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SCOUR AT BRIDGES DUE TO DEBRIS
ACCUMULATION: A REVIEW

Jean-Louis BRIAUD', Hamn-Ching CHEN?, Kuang-An CHANG®, Xingnian CHEN®,
Seung Jae OH*

ABSTRACT

Ten percent of all bridges over rivers in the USA
are subjected to debris scour. This debris is
principally made of tree trunks and other types of
vegetation. The debris accumulates at bridges,
mostly around piers; this increases the effective
size of the pier and leads to a larger scour hole
around the pier. Predicting such an increase in
scour depth is still very difficult because the
research ahs been limited. This article presents
the results of a review of the existing knowledge
on this topic. It addresses three topics: How
much debris comes down rivers? How much
debris accumulates at bridges? How deep will the
debris scour be?

INTRODUCTION

The problem of debris scour is serious
throughout the world (Figs. 1 to 4). Debris, in
particular tree trunks, accumulates at bridges and
creates a larger obstacle to the flow. The water
needs to compensate for that decrease in flow
area and erodes the river bottom: this is debris
scour. In the USA, it is estimated that about 10%
of all bridges over water are subjected to debris
scour. This number comes from the database
developed by Dave Mueller at the USGS
(http://ky.water.usgs.gov/Bridge Scour/BSDMS/
). Indeed in this 507 bridge case histories
database, 49 are classified as having debris
problems. Doheny (1993) also indicates that for
876 highway bridges surveyed in Maryland, the
number of bridges with debris blockage was 120
or 13.7%. Other countries have similar problems
as was exposed at the First International
Conference on Scour of Foundations organized at
Texas A&M University in November 2002
(http://tti.tamu.edu/conferences/scour). This
article is a review of the existing knowledge on
debris scour. It addresses the following topics. 1.
How much debris comes down the rivers? 2.
How much of the debris coming down the river
accumulates at bridges and what is the shape of

the accumulation? 3. Knowing the quantity and
shape of the debris, how deep will the scour hole
be? 4. Common practice for debris scour
calculations. 5. Case histories are then listed and
discussed.

Fig. 1 — Example 1 (From Beucler, 2003)
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Fig. 4 — Example 4 (Diehl, 1997)

HOW MUCH DEBRIS COMES DOWN
RIVERS?

Debris can be classified and HEC-9 (Reihsen and
Harrison, 1971) presents such a classification.
The most common debris is vegetation (tree
trunks and limbs) and ice (in the Northern parts
of the country). Ice debris scour is studied at
CRREL (Cold Region Research Engineering
Laboratory) by Leonard Zabilansky including a

case history (monitoring a bridge) and flume tests.

Trees falling into rivers represent the most
common source of debris however. The debris in
rivers is either fresh debris or old debris, but old
debris represents the majority. Indeed Chang and
Shen (1979) state that floating debris are
composed mostly of old plants and trees that are
scattered along stream channel banks and on
channel bars for 10 or more years. Even during
the catastrophic flood of 1969 in Nelson County,
Virginia, where many landslides were reported,
only about 50 percent of the floating debris was
found to be fresh (Chang and Shen, 1979).

The factors influencing the loading of debris into
the river (Keller, Tally, 1979, Hogan, 1987)
include geology, valley slope, bank erosion,
landslide activity, wind-throw, channel width,
channel sinuosity, discharge, upstream drainage
area, and floatation from upstream. The events
leading to tree collapse can be chronic or
episodic. Chronic mechanisms include the
regular introduction of wood as a result of natural
tree mortality or gradual bank undercutting.
These processes tend to add small amounts of
wood at frequent intervals. In contrast, episodic
inputs, including catastrophic wind-throw, fire or
severe flood, occur infrequently but can add large
amounts of wood to the channel network. The
zone which contributes most of the debris is
located within 30 m of the river bank (Fetherston
et al., 1995).

To quantify debris, Downs and Simon (2001)
presented steps to get the necessary input data in
the model. 1. Delineate plots on either bank of
the river stretching from the waters edge. 2.
Within each plot measure all trees with a
diameter greater than 0.05m at breast height. 3.
Estimate tree height using an angular reading
from a known horizontal distance. 4. Calculate
the average tree diameter and tree height. 5.
Calculate the average density of trees in the
survey area. Various correlations have been
attempted on the basis of local databases. Bilby
and Ward (1989) developed such correlations for
streams in Western Washington (Fig. 5).
Robinson and Beshta (1990) for streams in
Southern Alaska also attempted correlations (Fig.
6).

