perturbation there is zero. However, 

this may not be satisfactory in certain situations, as will be shown later. 

2.2 Numerical Finite Difference Solutions 

Beginning in the late 1940s, several finite-difference techniques were developed by 

people working in the field of meteorology with the aim of predicting the weather through 

numerical solutions of the governing partial differential equations. 
MuRTY (1984) has discussed in detail the numerical finite-difference solutions for two- 

dimensional models for storm surges and tides. Finite differencing of the time derivative and 

the computational stability of the finite difference schemes has also been described in detail 

by MuRTY (1984). Readers are advised to refer to the book of MuRTY (1984) for detailed ma- 

thematical description. 

2.3 Staggered and Nonstaggered Grid Schemes 

MuRTY (1984) described in detail the numerical integration using conjugate Richardson 

lattice. The Richardson lattice is a "staggered grid" because the variables are staggered in 
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space on the grid. The leapfrog scheme for integration in time is also a staggered scheme (in 

time). Nonstaggered grids and time integration were used in storm surge calculations until 

the early 1960s. 

Away from the boundaries, central differencing is the most convenient manner of space 
discretization. However, near (and at) the boundaries, special attention is required; one can 

place fictitious points outside the boundary or use one-sided difference schemes. 
MURTY (1984) has discussed various kind of grid schemes used in discritization of storm 

surge model equations. He has also described the advantages and the limitations of these 

grids. 

2.4 Treatment of Open Boundaries 

At times, storm surge calculations might have to be performed in a limited region of a 
large water body. This problem could be tackled in at least two different ways. In one ap- 

proach, one can perform the calculations in the large water body of which the smaller water 
body is a part and then use the results for the area of interest. However, this approach is not 

economical and may not even be possible for certain water bodies. Also, there may be a pro- 
blem with the resolution, since one has to model a larger water body. In the second approach, 

artificial open boundaries can be introduced around the area of interest and the calculations 

can be performed in the limited region of interest. However, along these artificial open 
boundaries, certain conditions have to be introduced, and without proper considerations, 

these conditions might make the results in the interior region inaccurate. 

The commonly used practice of putting zero surface elevation at the sea boundary is not 

at all satisfactory, 
because this amounts to perfect reflection at the sea boundary. A better 

approximation (HEAPS, 1974; HENRY and HEAPS, 1976) is to assume that all outward travel- 
ling waves are normal to the boundary and to calculate the volume transports M (or N) from 

the water level h at the nearest interior grid point; i. e. M= [g (D + h)]hII2 
. 
This is the so- 

called radiation condition. 

REID (1975) corrected a misconception commonly held (e. g. FORRISTALL, 1974) in app- 
lying open boundary conditions. FORRISTALL (1974, p. 2722) stated at shallow water (lateral) 

boundary points, derivative of velocity perpendicular to the boundary is set equal to zero so 

that the transport across the boundary may be calculated from the adjacent flow. This con- 
dition is designed to let long waves pass unimpeded through the artificial boundary. 

Reid showed that, although such a condition will permit flow of fluid to or from the 

system, it would produce total reflection of long waves and not zero reflection as FORRISTAL[. 

stated. 
HERPER and SOBEY (1983) considered the specification of realistic open-boundary con- 

ditions for the numerical simulations of hurricane storm surge in the context of the very con- 

siderable spatial extend of the meteorological forcing. They reviewed existing practice and 

proposed an alternative approach, a Bathystrophic Storm tide approximation to open boun- 

dary water level. This boundary condition is closely related to the Hydrodynamics, responds 

realistically to storm forcing and also gives realistic water level contour and flow pattern close 

to the open boundaries. 

BODE and HARDY (1997) while giving a detailed review of open boundary conditions 

conclude that in spite of the effort expanded on the development of artificial open boundary 

conditions, model studies show that the ideal way to minimise the problem is to use as large 

a domain as possible. 
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2.5 Numerical Treatment of the Nonlinear 

Advective Terms 

The linearized versions of the storm surge equations have widely been used in storm 

surge modelling. However, in shallow-water areas and in the computation of the horizontal 

motion, at time the nonlinear advective terms might have to be included. CHARNOCK and 
CREASE (1957) showed through dimensional analysis that the nonlinear advective terms be- 

come important when the free surface height is of the same order of magnitude as the water 
depth. 

FEATHER and HEAPS (1975) developed a model for Morecambe Bay allowing for the 
inclusion of the nonlinear advective terms. 

