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Bottom vanes can be used to create sufficient depth for navigation, to mitigate bank erosion or to 

change the division of sediment transports at bifurcations. Besides these intended effects, bottom 

vanes also produce local scour, which may interfere with the intended morphological correction and 

which is relevant for the structural stability of the vanes. We present the results from experiments on 

local scour around bottom vanes in a 45.6 m long and 2.45 m wide open-air flume at Bangladesh 

University of Engineering and Technology (BUET). The results lead to the formula 

ds = 1.55 (Hv Lv sinα / h)0.92, where ds denotes the maximum total depth at the scour hole, Hv is the 

vane height above the undisturbed bed level, Lv is the vane length, α is the vane angle with respect to 

the main flow direction and h is the flow depth. The coefficient of correlation is 0.82 based on 20 

data points (4 vane heights × 5 vane angles). The results provide also simple formulae to compute 

volume and planar area of scour as a function of projected vane width. 

1 Introduction  

Vanes placed on an alluvial riverbed under an angle with the main flow generate a vortex 

that produces transverse transport of bed load and near-bed suspended load. This 

mechanism can be used to apply bottom vanes to correct the morphology of a river bed in 

a certain desired manner, for instance to create sufficient depth for navigation, to mitigate 

bank erosion or to change the division of sediment transports at bifurcations. Their 

efficiency has been studied by various researchers (Odgaard and Wang 1991, Odgaard 

and Spoljaric 1986, Jongeling and Flokstra 2001, Wang and Odgaard 1993). Besides this 

intended effect, bottom vanes also produce local scour. In the present study, scour around 

and downstream of a bottom vane has been studied experimentally to develop suitable 

formulae for predicting maximum scour depth, affected area and mean depth of erosion. 

These formulae serve the determination of a safe foundation depth for the bottom vanes. 

                                                           
† This work is supported by BUET-DUT Linkage Project, Phase-III. 
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2 Test Facility  

A 45.6 m long and 2.45 m wide straight flume has been constructed at the open-air 

physical model facility of Bangladesh University of Engineering & Technology to 

conduct the test runs. The facility accommodates a re-circulating water supply system 

with storage pool, upstream reservoir, sediment trap and stilling basin. Two Rehbock 

weirs have been placed, one at the entrance of the flume and one at the re-circulation 

channel to measure the flow. At the downstream end of the flume, two tailgates can be 

exploited to adjust the water level in the flume. The model bed comprised sand of a 

median diameter (d50) of 0.18 mm, which is representative for the majority of 

Bangladeshi rivers.  The test flume is shown in Fig. 1. 

 

 

 
Figure 1. Photograph showing model facility 

The flume is equipped with point gauges at three locations along its length to 

measure water surface slope. For measurements of the bed topography, a self-devised 

instrument has been made out of an IPE100 beam, which spans the flume width and rests 

upon the flume sidewalls. Gauges are lowered manually through holes in the flanges of 

the beam until their sharpened tips hit the bed locally, after which the levels are read with 

respect to the beam level. Rubber cascades in between the flanges prevented the gauges 

from penetrating the bed. The vane in the experiments was a 0.40 m long and 4 mm thick 

sheet of durable perspex. 

3 Test Runs 

Mobile-bed tests were executed for a constant discharge of 200 l/s. The vanes were 

installed at four initial vane heights (0.06 m, 0.09 m, 0.12 m and 0.18 m) and five angles 

of attack (10°, 15°, 20°, 30° and 40°), leading to 4 × 5 = 20 test runs. For all experiments, 

the vane length Lv equalled 0.40 m. At the location of the vane, the water level was kept 

at 0.30 m above the initial bed level. 
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4 Methodology 

Before each experiment, the vane was placed carefully at the desired location with proper 

vane height and angle of attack. Subsequently, the flume mobile bed was leveled at an 

elevation Z = 21.8 cm from an assumed reference. As soon as the preparation of the bed 

had been completed, the flume was filled with a thin layer of water by a back filling 

method to allow the bed to be set and to make a provision to minimize the bed level 

difference between the upstream and downstream ends. Each experiment began with the 

start of the pumps and then continued by gradually attaining the desired discharge that 

established a 30 cm flow depth. The experimental settings were verified periodically by 

measuring flow depth, discharge and water surface at 30-minute intervals. The scour 

depth was monitored at three locations on the pressure side of the vane with the help of a 

specially prepared depth profiler. Each experiment continued 30-40 running hours with 

the appropriate settings, depending on angle of attack and vane height. This duration 

corresponded to the time required to achieve equilibrium scour depth. After these 

running hours, the bed topography was measured with the help of the bed level 

measuring device on a grid with meshes of 10 cm × 5 cm (sometimes 2.5 cm × 10 cm 

depending on the bed topography) over an area of 3 m × 2.5 m spanning between 1 m 

upstream and 2 m downstream from the vane tip. The grid pattern was sufficiently dense 

to obtain a fairly accurate bed topography at the end of each experiment. 

5  Results and Discussion 

5.1 Equilibrium Scour Depth 

The maximum scour depths, ds, have been correlated with the flow depth, h, and the 

projected area of the vane, Ap (Ap = Hv⋅Lv⋅sinα, Hv denoting vane height above the 

undisturbed bed level, Lv denoting the vane length and α denoting the vane angle with 

respect to the main flow direction). Other parameters have not been considered because 

equilibrium live-bed scour does not vary with increasing velocity or grain size and 

depends only on flow depth for a given shape of obstruction (Vanoni 1977). The 

resulting formula reads 

 
0.92

sin
1.55

α⎛= ⎜
⎝ ⎠

v vH L
ds

h

⎞
⎟  (1) 

The correlation coefficient is 0.82. Fig. 2 shows the regression curve. 
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Figure 2. Regression equation for maximum scour depth prediction. 