Nakamura and Swanson (1993) observed the
interaction between woody debris and channel
morphology at mountain streams in Western
Oregon and presented the results in tabular form.
Braudrick et al. (1997) observed that there were
essentially three types of debris transport in
rivers (Fig. 7): 1. un-congested transport, 2.
congested transport, 3. semi-congested transport.

HOW MUCH DEBRIS ACCUMULATES AT
BRIDGES?

Diehl (1997) points out that most debris
accumulations form at the water surface as a raft.
Logs and smaller pieces of debris accrete to the
upstream edge of the raft. The accumulation can
grow toward the river bed through accretion of
logs on the underside of the raft as they are
washed under it by the plunging flow at the
upstream edge. Alternatively, the raft can
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forces on the raft exceed its compressive strength
(Kennedy,1962).  Most  observed  debris
accumulations fall into two classes: single-pier
accumulations (Fig. 4) and span blockages (Fig.
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Diehl and Bryan (1993) found that debris jams
contained 23 percent of the total debris volume
found in the river. Most of the rest of the debris
occurred along short reaches of relatively
unstable channel.

Fig. 5 — Observations from Bilby and Ward
(1989) for Streams in Western Washington.
(LWD = Large Woody Debris. Frequency =

Number of Debris Pieces Divided by the Length

of River Containing Those Debris Pieces, Debris
The shape and size of the accumulation depends

on a number of factors. Accumulations may be
irregular, but most large accumulations are
similar in shape. In the process of formation, logs
are added parallel to the upstream edge of the
raft. Accumulation is often with a curved



upstream edge, and with the upstream nose of the
raft near the thalweg. Single-pier accumulations
often take on a form roughly resembling the
inverted half-cone shape implied by New
Zealand's design criteria (Dongol, 1989). The
depth of a blockage is limited by the depth of
flow. Debris accumulations can extend up to the
maximum flood stage even after the flood
recedes. The maximum vertical extent of drift
observed is about 12 m, but a larger vertical
extent of debris seems possible (Diehl, 1997).
The maximum width of the common types of
debris accumulation is determined by the length
of the longest pieces of drift. The width of the
channel influences the length of drift delivered to
the bridge, and therefore helps to determine
accumulation potential and characteristics (Diehl,
1997).

The factors affecting debris accumulation at
bridges include: properties of the debris, flow
conditions (velocity and depth), channel
characteristics, bridge geometry (pier placement,
type of pier, span). The properties of the debris
refer to the rate of decay of the woody debris;
this rate varies within the range of 1% to 3% of
mass per year; this means that woody debris can
persist for years in the river environment. Many
have worked on this problem including Keller
and Tally (1979) , Harmon et al. (1986); Andrus
et al. (1988), Murphy and Koski (1989); Gippel
et al. (1992), Ward and Aumen (1986); Golladay
and Webster (1988), Hauer (1989), Sedell et al.
(1988). The length of the longest pieces of drift
determines the maximum width of the common
types of drift accumulation. Throughout much of
the United States, the maximum sturdy-log
length is 24 m, and may be as long as about 45 m
in parts of northern California and the Pacific
Northwest.

As shown by Lyn et al. (2003) high flow
velocities carry a lot of debris but low flow
depths are most favorable to accumulation. The
channel width plays an important role in debris
accumulation by controlling the maximum size
of log that can transported. Correlation work by
Diehl and Bryan (1993) and by Diehl (1997)
shows the relationship between debris width and
channel width (Figs. 8, 9, and 10). With regard to
pier placement, Diehl also observes that among
3,581 selected bridges in Tennessee, those with
one pier in the channel were several times more
likely to have single-pier drift accumulations
than bridges with two piers on the banks and
none in the channel. The river geometry (a bend
for example) also influences the judicious
location of the pier to minimize debris

accumulation. The type of pier also affects debris.

