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Scour at bridge abutments can cause damage or failure of bridges and result in excessive repairs, loss of accessibility, or even death.  To mitigate 

abutment scour, clear-water laboratory experiments in a compound channel with an erodible main-channel bad and rigid floodplain were performed 

using parallel walls.  These experiments will aid in developing design guidelines for scour countermeasures for well vegetated or rigid banks and 

floodplain.  Two types of parallel walls were tested: the first was made of a solid thin wood plate and the second was made of piled rocks.  For solid 

parallel walls, a series of rectangular straight plates of different length attached to the upstream end of a wing wall abutment parallel to the flow 

direction were employed.  The velocity was 90% of its incipient motion value for bed sediment movement. The bed material was sand with a mean 

diameter of 0.8 mm. All the plates were seated at the bottom of the bank slope and were even with the abutment face parallel to the flume wall. It was 

found that straight plates thus situated are able to move the scour hole from the upstream abutment corner and are efficient as a countermeasure to 

prevent scour there. As the length of the plate increased, the scour at the abutment declined and as the plate reached 1.1L, where L is the length of the 

abutment perpendicular to the flow, the scour depth at the abutment was minimum. It was also found that a triangular-shaped or submerged end could 

reduce the scour at the upstream end of the plate.   For parallel rock walls, various values of wall length and protrusion length into the main channel 

were tested.  It was found that a wall that does not protrude into the main channel with a length of 0.5L length minimizes scour at the abutment where 

L is the length of the abutment perpendicular to the flow. 

 

 

1  Introduction 

 

Scour at bridge abutments can cause damage or failure of bridges and result in excessive repairs, loss of accessibility, or 

even death.  There are many countermeasures that have been proposed, but parallel walls are singled out in this paper as 

being a new and attractive alternative.  Previous work on the related topic of guidebanks includes Spring (1903), Lagasse 

et al. (1999, 2001), and Richardson and Simons (1984). 

 This study focuses on abutments on a rigid floodplain and banks whose face is even with the toe of the main 

channel.  This situation is common in well-vegetated, smaller stream with older abutments.  While typical guidebanks 

have an ellipcital upstream end, a parallel wall does not and, therefore, would be less expensive due to the difficulty of 

construction of the elliptical shape.  The efficacy of parallel walls without the elliptical end, was, therefore, tested here. 

 

 

2  Experimental Procedure and Results 

 

All of the experiments were conducted in a flume located in the hydraulic laboratory at the National Sedimentation 

Laboratory, Oxford, MS. The flume channel was 30 m long, 1.2 m wide, and 0.6 m deep, and it was supported in the 

center at two points and on the ends by four screw jacks that allow the channel slope to be adjusted. The model abutment 

was located over a 3 m long, 1.2 m wide, by 1.2 m deep recessed section of the flume 22 m downstream from the inlet 

tank. 
  The channel section of the experiments is illustrated in Figure 1. It was a compound channel consisting of an 

asymmetric floodplain of width 320 mm next to a main channel that has a bank slope of 1:1 (H:V). The height between 

the top of the floodplain and the main channel bed, ym, was 80 mm. The rigid floodplain was made of galvanized steel 

plate and glued down onto the flume bottom.  A thin layer of the 0.8 mm sand was glued to the floodplain and bank side 

slope. 
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Figure 1: Dimension Sketch for Experimental Compound Channel (mm). 

 

 

The wing-wall abutment model was made of steel. The dimensions of the model are shown in Figure 2. The abutment 

terminated on the bank slope of the main channel as illustrated in Figure1, which corresponds to the type III abutment of 

Melville (1992). The height between the top of the floodplain and the top of the abutment was 60 mm.

 
Figure 2: Dimensions of Abutment Model (mm). 

 
Figure 3: Scheme of staggered placement of gravel on floodplain to 

provide roughness. Gravels were placed throughout the floodplain 

(cm).  

 

The bed material used in the experiments had a diameter of 0.8 mm in both the floodplain and the main channel. The 

standard deviation of the gradation curve of the material gσ  is [ ] 37.12/1
1684 == DDgσ . According to Shields diagram, the 

critical shear velocity of the bed sediment is 1.995 cm/s. The steel floodplain was first primed and painted and then the 

same size sands of median diameter 0.8 mm were sprinkled onto the surface of it to provide roughness. The floodplain 

was further roughened using gravel rocks of average diameter of 4.5 cm that were placed in a staggered arrangement on 

the floodplain (Figure 3). 