The scheme for the nonlinear advective terms used by FLATHER and HEAPS (1975) is 

based on the angled derivative approach suggested by ROBERTS and WEiss (1966). 

FALCONER (1980) introduced a conditionally stable three time level implicit scheme in- 

cluding the nonlinear advective terms. This scheme is especially suitable for narrow entrance 
harbors and estuaries where the nonlinear instability problems associated with rapidly chan- 

ging velocity fields might be very important. 

JOHNS et al. (1981) and DuuE et al. (1985a) used conditionally stable semi-explicit 
finite difference scheme to model storm surge in the Bay of Bengal and Arabian Sea. Verti- 

cally integrated predictive equations written in the flux form for their models are: 

4 
+aü +aý-o at ax ay 

aüaa(K+ Fs 

at 
+ ax 

(uü)+ 
ö vü) =G+ ý)ax 

Yp 

cf +u 
(u2+v2)l/2 

(ý+h) 

FV 
+a (uv)+ 

a 
(v'ý)=f ü +h) 

aý 
+ 

Gs 

at ax ay ax p 

c +v 
f (u2+V2)1/2 

(ý+h) 

where, ü= (ý + h)u and v" = (ý + h)v; and depth integrated currents are defined as 

(u, v)= f(u, v) dz 
(ý + h) 

-h 

(2.26) 

(2.27) 

(2.28) 

(F9 GS) are the x and y components of wind stress and (C + h) represents the total water depth. 

The grid scheme used by the authors is a staggered grid in which there are three distinct com- 

putational points. The arrangement of grid points is indicated in Fig. 2.1. 
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A 

Q u- points ,0 v- points. )<. 75-points 

Fig. 2.1: Grid point arrangement. 

Any variable X, at a grid point (i, j) may be represented by 

X (xi, yi, tp) = Xiip 

In order to describe the finite - difference equations, they defined difference operators by 

A, x = (XiiP+' - xiiP)/Ot 
sxx 

- 
(XPi+I, 

j 
XPi_I, 

))/(20x) 

8 
yX 

= 
(Xi, 

i+lP- 
Xi, 

j_, 
P)/(2 AY) 

Averaging operations are defined by 

-x 
1 

x= 

2(xP1"J+Xp1 
y1 X (x j, 

J+ 
+Xp. j- 

XxY=XxY 

and a shift operator is defined by 

E, X=Xj, P 1 

The continuity equation is discretized as 

At (ý) + Sx (U) + by(v) =0 

(2.29) 

(2.30) 

(2.31) 

Equation (2.31) yields an updating procedure to compute the elevation at all the interior 

c-points and is consistent with the mass conservation in the system. 
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The discretization of (2.27) is based upon 

At(ü)+Sx(üx üx) 8y(Vx y)-f vXY 

-gEt[(Cx+h)8xC1+p Et(Fý) 

Cf ju2+(vXy )21 
1/2 

Et (u) 

Et (ýX + h) 

A similar discretization of (2.28) is based upon 

Ot(ý)+Sx(Uy vx)y(V 
y vY +ET(f Uxy) 

° -gEtf(ýY+h)Sxý]+p Et(Gý) 

Cf 
+L(uXy 

)2+ v2 ]1/2 Et 

Et(ýy+h) 

(2.32) 

(2.33) 

The following 
general points are made about the discretizations. In equations (2.32) and 

(2.33), the pressure gradient terms are evaluated at the advanced time-level. This is possible 

explicitly using values of 4 previously updated by application of (2.31) and, following SIE- 

LECKI (1968), ensures computational stability subject only to the time-step being limited by 

the space increment and gravity wave speed. In (2.32), the Coriolis team is evaluated expli- 

citly at the old time level whereas in (2.33) it is evaluated at the advanced time level using the 

previously updated value of u. Finally in both (2.32) and (2.33), the friction term is evaluated 

partly implicitly, the resulting difference equations being solved algebraically before their in- 

corporation into the updating scheme. This ensures unconditional computational stability 

with reference to the treatment of the dissipative terms. 

DAVIS (1976) included nonlinear advective terms in the equations of motion and conti- 
nuity written in the spherical polar coordinate system. 