Multiple column piers and piers with exposed

pile caps and piles accumulate debris more than
single column piers. The span length needs to be
compared with the longest log length for the area.
A method to estimate the potential for debris
accumulation has been devised by Diehl (1997).
It consists of two convenient flow charts based
on the concept of the design log length and

envelopes recommended for design shown below.

Methods for estimating a maximum drift-
accumulation size for use in bridge design have
been recommended for Australia and New
Zealand, but not for the United States (American
Association of State Highway and Transportation
Officials, 1989). Australian design practice
assumes that the potential width of drift at a pier
is equal to the average
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of the adjacent span lengths, up to a maximum of
20 m, and that the minimum assumed vertical
depth is 1.2 m (National Association of
Australian State Road Authorities, 1976;
Wellwood and Fenwick, 1990). The potential
width of drift on a submerged bridge
superstructure is assumed to be the length of the
superstructure. In developed river basins, the
assumed minimum potential vertical depth of a
drift accumulation is 1.2 m greater than the
vertical extent of the submerged superstructure
(typically, from low steel to the top of the
parapet). The assumed maximum potential
vertical depth is 3 m, unless local information
indicates that it should be greater. New Zealand's
design practice is similar to Australian design
practice. A draft design specification states that
the potential drift accumulation at a pier can be
assumed to be triangular in cross section
perpendicular to the approaching flow .The
triangle's greatest width (at the water surface) is
half the sum of the adjacent span lengths up to a
maximum of 15 m. The triangle extends
vertically downward along the pier nose to a
depth equal to half the total water depth or 3 m,
whichever is less (Fig. 12). Diehl (1997) found in
his study that the maximum width and depth of
drift accumulations exceeded the values used in
design in Australia and New Zealand.
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HOW DEEP WILL THE DEBRIS SCOUR
BE?

Once the debris size has been established, then
the additional depth of scour created by the
debris needs to be estimated. Two methods
presently exist in the literature; the HEC-18
Appendix method and the Melville-Dongol
method. The HEC-18 Appendix method is quite
conservative in that it takes the width of the
debris as the pier width (Fig. 13). In another
words it assumes that the debris width is constant
and extends all the way down to the bottom of
the river. Then the regular equations of HEC-18
are used with the new dimensions.

. iy

M L —~p

el e

& — __'__-\.'_'. ;'__Ill.. E.‘I“

I .‘:I':" '_\:f_-:,l'- =]
'-_"'-".__-:'_:_.._‘_ 5
= ﬁ»' :

i

Fig. 13 - HEC-18 Approach (Richardson and
Davis (2001)

The Melville Dongol method (1992) was
developed from flume tests done at the
University of Auckland. For piers without debris,
they give:

0255
d, y s =24
E_1.872[_De] D, (
(y/D,<2.6) y/D,>2.6)

Where, d is the total scour depth (pier plus

debris), D, is the equivalent pier diameter, and y
is water depth. The equivalent pier diameter is
calculated by using an equivalent area concept as
follows; the effective diameter of the pier with

debris accumulation, D, is given by
T,D, +(y-T,)D
y
where, T ; is effective thickness of debris and

T, =0.52T, . The factor 0.52 was determined

D, =

by evaluating the limits of 7' ', and D , /D for the

hypothetical case where D is assumed to be zero
and the debris is assumed to extend to the base of
the scour hole. The diagram indicates that the
calculated scour depth for piers with debris



accumulation given by the design curve is always
more than the measured values.

Other factors such as clear water scour, relative
flow depth, bed sediment size, pier shape and
approach flow alignment are included using
modification factors
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where
Flow intensity Sediment size
KI factor Kd factor
K ’ Flow depth factor K Pier shape
s factor
Sediment gradati Pier ali t
I<(7 gradation K ier alignmen
factor a factor

Additional contributions to the prediction of
debris scour have been made by Manga and
Kirchner (2000) on the shear stress on the river
bottom due to the existence of debris around a
pier and by Wallerstein and Thorne (1995, 1996,
1997).
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CONCLUSIONS

A review of existing knowledge on debris scour
at bridge piers was presented. The questions
addressed were: How much debris comes down
rivers? How much debris accumulates at bridges?
How deep will the debris scour be? The answers
to those questions found in existing knowledge
remain vague. The guidelines in Australia and in
New Zealand seem to be the most advanced.
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