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Beyond the Finite Element Method in Geotechnical Analysis

Über die Finite-Elemente-Methode in der geotechnischen 
Analyse hinaus

Dr. Ronald B. J. Brinkgreve, Delft University of Technology & Plaxis BV  

Dr. Markus Bürg, Dr. Andriy Andreykiv, Mr. Liang Jin Lim, Plaxis BV, Delft

The finite element method (FEM) has obtained a strong 

position in geotechnical analysis and design, next to 

conventional design methods. However, FEM is more 

suited for situations involving complex geometries and 

soil-structure interaction. Nevertheless, FEM also has its 

limitations, in particular when it comes to large deforma-

tions and material flow, as it occurs when installing off-

shore foundations and pipelines in the seabed. In such 

cases the recently developed material point method 

(MPM) is much more suitable to deal with the effects of 

large deformations. 

This contribution gives an introduction to MPM for geo-

technical analysis. In addition, it demonstrates its use for 

geotechnical offshore applications (for example the instal-

lation of piles and anchors in the seabed, spudcan pen-

etration and extraction, the creation of trenches for pipe-

lines and cables, and the movement of pipelines in the 

seabed). This contribution presents some of the challeng-

es when using MPM in practical applications, since MPM 

calculations are more time consuming and more sensitive 

to inaccuracies than FEM calculations. Topics that are dis-

cussed are the use of DDMP (dual-domain material point 

method) to enhance the ‘smoothness’ of the solution and 

to improve the accuracy of stresses in the case of material 

points moving from one cell to another, how to deal with 

‘empty’ cells, determination of active domain boundaries, 

connecting MPM to FEM and the application of loads and 

boundary conditions. The presented solutions are meant 

to facilitate the use of MPM on a larger scale for geotech-

nical engineering applications.

Die Finite-Elemente-Methode (FEM) ist inzwischen 

auch in der geotechnischen Analyse ein häufig be-

nutztes Werkzeug. Insbesondere ist FEM sehr gut für 

Anwendungen mit komplexen Geometrien und Boden-

Bauwerk-Interaktionen geeignet. Nichtsdestotrotz hat 

FEM natürlich auch seine Einschränkungen. Dies ist 

insbesondere der Fall, wenn es zu großen Verformun-

gen und Materialflüssen, wie z. B. in der Installation 

von Offshore-Fundamenten oder Pipelines im Meeres-

boden üblich, kommt. Für solche Anwendungen ist die 

Material-Punkt-Methode (MPM) eine deutlich bessere 

Alternative, um das Auftreten von großen Verformun-

gen zu simulieren.

Dieser Beitrag soll eine Einführung in MPM anhand 

einer geotechnischen Analyse geben. Die praktische 

Anwendbarkeit wird anhand von verschiedenen geo-

technischen Offshore-Anwendungen (z. B. Installation 

von Pfählen und Ankern im Meeresgrund, Ziehen von 

Schutzgräben für Pipelines und Kabeln und Bewegung 

von Pipelines im Meeresgrund) demonstriert. Dabei 

wird auch auf die unterschiedlichen Schwierigkeiten, 

die bei der Nutzung von MPM auftreten können, detail-

lierter eingegangen. Insbesondere soll diese Präsen-

tation auch zu einer breiteren Verwendung von MPM 

in der geotechnischen Analyse anregen und die damit 

verbundenen Vorteile aufzeigen.

1 Introduction
Einleitung

The conventional finite element method (FEM) has been 

used for several decades to predict deformation of soil 

in geotechnical engineering. Certain geotechnical pro-

cesses involve large displacements in the soil. Thus, 

conventional FEM cannot be used to analyse these 

types of problems because of the issue with mesh tan-
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gling when the deformations of the mesh become ex-

tremely large. In recent years, a few alternatives to FEM 

have been introduced to simulate large deformation 

problems, particularly the material point method (MPM). 