 
 

 
Figure 4:  String contour of the baseline test, ym = 13.2 cm, yf 

= 5.2 cm, Q = 0.0442 m3/s, time = 4800 minutes. Flow is from  

 
 

Fig. 5: A sketch of the straight plate cases with varying length Ls. 

left to right with a staggered arrangement of gravel on the 

floodplain. 
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3  Baseline Experimental Results 

 

The baseline test was carried out under conditions of ym = 13.2 cm, yf = 5.2 cm, and Q = 0.0442 m3/s. From figure 4 it 

can be seen that the maximum scour, 7.77 cm, took place at the upstream corner of the abutment. This scour depth will 

be used as the baseline scour depth for abutment scour without any countermeasures. 

 

 4  Solid Parallel Wall Experimental Results 

 

A series of rectangular straight plates of different lengths, Ls, attached to the upstream end of the abutment parallel to the 

flow direction were tested (Fig. 5) to assess parallel wall feasibility. Although somewhat impractical to build a solid wall 

in the field, it could be done in areas where rock is scarce.  In these cases, the flow depth on the floodplain, yf, was equal 

to 5.2 cm and the flow depth in the main channel, ym, was 13.2 cm. The velocity ratio cUU / was about 0.9 in the center of 

the entire channel. Table 1 gives results of the solid wall experiments. 
 

Table 1: Straight plate experimental results (run time-4800 min., Q=0.038 m3/s). 

Straight plate 

length (Ls) 

Maximum 

scour depth at 

abutment (cm) 

Scour 

reduction 

rate (%) 

Maximum scour at the 

countermeasure (cm) 

0.3L, rectangular 6.25 19.6 8.65 

0.5L, rectangular 4.01 48.4 8.10 

0.6L, rectangular 2.95 62.0 7.71 

0.7L, rectangular 2.15 72.3 7.83 

0.8L, rectangular 1.43 81.6 7.62 

1L, rectangular 0.33 95.8 7.71 

1.2L, rectangular -0.40 105.1 8.30 

1L, bank high, 

submerged 
4.00 48.5 5.50 

1.2L, with upstream 

0.4L submerged 4.3 

cm deep in water 

1.74 77.6 7.80 

Triangular upstream 

end 
4.63 40.4 6.83 

 

 

All the solid parallel walls were seated on the bank slope of the main channel and aligned with the abutment face parallel 

to the flume wall. The top of each wall was the same height as the top of the abutment except in one case, in which the 

wall height was 5.2 cm lower than the flow surface, and also in another case where the wall was partially submerged 

about 4.3 cm in the flow. It was found that, in general, walls attached to the upstream end of the abutment were able to 

move the scour hole upstream from the abutment corner and therefore, was efficient as a scour countermeasure. It was 

also found that as the length of the wall increased, the scour at the abutment declined.  Table 2 shows photographs of the 

topographic maps of the scoured region after 4800 minutes.  
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Table 2: Photographs of selected straight plate tests (flow from left to right, run time=4800 min., Q=0.0379 ± 0.003m3/s). 

Parallel wall description Photographs  

Ls = 1.2L, ym = 13.2 cm, yf = 5.2 cm. 

 

Ls = 1.0L with the top of the wall 

submerged 5.2 cm in the water. ym = 

13.2 cm, yf = 5.2 cm.  

 

A sketch of the dimension of the 

triangular wall (mm). 

 

triangular end was tested. ym = 13.2 

cm, yf = 5.2 cm.  

 
 

 

 

 

5  Discussion of Plate Length 

 

Fig. 6 is a plot of the scour depths at the upstream corner of the abutment and the maximum scour depth in the vicinity of 

the upstream end of the wall versus the length of the wall in terms of the abutment length, Ls. It is seen that as the length 

of the wall increases from 0.3L to 1.2L, the scour at the abutment decreases rapidly. There is no scour at the abutment 

corner in 4800 minutes of running when the wall reaches a length of 1.1L. The length of the wall is vital to its success as 

a countermeasure. If the wall moves the scour hole far enough upstream, the scour hole at the upstream end of the wall 

will have no impact on the abutment corner and the countermeasure will be considered successful. Otherwise, the 

abutment corner will still be in the scour region and may be subject to collapse.  
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Fig. 6: Scour depth at both abutment and upstream end of wall versus length of wall in terms of wall length. 
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6  Rock Parallel Wall Experimental Results 