BOOK et al. (1975) developed "flux-correlated" transport schemes for the proper inclu- 

sion of the nonlinear advective terms. In this scheme, any artificial diffusion added to the ad- 

vection term in the first step is subtracted in the subsequent step. LAM (1977) compared va- 

rious schemes of this type and showed that a central-difference scheme produces oscillations 

of great amplitude, whereas a one-sided upstream-differencing scheme shows a large false 

diffusion. However, the one-sided upstream-differencing scheme combined with a flux-cor- 

rected transport scheme gave reliable results. 

2.6 Moving Boundary Models and Inclusion of Tidal Flats 

Moving boundary models have been developed to allow for the climbing of the surge on 

the coastline as well as to include tidal flats, which become submerged during flood and dry 

during ebb. 
Omitting the non-linear advective and Coriolis terms, REID and BODINE (1968) devel- 

oped a technique for the inclusion of tidal flats. The coastal boundary that follows the grid 
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lines can advance or retreat in discrete steps as the water level rises or falls. To allow for flood- 

ing of dry land and to simulate submerged barriers, empirical formulae based on the concept 

of flow over weirs were used, and application was made to storm surges in Galveston Bay, 

TX. 
LEENDERTSE (1970) and LEENDERTSE and GRITTON (1971) developed an alternating 

direction implicit technique of allowing for tidal flats, with application to Jamaica Bay, NY. 

In this model also, the boundary moves along grid lines in discrete 
steps. However, the con- 

dition for dry area is more stringent than a simple zero local 
water depth (the stringent con- 

dition was used to suppress most of the computational noise due to the movements of the 

boundary). The programming effort is quite cumbersome, especially due to the implicit 

scheme used. Other investigations that dealt with this problem are those of RAMMING (1972), 

ABBOTT et al. (1973), BACKHAUS (1976), RUNCHAL (1975) and WANSTRATH (1977a, 1977b). 

The model of FLATHER and HEAPS (1975) has already been introduced in the section on 

nonlinear terms. For the calculations in which tidal flats 
are to be included, they omitted the 

advective terms and used a simple explicit scheme. The conditions they used depended on an 

examination of the local water depth and the slope of the water level. Use of the condition 

on the water level slope specially suppresses the unrealistic movements of the boundary. As 

in the models of RI: II) and BODINE (1968) and LEENDERTSE and GRITTON (1971), the water- 
land boundary follows grid lines in discrete time steps. 

Before the calculation of current u and v in the x and y directions at each time step, each 

grid point was tested to see if it was wet (i. e. positive water depth) or dry (zero water depth). 

If the point was dry, then the current was prescribed as zero. For wet points, u and v were 

computed from the relevant equations. 
YEH and YEH (1976) developed a moving boundary model; i. e. the boundary between 

dry land and the water can move with time using an ADI technique. Since the technique was 
found to be numerically inefficient, YEH and CHOU (1979) developed an explicit technique. 
They showed that the moving boundary (MB) model gives storm surge amplitudes that could 
be 30 % smaller than those given by a fixed boundary (FB) model, FB models that assume a 
fixed vertical wall at the water-land boundary could overestimate the surge by about 30 %. 

Yº: º-t and CHOU (1979) used a model to compute surges in the Gulf of Mexico. 

TETRA TECH INC. (1978) developed coastal flooding storm surge models, which inclu- 

ded the nonlinear advective terms. Coriolis terms, wind stress, atmospheric pressure gradi- 

ents, and bottom stress. Here, discussion will be confined to the treatment of the land-water 

boundary. Usually, the landslope onshore is much greater than the slope of the ocean floor. 

In such situations, the coastal surge is assumed to propagate overland to its corresponding 

contour level (when the distance to that contour line is much less than one grid interval). 

However, there are certain regions, such as western Florida, where the onshore slope is very 

small and the limiting contour interval may be several kilometers inland. For such cases, a 

one-dimensional run up model is used at various traverses. 
SIELECKI and WURTELE (1970) developed a moving boundary scheme in which the late- 

ral boundary of the fluid is determined as a part of the solution. They tested the validity of 

their scheme by comparing the results of some simple numerical experiments with the results 
from analytical solutions. Actually, their scheme consists of three different methods: (a) Lax- 

Wendroff scheme (LAx and WENDROFF, 1960) as modified by RICHTMEYER (1963); (b) using 
the principle of energy conservation as formulated by ARAKAWA (1966); (c) using the quasi 
implicit character of the difference equations. 