MPM was first introduced by Sulsky et al. (1994) and has 

meanwhile been used in various geotechnical applica-

tions such as modelling of landslides, cone penetration 

(Beuth et al. 2011), pile penetration (Lim et al. 2013), and 

spudcan penetration (Lim et al. 2014). However, these 

applications are still performed from a research per-

spective rather than for engineering and design. MPM 

calculations are more time consuming and more sensi-

tive for inaccuracies and numerical instability than FEM 

calculations. Hence, the use of MPM in practical ap-

plications brings some challenges. The following chal-

lenges and solutions are discussed in this contribution:

Expensive computational cost: By using a mesh relaxa-

tion method to connect the MPM analysis with FEM (see 

Lim et al. (2013) for further details), we have been able to 

limit the MPM computation to the area where potential 

large deformation will occur and can use conventional 

FEM in the other areas of the computational domain.

Contact algorithm: The MPM formulation already in-

cludes inherent rigid contact, but produces unrealisti-

cally rigid contact when used in soil-structure interac-

tion problems. We have adopted a level-set large sliding 

contact algorithm introduced by Andreykiv et al. (2011). 

It uses two non-matching meshes to model the contact 

between the soil and the structure, such as in spudcan 

and pile penetration.

Volumetric locking: We have also introduced a mixed 

displacement-pressure (p-u) formulation (Brezzi et al., 

1991) of FEM into our MPM implementation to resolve 

the volumetric locking of linear elements in undrained 

behaviour (incompressibility) by decoupling the volu-

metric stress and the deviatoric stress terms from the 

total stress.

Critical time step: The explicit formulation of MPM has a 

severe limitation of  the maximal time step size to avoid 

instability issues. Therefore, we have chosen an implicit 

formulation of MPM to eliminate this time stepping is-

sue and be able to select also larger time steps. Fur-

thermore, the existing FEM technologies formulated in 

implicit schemes can be directly integrated into MPM 

calculations.

This paper is structured as follows: In Chapter 2 pro-

vides an introduction to MPM and its implicit formula-

tion. The major challenges and its corresponding solu-

tions are discussed in Chapter 3. Chapter 4 presents 

some applications of the method in offshore geotechni-

cal engineering. The last chapter draws some conclu-

sions on the use of MPM in practical applications.

2 Implicit formulation of MPM
Implizite Formulierung der MPM

First, let us give an introduction to MPM, which has similar- 

ities with FEM, for geotechnical analysis. MPM can be reg- 

arded as FEM where the integration points (material points) 

are moving through the grid. A MPM calculation step can 

be divided into three phases: The initialisation phase, the 

Lagrangian phase and the convection phase (Fig. 1).

Phases 1 and 2 are similar to FEM; the difference is in 

Phase 3. Since information of stress and material state 

is contained in the material points, which can move 

Figure 1: Three phases in an MPM calculation step
Bild 1: Die drei Phasen eines Berechnungsschritts bei der MPM
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through the grid, it makes the method suitable for very 

large deformations. 

Governing continuum equations

For a continuous body W ⊂ Rn, n ∈ {2,3}, with a boundary 

Г= ∂w, the conservation equations for mass and linear mo-

mentum governing the continuous body can be defined as

d
dt

v 04$
t
t+ =  (1)

a b4$t v t+=  (2)

where r is the mass density, v is the velocity, ɑ is the 

acceleration, σ is the Cauchy stress tensor, and b is the 

specific body force.

Discretization of continuum equations

To solve the continuum equations, the strong form of 

the equations is transformed into a weak form and dis-

cretized by using standard FEM procedures. After the 

multiplication with finite element shape functions, the 

linear momentum equation (2) becomes

:
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Where N is the total number of degrees of freedom 

(DoF) in a computational domain c, i, j are its indices, 

ɑj is the acceleration at DoF j, N
i
 is the shape function 

of DoF i, t is the surface traction, and Γc is the surface 

boundary of the computation domain Wc
 . The first term 

of the right hand side of (3) is defined as the internal 

force of the system, fint . The sum of the second and the 

third terms of the right hand side can also be defined as 

the external force of the system, fext. Meanwhile, compa-

rable to conventional FEM, the numerical integration of 

MPM over Wc is approximated by summing the weight 

contribution of each material point as follows
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F is an arbitrary function to be integrated over the ele-

ment, xp is the location of material point p and vp is the 

volume of the material point p. The internal force vector 

fint can then be approximated by
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Implicit time integration scheme

Solving a single step in MPM is identical to conventional 

FEM. The Newton-Raphson method is adopted to solve 

the equation of motion implicitly. The linearized equa-

tion of motion during a Newton iteration k for an arbi-

trary time step is defined as (Wieckowski 2004)
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where K is the tangent matrix of the system, m is the 

mass matrix, du
j
 is the incremental displacement of DoF 

j, Q is the residual vector, and k is the iteration step. 