 

A series of rock walls of different lengths Lw and different protrusion lengths, Lp, were tested (Fig. 7) under clear water 

conditions. The effect of extending the wall out into the main channel was unclear.  Extending the wall could divert flow 

away from the abutment or it could cause scour-inducing eddies.  Rock was thought to be less expensive and easier to 

construct in the field than a solid wall.  These structures are similar to guidebanks without the elliptical upstream end 

(Bradley, 1978).  In these experiments, the flow depth on the floodplain (yf ) was equal to 5.2 cm and the flow depth in 

the main channel (ym ) was 13.2 cm. The velocity ratio cUU / was about 0.9 in the centerline of the entire channel. The 

top of each wall was the same height as the top of the abutment so that they were not submerged by the flow.  
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Fig. 7: Definition sketch of parallel wall. 

 

 

It was found that (a) the walls which were set back onto the floodplain such that the feet of the walls were even 

with the abutment (no protrusion length, Lp) were very effective in protecting the abutment,  (b) those walls whose feet 

protruded into the main channel beyond the abutment (protrusion length, Lp, greater than zero) tended to produce 

significant scour in the bridge crossing and potentially threaten the middle and downstream abutment end, and (c) for 

zero protrusion length, Lp, the protection efficiency of the walls were not sensitive to the lengths of the wall unless the 

wall was extremely short, for instance, 0.25L, then the protection efficiency would drop significantly. Overall, the 

straight wall is an efficient and practical countermeasure to prevent scour at the abutment. 
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Table 3:  Experimental data of straight stone walls (Q = 0.0385 ± 0.003m3/s, t = 4800 min.). 

Wall description 
Photographs 

(All flow is from left to right) 
Maximum scour at 

abutment (cm) 

Scour 

reduction(%) 

Gravel diameter 40-70 mm, Lw=1.3L, 

wall end slope H:V=13.2/13.2, a varying 

side slope of H:V=6.6/13.2 at upstream 

and zero at the abutment. Lp=0.  

 

1.05 86 

Gravel diameter 40-70 mm, Lw=0.61L, 

wall end slope H:V=36/13.2, a varying 

side slope of H:V=6.6/13.2 at upstream 

and zero at the abutment , Lp=0, used the 

scoured wall of previous run. 

 

3.32 57 

Gravel diameter 6.7~9.5 mm, Lw=.5L, 

wall end slope H:V=30/13.2, side slope 

H:V=18/13.2, Lp=0.5W. 

 

0.2 97 

Gravel diameter 6.7~9.5 mm, Lw=0.5L, 

wall end slope H:V=30/13.2, side slope 

H:V=18/13.2, Lp=0.5W. 

 

5.21 29 

Gravel diameter 6.7~9.5 mm, Lw=L, wall 

end slope H:V=30/13.2, side slope 

H:V=18/13.2, Lp=0.5W. 

 

5.06 35 

Gravel diameter 6.7~9.5 mm, Lw=1.5L, 

wall end slope H:V=30/13.2, side slope 

H:V=18/13.2, Lp=0.25W. 

 

 

0.45 94 

Gravel diameter 6.7~9.5 mm, Lw=0.5L, 

wall end slope H:V=30/13.2, side slope 

H:V=18/13.2, Lp=0.25W. 

 

 

5.3 32 

Gravel diameter 6.7~9.5 mm, Lw=L, wall 

end slope H:V=30/13.2, side slope 

H:V=18/13.2, Lp=0.25W. 

 

 

2.35 70 
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Gravel diameter 6.7~9.5 mm, Lw=1.5L, 

wall end slope H:V=30/13.2, side slope 

H:V=18/13.2, Lp=0. 

 

1.9 76 

Gravel diameter 6.7~9.5 mm, Lw=L, wall 

end slope H:V=30/13.2, side slope 

H:V=18/13.2, Lp=0.  

 

1.95 75 

Gravel diameter 6.7~9.5 mm, Lw=0.5L, 

wall end slope H:V=30/13.2, side slope 

H:V=18/13.2, Lp=0. 