Equation (1) shows that the equilibrium scour depth ds is practically proportional to 

the projected area of the vane, Ap. This complies with scour formulae for rectangular 

bridge piers with oblique approach flows (Simons and Senturk 1992). In case of 

obstacles over the full flow depth, such as rectangular bridge piers, local scour usually 

increases with increasing flow depth (e.g. Chang 1992). However, the adopted scaling of 

vane heights with flow depth implies that the scour depth is roughly inversely 

proportional to flow depth (Fig. 3): 

 ds  ∝ Hv/h (2) 
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           Figure 3. Relative equilibrium scour depth for different test runs. 

In view of the resemblance between the shapes of the scour holes around bottom 

vanes and bridge piers, the use of scour relations for slender bridge piers to predict 

equilibrium scour depths at bottom vanes may seem appropriate, given the lack of 

information about scour at bottom vanes. However, the extreme values of the ratio of 

length to structural width for vanes do not relate to values for bridge piers. Secondly, 

unlike bottom vanes, a bridge pier causes a surface roller, which, compared to the 

horseshoe vortex at the base of the pier, has an opposite sense of direction. With 

decreasing flow depth, the surface roller becomes more dominant and weakens the 
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downflow. Finally, scour relations for bridge piers do not account for submergence, 

whereas the results of the present experiments indicate that the scour hole dimensions 

also depend on the ratio of initial vane height to flow depth. If h ≤ Hv, a vane would act 

as a rectangular bridge pier with extremely small structural width and the maximum 

scour depth should increase with increasing flow depth. Maximum scour depths 

predicted by Eq. (1) for h = Hv can be compared with scour depths following from 

existing scour depth predictors for a rectangular bridge pier. Such expressions often use 

the projected width of the pier (Lvsinα). Table 1 provides such a comparison, where 

model parameters are modified by a scale factor of 60 (h = Hv = 18.0 m; Froude number 

Fr = 0.15). 

 

Table 1. Comparison of scour predictors for rectangular bridge piers and Eq. (1). 

Maximum scour depth ds (m) Pier width b = Lvsinα 

(m) Eq. (1) 

 

Coleman 

ds = 1.49 b Fr 0.1

Laursen and Toch 

ds = 1.49 b (h/b)0.3

Breusers 

ds = 1.4 b 

7.0 9.3 7.1 13.9 9.8 

10.0 12.9 10.2 17.9 14.0 

14.0 17.6 14.3 22.6 19.6 

20.0 24.4 20.4 29.1 28.0 

26.0 31.1 26.5 34.9 36.4 

 

Table 1 shows that the maximum scour depths calculated by Eq. (1) for h = Hv are 

within the range of outputs of the scour predictors for bridge piers. If h > Hv , the 

maximum scour depth predicted by Eq. (1) would be reduced gradually. 

5.2 Volume and Planar Area of Scour 

The volumes and planar areas of scour have been calculated from bed topography 

contour maps of each experiment. Both erosion volume and planar area were found to 

vary more or less linearly with the projected width of the vane. Dividing the volume by 

the planar area yields the mean depth of the scoured area. A regression analysis results in 

the following relation for the prediction of mean scour depth, dm: 

 dm = 0.0768 Lv sinα (3)  

The correlation coefficient is 0.89. The regression curve is shown in Fig. 4. 
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Figure 4. Variation of mean depth of scour with projected width of vane. 

 

The following relation has been found for the scoured area, As, around and 

downstream of the vane:       

 As = 7.836 Lv sinα (4) 

The correlation coefficient is 0.61. Fig.5 shows the regression curve. 
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Figure 5. Variation of planar area of scoured region with projected width of vane. 

 

Planar area and mean depth were found to correlate better with projected vane width 

than with projected vane area. They did not increase appreciably with increasing vane 

height. 

5.3 Cross-Sectional Profiles 

Cross-sectional profiles near the leading edge have been examined for all test runs. The 

scour depth at an angle of attack of 40 degrees has been found to be abruptly high for all 

vane heights (Fig. 6) and varies from 0.6 to 0.8 times the water depth. The maximum 

width of the scoured area is found to spread from y/h = -2 to +2 and appears to increase 

with increasing vane height and angle of attack.  It is noteworthy to mention that, at the 

leading edge, the cross-sectional profiles of scour look semi-circular and symmetric with 

respect to the axis of the leading edge. The maximum scour is located near the leading 

edge. The scour depths at both pressure side and suction side seem nearly equal. 
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Figure 6. Bed profiles near leading edge of vane along transverse direction for Hv = 9 cm. 

5.4 Bed Topography on Larger Scale 

Bed topography contour maps reveal a longitudinal deposition berm and a parallel 

erosion gully after a streamwise distance of 3 m from the vane. At a distance of 6 to 7 m, 

only the deposition berm is present. Longitudinal profiles show that, in all cases, the 

mean bed level had been lowered in the vicinity of the vane, but had been raised slightly 

above the initial level after a streamwise distance of 3 to 6 m. The lowering of the mean 

bed level increased with increasing angle of attack. 

6 Conclusions  

The maximum scour occurs at the pressure side of the vane near the leading edge for the 

lower angles of attack, but shifts towards the trailing edge with increasing angle of 

attack. The maximum scour depth increases with increasing vane height and increasing 

angle of attack. Planar area of scour, volume of erosion and mean depth of erosion show 

linear variation with projected vane width. Suitable and simple formulae have been 

derived to assess the local scour at bottom vanes. 
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