Equation (6) is solved iteratively, until the residual of the 

system is less than a defined convergence criteria Q < ε. 
The displacement update is given as
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The acceleration term can be calculated by discretizing 

the time derivative with a trapezoidal rule. The discre-

tized acceleration term is given as
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where the v0

j
 and a0

j
 terms are the nodal velocity and 

acceleration at the start of the time step.

Numerical implementation of implicit dynamic MPM

At the beginning of a calculation step, all state variables 

are stored in the material points. These state variables 

are then interpolated to the computational grid using 

the standard shape function interpolation. The nodal 

velocity (and nodal acceleration) can be interpolated by 

using conservation of momentum
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As the computational grid represents the current con-

figuration of the model, the Updated Lagrangian formu-

lation of discrete equations is used. In this formulation, 

the elasticity tangent matrix is defined by

: :

: :
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Cσt is the fourth order tensor of Truesdell rate of elas-

tic tangent modulus and σ is the Cauchy stress ten-

sor. Equation (10) also shows that the tangent matrix 

includes terms of material nonlinearity (first term) and 

geometrical nonlinearity (second term). The tangent 

modulus tensor depends on the constitutive model of 

the material and will not be elaborated here. Equation 

(10) is solved to obtain the incremental displacement du. 

The computational grid is then deformed with the solu-

tion, and the kinematics of the system is then updated 

before the next iteration begins. The update of the ve-

locity term is given by

v v u v
t
d

2
i

k

i

k

i

k

i

1 0

3
= + -

-

 (11)

while the nodal acceleration is updated by using (8).

After the Newton procedure has satisfied the required-

convergence criteria, a convective stage is carried out 

in the MPM region to update the state variables from 

the computational grid back to the material points. The 

convection step is performed by interpolating nodal re-

sults from the computational grid to the material points 

with standard approximation functions defined on the 

mesh. Once the convective stage has been carried out, 

the deformed computational grid can be discarded be-

cause all the state information is now stored in the ma-

terial points. As a result, excessive mesh distortion is 

prevented.

3 Challenges of MPM calculations
Herausforderungen von MPM-
Berechnungen

MPM calculations are more time consuming and more 

sensitive to inaccuracies than FEM calculations. Hence, 

the use of MPM in practical applications brings some 

challenges. In this section, we will discuss a number 

challenges and its corresponding solutions.

3.1 Points moving from one cell to another
Punkte, die von einer Zelle in eine andere 
Zelle wandern

When a material point crosses the boundary of a cell, 

a discontinuity occurs in the gradient of the computed 

displacement which, for example, leads to inaccurate 

stresses. Without a proper treatment of this numeri-

cal noise, the application of MPM to cases with large 

deformations is severely limited, since the inaccurate 

stresses may cause a premature prediction of mate-

rial failure and change the physical characteristics of 

the material. These inaccuracies can be reduced sig-

nificantly by using an enhanced version of MPM, such 

as the generalised interpolation material point (GIMP) 

method (Bardenhagen & Kober 2004) or the dual do-

main material point (DDMP) method (Zhang et al. 2011). 

The latter will be discussed in more detail in 3.6.

The GIMP method is a family of extended MPMs, where 

material points are defined by so-called particle charac-

teristic functions. These functions represent the space 

occupied by the respective particle and follow the same 

deformation as the discretised physical domain. In par-

ticular, the integration over the support of these func-

tions poses a practical challenge. Whereas, in the one-

dimensional case, the integration can still be performed 

analytically, as shown in (Bardenhagen & Kober 2004), 

one usually has to employ an expensive numerical in-

tegration technique for the two- and three-dimensional 

case. If the particle characteristic functions are chosen 

to be Dirac delta functions, the classical MPM from  

Sulsky et al. (1994) and Sulsky et al. (1995) is recovered.