 

2 74 

Gravel diameter 6.7~9.5 mm, Lw=0.25L, 

wall end slope H:V=30/13.2, side slope 

H:V=18/13.2, Lp=0.  

 

2.8 64 

Gravel diameter 6.7~9.5 mm, Lw=2L, wall 

end slope H:V=30/13.2, side slope 

H:V=18/13.2, Lp=0.  

 

2 74 

Gravel diameter 19~50 mm, Lw=1.5L 

length, stone wall end slope H:V=30/13.2, 

side slope H:V=17/13.2, Lp=0. 

 

0.3 96 

 

7  Discussion of Stone Wall Length 

 

The length of the rock wall is a very important parameter that may affect the efficiency and cost of the stone wall as a 

countermeasure of abutment scour. Fig. 8 is a plot of scour depth at bridge abutment versus stone wall length for 

different wall protrusion lengths. It can be seen from the plot that for protrusion lengths Lp, of 0.25W and 0.5W, 

increases of wall lengths can reduce scour at the abutment significantly. However, for the case of no protrusion, 

increases of wall lengths do not show obvious effects in reducing scour at the abutment except when the wall is 

extremely short. 
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Fig. 8: Plot of scour depth at bridge abutment versus rock wall length for different wall protrusion length. 
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Fig. 9 is a plot of the maximum scour depth caused by the wall in the channel versus rock wall length for different wall 

protrusion lengths. It is seen from this plot that for the 0.25W and 0.5W protrusion lengths, increases in wall lengths can 

significantly reduce the maximum scour depth that is induced by the presence of the walls. While for walls with 

protrusion length of zero, increases in wall length result in essentially no reduction in scour depth when wall lengths are 

greater than 0.5L. 
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Fig. 9:  Plot of the maximum scour depth caused by the wall in the channel versus stone wall length for different wall protrusion lengths. 

 

From the analysis above it can be concluded that for walls with 0.25W and 0.5W protrusion lengths, increasing wall 

length increases the level of protection and walls of 1.5~2L length provide the maximum scour reduction. For those 

walls with no protrusion, since the increase in wall length does not significantly improve the scour reduction rate, 

therefore it is recommended that 0.5L is the optimum length to protect the abutment. 

 

8  Conclusions 

 

1. A solid parallel wall attached at the upstream corner of the abutment parallel with the flow can be used as a 

countermeasure against abutment scour. The length of the solid wall should be 1.1L for minimum scour at the 

abutment.  

2. Parallel rock walls attached at the upstream of the abutment can also be used as countermeasures against scour 

at the abutment. The foot of the wall should not protrude into the main channel beyond the abutment and a wall 

length of 0.5L will provide the sufficient protection at the lowest cost. 

 

Acknowledgement 

 

This research was conducted under NCHRP 24-18A.  Special thanks to Mr. John Cox who helped a great deal in setting 

up the flume and in operating the measuring instruments. 

  

References 

 

Bradley, J.N. (1978) “Hydraulics of Bridge Waterways”, Hydraulic Design Series No. 1, U.S. Dept. Transportation, 

Federal Highway Administration, 2nd Ed., Washington, D.C. 

Lagasse P. F., Richardson E. V., and. Zevenbergen L. W. (1999).  “Design of Guide Banks for Bridge Abutment 

Protection”. Stream Stability and Scour at Highway Bridges. Reston, VA: ASCE, 0-7844-0407-0, pg. 856. 

Lagasse, P. F., Zevenbergen, L. W., Schall, J. D., Clopper, P. E. (2001).  Bridge Scour and Stream Instability 

Countermeasures.  Publication No. FHWA NHI 01-003, Hydraulic Engineering Circular No. 23, U. S. Department 

of Transportation, Federal Highway Administration.  Pages 2.7, 2.9, 4.6, 6.16 - 6.18, Design Guidelines 1, 9, 10. 

Melville, B.W. (1992). “Local Scour at Bridge Abutments” ASCE Journal of Hydraulic Engineering, Vol. 118, No. 4, 

April, 1992. 

Richardson, E.V. and Simons, D.B. (1984). “Use of spurs and guide banks for highway crossing: Proc. Transportation 

Research Record 2nd Bridge Engrg. Conf. v2 p.184. 

Spring, F.J.E. (1903) “River training and control of the guide bank system,” Technical Paper No. 153, Railway Board, 

Government of India, New Delhi. 

 