REID and WHITAKER (1976) and REID et al. (1977b) allowed for vast stretches of vegeta- 

tion and marsh grass (such as in Lake Okeechobee in Florida) in storm surge models. They 
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showed that when the marsh grass extends above the water surface, a single canopy flow re- 

gime results, whereas when the vegetation does not extend above the water surface, a two- 
layer regime exists. Flooded marsh areas are treated as an ensemble of subgrid scale obstacles. 

For submerged vegetation the model is similar to a two-layer system. The interfacial 

stress is formulated in terms of a coupling coefficient and the flow differential. The friction 

due to individual canopies is parameterized through a drag coefficient and the dimensions of 
the elements. When the canopy elements are not submerged, a sheltering factor is introduced. 

JOHNS et al. (1982) and subsequently Dust et al. (1986a) describe a finite difference me- 

thod, which models a continuously moving lateral boundary. JOHNs et al. (1982) applied it to 

the numerical simulation of the surge generated by 1977 Andhra cyclone which struck the 

east coast of India while DUBE et al. (1986) applied it to 1970 Bangladesh cyclone. In both the 

studies author employ a curvelinear representation of the lateral boundaries, which allow the 

continuous deforming of the coastline to be model in a fairly realistic way. 
For the formulation of model they considered the coastal boundary as time variant 

situated at x=b, (y, t) and an off shore open sea boundary situated at x= b2 (y). They also 
introduced a coordinate transformation to facilitate the numerical treatment of an irregular 
boundary configuration. The transformation is of the type 

x-bl(y, t) 

b(y, t) 
(2.34) 

where, b, (y, t) = b2 (y)-b, (y, t) 
The equation of continuity and momentum are written in flux form with t, y, t as new 

independent variables 

ýt 
(Hb) + 

aý 
(HbU) +Y (v) =0 

au- aa aý bFs Cfü 2 21/2 

at 
+ýý (Uü)+ý (vü)-fü=-gH ý+ 

p-H 
(u+v ) 

av+ a 
(Uv) +a (vü)+fu- =-gH[aý - {ab' +ýab}ýN ] 

a< og ay ay ay e äý 
bGs-CH 

(u2+v2)1/2 
P 

Where 

ab, ab ab, ab 
bU=u -[ý +ýý]-v[ý +ýý1, 

9= Hbu v= Hbv and H is total depth (ý + h) 

(2.35) 

(2.36) 

(2.37) 

The changing position of the coastline is determined by the condition that the depth of 

the water be zero at the coastline. This leads to 

H=0 at x=b, (y, t) (2.38) 
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or equivalently, 

ý(e =0, y, t)+h{x=b, (y, t), y)=0 (2.39) 

Depending on whether b, (y, t) < b, (y, 0) the authors either interpolate or use new 
inland orographical data to fix the value of h [b, (y, t), y]. This is done by differentiating (2.39) 

with respect to t. This leads to 

ý(ý=O, t)+ 
aatt 

s-0 (2.40) 

where, 

S- ýýx lx=bý(Y>t) (2.41) 

If S is prescribed, (2.40) yields a prognostic equation for b, The most simple case cor- 

responds to constant value of s when (2.41) immediately integrates to 

bý(Y, t)=b, (Y, 0)- 
I 

ý(ý =O, Y, t) (2.42) 

Then if ý (ý = 0, y, t) <0 the sea surface at the shoreline depressed and the shoreline has 

consequently recoded from its initial position. If ý (i; = 0, y, t) > 0, there is a positive surge; 

the elevation at the shoreline is raised above its equilibrium level and there is a corresponding 
inland penetration of water. 

2.7 Nested Grids and Multiple Grids 

In this section, the use of multiple grids, such as combinations of coarse and fine grids, 

to model storm surges in a water body will be considered. The philosophy behind using mul- 

tiple grids is to be able to reduce the total computational effort by placing a coarse grid in the 
deep (and offshore) region and couple this with a finger grid in the shallow coastal area. 

In connection with storm surge studies in the Beaufort Sea, HENRY (1975) and 
HENRY and HEAPS (1976) used a combination of coarse and fine 

grids but the grids were not 

coupled dynamically. Examples of studies in which the grids are dynamically coupled are 

those of ABBOTT et al. (1973), RAMMING (1976), SIMONS (1978), and JOHNS and ALI (1980) 

and JOHNS et al. (1983a). 

GREENBERG (1975,1976,1977,1979) used a combination of grids in his numerical mo- 
del tides in the Bay of Fundy. 
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