In contrast to the GIMP method, the DDMP method does 

not require tracking the actual deformation of the parti-

cles. Instead of modifying the shape functions, it intro-

duces a modified gradient definition which is continu-

ous across cell boundaries. The support of this modified 

gradient is larger than the support of the shape function 

itself, but it is still limited to the cell in which the material 

point is located and its direct neighbours. Thus, the in-

teraction between different material points is restricted 

to a quasi-local domain. In particular, the calculation of 

the modified gradient only requires an additional inte-

gration of the shape function and, thus, can be realised 

very easily. A more detailed discussion of the DDMP 

method will be provided in 3.6.

3.2 Dealing with empty cells
Umgang mit leeren Zellen

When all material points have left a cell, the cell has 

no stiffness or mass contributions in the global matrix. 

To avoid singularity of the system of equations, a small 
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elastic stiffness is placed in these empty cells. This 

procedure is also applied to ‘buffer’ cells (for example 

above the soil surface) that are initially empty, but are 

present to catch material points that are moving above 

the initial surface.

3.3 Determining active boundaries
Bestimmung aktiver Ränder

Since the active domain is formed by the (moving) ma-

terial points rather than by the calculation grid itself, a 

special procedure is needed to determine the bounda-

ries of the active domain occupied by the soil. For this 

purpose, we have developed a level-set formulation, 

where the actual boundary is given by the zero level-

set. Then, this zero level-set isosurface can be used 

for integrating over the active boundary and, therefore, 

applying, e.g., boundary conditions on it (see also 3.5). 

In general, this approach allows for treatment of the 

boundaries as if their explicit formulation was available. 

Thus, no entirely new procedures for applying bound-

ary conditions or determining computed quantities on 

the boundary have to be derived.

3.4 Connecting MPM to FEM domain
Verbinden von MPM- und FEM-Gebiet

Since MPM is ‘expensive’, it should be used only where 

really necessary, whereas parts of the domain that un-

dergo relatively small deformations can be modelled by 

conventional FEM using an Updated Lagrangian formu-

lation. This means that the FEM domain as well as the 

MPM domain can deform. Hence, the Convection Phase 

(Fig. 1.3) involves an elastic stretch (adhering to the de-

formations of the FEM mesh), rather than a full restora-

tion of the original grid.

In the FEM domain, conventional quadrature points 

are used for computing the integrals, while the MPM 

domain uses material points as quadrature points. Be-

cause we are using an implicit formulation of MPM, the 

coupling between the FEM and MPM can be done natu-

rally. The analysis procedure remains the same, except 

that, at the end of each calculation step, a mesh relaxa-

tion procedure is performed in the MPM domain to re-

store the deformed mesh in addition to the convection 

step of MPM. An artificial constraint is added to the FEM 

domain to prevent the mesh in the FEM domain from 

restoring, while the mesh in the MPM domain is relaxed 

back to its least deformed state by removing external 

loads contributing to the system. In this way, the mesh 

distortion problem in the MPM domain can be mitigated, 

while maintaining the validity of the deformation state of 

the FEM domain.

3.5 Application of loads and boundary  
conditions
Anwendung von Belastungen und 
Randbedingungen

Since model boundaries are determined by material 

points rather than by the domain boundaries, the appli-

cation of loads and boundary conditions has to involve 

some special procedures. For basic boundary condi-

tions, such as prescribed displacements and distributed 

loads, we can employ the level-set formulation described 

in 3.3 to calculate the corresponding boundary integrals.

However, due to possibly large deformations of the 

soil and, thus, also its boundaries, it has to be evalu-

ated thoroughly whether a classical boundary condi-

tion acting always in the prescribed direction relative 

to the boundary is the correct choice. Often, the dis-

placements and loads, which shall be applied, have the 

characteristics of a soil-body contact-interaction rather 

than a pure Dirichlet or Neumann boundary condition. 

This desired behaviour can be achieved by employing 

a full contact formulation as described in 3.7. In this way, 

it is guaranteed that the interaction between the freely 

moving soil and the physical body placed on top of it is 

resolved correctly.

3.6 Use of DDMP to ‘smoothen’ the solution
Anwendung von DDMP zur Glättung  
der Lösung

Discontinuities of stresses across cell boundaries as 

mentioned under 3.1 may be overcome by introducing a 

kind of C1-continuity across cell boundaries. The DDMP 

method is a way to enforce such a ‘smooth’ transition 

across all cell boundaries in the calculation grid and, 

thereby, improving the accuracy of stresses. For a de-

tailed introduction to the DDMP method, we refer to the 

original work by Zhang et al. (2011).
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In addition to the DDMP method described in Zhang et 

al. (2011), we have extended its formulation by introduc-

ing a tangent stiffness for the DDMP formulation. The 

reason for this modification is that the original method 

was derived in an explicit scheme and, thus, is not suit-

able for our implicit MPM implementation. In general, 

DDMP results show less pollution of gradient quanti-

ties, such as stresses and strains, caused by numerical 

noise. As a side effect, DDMP also improves conver-

gence of the Newton-Raphson method slightly com-

pared to standard MPM.

3.7 Contact formulation
Formulierung von Kontakten

The algorithm for contact interaction between a spud-

can, modelled with FEM and MPM based soil was initially 

introduced in Andreykiv et al. (2011). It is based on the 

minimization of the energy functional with a Lagrange 

multiplier and formulated as in classical contact mechan-

ics. However, instead of employing a distance function 

between two contacting bodies, we use the above men-

tioned density-based level-set function which marks the 

boundary of the material points. Due to the fact that the 

level-set function is defined on the full soil domain, the 

spudcan surface is embedded into the soil domain and 

the contact constraint is enforced similar to the fictitious 

domain method (Glowinski et al., 1994).

3.8 Stability of calculation
Stabilität der Berechnung

Due to several additional tools and parameters available 

in MPM, e.g., number of material points per cell, size and 

stiffness of empty layer, treatment of boundary condi-

tions, etc., it is very challenging to make MPM calcula-

tions as stable and as easy to use as it is known and 

expected from conventional FEM calculations. The large 

variety of possible combinations of all these parameters 

requires a significant effort to come up with a suitable 

choice working for all possible applications and, thus, 

not to require too much input from the end-user.

Apart from the successful selection of parameters, the 

conditioning of system matrices is generally worse in 

MPM than in FEM. Therefore, an efficient precondition-

er, such as domain decompositioning and algebraic or 

geometric multigrid, is needed to be able to apply an 

iterative solver to the resulting linear systems of equa-

tions.

Often the convergence of a static MPM calculation can 

be improved, by reformulating it as a dynamic MPM cal-

culation reaching a steady state. In the case of a dynam-

ic calculation, the step size of the time discretisation has 

to be chosen carefully. Due to the additional phases re-

quired in each MPM step (see Figure 1), small step sizes 

are more expensive than in standard FEM calculations. 

However, due to the large deformations typically occur-

ring in MPM calculations, the step size cannot be too 

large in order to be still able to solve the discrete non-

linear problem in each time step. Therefore, an adaptive 

time stepping scheme allowing for the automatic incre-

ment and decrement of the time step size whenever 

required is inevitable. In our calculations, the use of an 

adaptive Newmark-beta method with b = 0.5 instead of 

the standard undamped choice b = 0.25 proved to be a 

reasonable time stepping scheme.

4 Applications in offshore  
geotechnics
Anwendungen in der Offshore-
Geotechnik

Very large deformations and material flow can occur, for 

example, in geotechnical offshore applications, such as 

the installation of piles and anchors in the seabed, spud-

can penetration and extraction, the creation of trenches, 

as well as pipeline and cable movements. MPM is par-

ticularly useful for such applications (Lim et al. 2014).

The presented solutions as described in the previous 

chapter are meant to facilitate the use of MPM on a 

larger scale by geotechnical engineers in offshore en-

gineering and other fields of applications. The remain-

der of this section describes some applications in which 

MPM has been used successfully.

4.1 Pile installation
Einbau von Pfählen

A first application involves the penetration of a sheet 

pile into the soil (after Lim et al. 2013), for which a 2D 

plane strain model is used  (Fig. 2). Here, a fictitious 
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weightless soil is considered, modelled by means of 

the linear elastic perfectly plastic Tresca model with 

stiffness properties Es = 100 kN/m2 and n = 0.33, and dif-

ferent cohesive strengths of c = 0.25, 0.50 and 1.0 kN/

m2, respectively. The weightless sheet pile is modelled 

as a linear elastic volume with stiffness properties Ep = 

20000 kN/m2 and v = 0.0.

The soil domain is divided into an MPM region, where 

large deformations and pile-soil contact are expected, 

and a FEM region further away from the pile, where 

smaller deformations occur. An MPM buffer region 

is used to catch material points moving above the 

ground surface. The analysis is performed using lin-

ear triangular elements as well as quadrilateral ele-

ments with a refinement around the pile. The pile-soil 

contact is not explicitly modelled and is obtained from 

the ‘standard’ MPM formulation. Each MPM element 

initially contains 12 material points for the triangular 

elements and 16 material points for the quadrilateral 

elements. 

All vertical sides of the model are fixed in normal di-

rection, while the bottom boundary of the model is fully 

fixed (‘standard’ fixities). Sheet pile penetration is mod-

elled by applying prescribed vertical displacements at 

the top of the pile in steps of 0.05 m, until a maximum 

penetration depth of 2.5 m is reached. The calculations 

are performed with the ‘standard’ MPM formulation as 

well as with DDMP.

Results

Fig. 3 shows the average vertical stress at the top of 

the pile as a function of the penetration depth for dif-

ferent soil strengths. The graph shows that the average 

vertical stress (and hence the total pile bearing capac-

ity) increases with the pile penetration depth. It can be 

verified that the results of Fig. 3 present a slight over-es-

timation of the theoretical bearing capacity. This over-

estimation can be reduced with mesh refinement and 

adding more material points to the elements (see also 

Lim et al. 2013).

Fig. 4 shows the vertical soil stress in a section below 

the pile, for different pile penetration depths. The verti-

cal location is expressed in the corresponding vertical 

coordinate (y), where y = 0 represents the bottom of the 

MPM region. It can be seen that the DDMP calculations 

give smoother stresses than the pure MPM calculations, 

Figure 2: Geometry of pile and soil, with indication of FEM 
and MPM regions

Bild 2: Pfahl- und Bodengeometrie mit Angabe der FEM- 
und MPM-Bereiche

Figure 3: Average vertical stress in the pile as a function of 
penetration depth (triangular elements)

Bild 3: Durchschnittliche vertikale Spannung im Pfahl 
in Abhängigkeit von der Eindringtiefe (Dreieck-
elemente)
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although for the deepest penetration none of the re-

sults are very smooth. 

Based on these results it can be concluded that MPM 

is usable for pile penetration in cohesive soils, but the 

accuracy of stresses is limited.

4.2 Spudcan punch through
Durchstanzen einer Spudcan in die 
Weichschicht

A spudcan is used as a foundation element for offshore 

platforms in the seabed. Spudcan installation and load 

testing involves large soil deformation. In situations 

where there is a stiff soil layer on top of a softer soil 

layer, the installation of the spudcan may face ‘punch-

through’ failure. This mechanism is caused by a (sud-

den) decrease of bearing capacity when the spudcan 

penetrates from the stiff layer into the soft layer. In this 

application, we have adopted case study 2 of the work 

presented by Khoa (2013).

On the left of Fig. 5, a 3D slice of the spudcan and the 

soil medium is shown. Due to axisymmetry of the prob-

lem, only  r/16 of the cylinder is taken into account in 

the 3D model. Standard fixities are applied. Two layers 

of soil with different soil properties are defined, with lay-

er A indicating a bottom layer of soft clay, while layer B 

indicates a top layer of stiff clay. For both soil layers, the 

Tresca model is used as failure criterion, with undrained 

shear strength of s
Ua 

= 11.0 kN/m2 and s
uB 

= 38.3 kN/m2 

respectively. The soil layers have elastic stiffnesses, 

E
A
 = 4933.50 kN/m2  and E

B 
= 17177.60 kN/m2, while both 

layers have an effective Poisson’s ratio of v = 0.333. The 

self weight of the soil is not taken into account in this 

simulation and the initial stress state of the soil layers 

is zero. The undrained condition of the problem is ap-

plied by using the (p-u) mixed formulation as mentioned 

in the Introduction. The spudcan, on the other hand, has 

dimensions stated on the right of Fig. 5. It is defined as 

a linear elastic material, with an elastic stiffness about 

200 times higher than the elastic stiffness of soil lay-

er B. A smooth contact is applied on the surface of the 

spudcan.

The computational grid is subdivided into two regions. 

The first region is the MPM region, which is located near 

to the area of spudcan penetration. Further away from 

the penetration area, a FEM region is defined. A buffer 

zone with height about two elements is defined above 

the MPM region to capture material points that are mov-

ing beyond the original soil surface.

Results

Fig. 6 shows the penetration of the spudcan and the soil 

deformation at a depth equal to the spudcan diameter. 

A clear vertical cut is created by the spudcan penetra-

tion, but the cut has remained stable during the whole 

simulation process because the self weight of the soil 

Figure 5: Geometry of the spudcan and soil layers  
(dimensions in m)

Bild 5: Geometrie von Spudcan und Bodenschichten 
(Maße in m)

Figure 4: Vertical stress below the pile for different penetra-
tion depths (quadrilateral elements)

Bild 4: Vertikale Spannung unterhalb des Pfahls für un-
terschiedliche Eindringtiefen (Viereckelemente)
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penetrates further into the soil. This reduction of bear-

ing capacity is caused by the reduction of the effective 

thickness of the stiff soil layer when the penetration goes 

deeper into the soil. This phenomenon of reduction in 

bearing capacity could not be captured by small strain 

FEM analysis. This punch through failure is significant in 

spudcan installation processes because the reduction of 

the bearing capacity in the soil will cause the spudcan 

to penetrate rapidly into the softer layer. As the spud-

can installation is usually performed by placing a weight 

on top of the spudcan, punch through failure may cause 

catastrophic loss during the installation of the spudcan.

Based on these results it can be concluded that MPM is 

usable for spudcan penetration and punch-through in 

cohesive soils.

layers is not taken into account in this analysis. A plug of 

stiff soil is trapped below the spudcan, but, in a later 

stage of penetration, this plug of stiff soil is slowly mov-

ing sidewards from the base to the side of the spudcan. 

This trapped plug of stiff soil was also observed in 

Case 2 of Khoa (2013).

Fig. 7 shows the boundary between the FEM and MPM 

region at the final deformation stage of the spudcan 

penetration process. By using the mesh relaxation 

method, we are able to preserve the deformation his-

tory of the FEM region, as well as recovering the mesh 

in the MPM region to the least deformed state.

The bearing response of the soil is presented in Fig. 8. 

The vertical axis represents the normalized penetra-

tion depth of the spudcan, d/D, while the horizontal axis 

represents the normalized bearing pressure of the soil, 

Q
n
 = q / s

uB
. Before the penetration depth of d/D = 0.167, 

the rate of increment of bearing pressure caused by the 

penetration of the tip of the spudcan is relatively slow. 

After d/D = 0.167, the bearing pressure of the soil starts 

to increase rapidly as more surface of the spudcan is in 

contact with the soil. The bearing capacity reaches its 

maximum at about Q
n
 = 21, which is the point where the 

surface of the soil is in contact with the full bottom of 

the spudcan. After the plateau, the bearing capacity of 

the spudcan started to decrease slowly as the spudcan 

Figure 6: 3D view of the penetration process when the 
spudcan is at d/D = 1.0

Bild 6: 3D-Darstellung des Eindringvorgangs bei einer 
Eindringtiefe der Spudcan von d/D = 1,0

Figure 7: Smooth transition from FEM to MPM
Bild 7: Gleitender Übergang von FEM zu MPM

Figure 8: The bearing response of the soil in the spudcan 
penetration process.

Bild 8: Auflagerreaktion des Bodens beim Eindringen der 
Spundcan
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4.3 Pipeline movement
Bewegung der Pipeline

The third application concerns the movement of a pipe-

line in the seabed. A pipeline with an outer diameter 

of 0.8 m is embedded in the seabed and subsequently 

moved in lateral direction. This movement can have dif-

ferent causes, but the question is which path the pipe-

line will follow, how the soil is going to be displaced and 

what is the resistance from the soil.

The soil has an effective (submerged) unit weight of 6.5 

kN/m3 and is modelled by means of the linear elastic 

perfectly plastic Tresca model with an undrained shear 

strength profile of 2.3 kN/m2 at the top and an increase 

of 3.6 kN/m2 per meter depth. The stiffness also increas-

es with depth, following the undrained shear strength 

profile: E
s
 = 500 s

u
..

The model used for this situation is a 2D plane strain 

model (Fig. 9) with an MPM region of 1.0 m thickness 

consisting of linear quadrilateral elements with 9 mate-

rial points per element, and a FEM region of 7.0 m thick-

ness consisting of linear triangular elements. Above the 

ground surface there is a MPM buffer region. The pipe-

line itself has a weight of 6.0 kN/m and is composed of 

linear elastic 6-noded triangular finite elements with a 

stiffness of Ep = 50 Es. The pipeline is initially ‘pushed’ 

into the soil (Phase 1) after which it is ‘balanced’ at its 

own weight (Phase 2) before it is moved in horizontal 

direction at a velocity of 0.24 m/s for more than 2 m 

by prescribing the horizontal displacement components 

whilst the vertical components are free (Phase 3). In or-

der to stabilize the calculations (in particular the last 

phase), the calculations are performed as full dynamic 

calculations, including inertia and a slight damping of 

the Newmark-beta scheme as described in 3.8.

Results

Fig. 10 shows the time-settlement curve for the first two 

phases. It can be seen that there is very little rebound in 

Phase 2 when the external force is removed.
Figure 9: Pipeline model
Bild 9: Modell einer Pipeline

Figure 10: Time-settlement curve of the pipeline during Phase 1 (pushing in) and Phase 2 (balancing)
Bild 10: Zeit-/Setzungskurve der Pipeline während Phase 1 (Einschieben) und Phase 2 (Ausbalancieren)
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Fig. 11 shows the movement path of the pipeline in Pha-

se 3. The vertical position is obtained from the equili-

brium between the self weight of the pipeline and the 

vertical soil stress, while the pipeline is pushed in lateral 

direction. Due to the fact that not only the pipeline is pu-

shed, but also the soil in front of the pipeline, a ‘heap’ of 

soil is created in front of the pipeline. This ‘heap’ causes 

the pipeline to move above the original seabed level, as 

depicted in Fig. 12.

Noteworthy is the shape of the ‘heap’ in front of the 

pipeline, which looks rather unrealistic. It might be ex-

pected that the soil should ‘fall down’ rather than stay-

ing in the position as displayed in Fig. 12.  Here, the 

following aspects should be considered:

 • Material points do not represent particles, but mate-

rial volumes with representative properties and state 

parameters

 • The soil has a purely cohesive strength

 • It is a dynamic analysis in which inertia effects are 

taken into account; the end of the analysis is not a 

steady-state situation

 • Elements still have stiffness as long as they contain 

at least one material point

Based on these results it can be concluded that MPM is 

usable for pipeline movements in cohesive soils.

So far, we have primarily performed analyses for soils in 

which their strength properties are described by means 

of undrained shear strength, which is a common ap-

proach in offshore geotechnical engineering. The use 

of effective strength properties (frictional strength) in 

the Mohr-Coulomb non-associated plasticity model in-

volves some more challenges on numerical stability, 

which is subject of further research

5 Conclusions
Zusammenfassung

In this contribution some of the challenges have been 

presented in an attempt to make the material point 

Figure 11: Path of the pipeline in Phase 3 (lateral movement).
Bild 11: Weg der Pipeline in Phase 3 (seitliche Bewegung)

Figure 12: Position of the pipeline at the end of the analysis.
Bild 12: Lage der Pipeline am Ende der Analyse
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method (MPM) for large deformation analysis of soil-

structure interaction problems suitable for practical ap-

plications. Solutions to these challenges include:

 • The use of DDMP to smoothen the stresses and to 

improve the convergence

 • The use of dynamic analysis (inertia and damping) 

and an automatic time stepping algorithm to make 

the calculations robust and stable

 • A level-set approach to detect model boundaries

 • A special level-set contact formulation to model soil-

structure interaction

Examples were shown involving offshore geotechni-

cal applications, i.c. the installation of a (sheet) pile, 

the punch-through of a spudcan and the movement 

of a pipeline in the seabed. These results cannot be 

obtained using the ‘standard’ finite element method. 

Hence, the material point method offers possibilities to 

numerically analyse and optimise situations that cannot 

be modelled with standard FEM. Using the above solu-

tions, we have shown that it is possible to use MPM on a 

larger scale for offshore geotechnical engineering and 

design applications.
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