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Abstract—The first-order second-moment (FOSM) is an 
uncertainty analysis method that assumes a first-order Taylor 
series expansion at the central value of the input variables to 
estimate the output variance. The expansion at central values 
with a first-order approximation might introduce large over- or 
underestimation when dealing with non-linearities. If the 
variance assumed for the input parameters is not small enough, 
the assumption of linearity or slightly non-linearity in this 
method might be violated. 
In FOSM the variance of the output variables is approximated 
by the product of the variance of the input parameters and the 
partial derivative of the model variable with respect to each 
parameter. In this study we propose to substitute the Gaussian 
distribution of a model input parameter with high variance by 
several Gaussian distributions with smaller variances. The 
weighted combination of the multiple distributions (Compound 
FOSM or CFOSM) represents nearly the same distribution as 
the original one (FOSM). In CFOSM the uncertainty analysis 
has to be carried out for each member of the compound 
distribution. For this reason the computing time is increased by 
the number of members considered. Yet, non-linearities can be 
better approximated and the new approach still requires much 
less computing time than the Monte Carlo method. 
Uncertainty analysis based on the proposed approach will be 
carried out with validation test cases from the Telemac-

Mascaret System. The partial derivatives will be calculated by 
means of Algorithmic Differentiation efficiently. Results from 
the analysis of each test case with FOSM and CFOSM will be 
compared to a Monte Carlo Simulation. 

 

I. INTRODUCTION 

Uncertainty analysis attempts to describe the entire set of 
possible outcomes of an event, together with their associated 
probabilities of occurrence. It can be very helpful to identify 
input parameters that produce the largest uncertainties in 
hydro- and morphodynamic modeling. Since the 1980’s this 
technique has been employed to hydraulic and hydrological 

modeling ([1],[2],[8]) usually associated to structure and risk 
analysis in engineering. Since then the method is still found 
in use and its application has been extended also to sediment 
transport and morphodynamic modeling 
([6],[7],[9],[10],[15]). 

Especially in morphodynamic modeling the sensitivity 
analysis of relevant parameters and, finally, the determination 
of their uncertainty contribution on end results should be 
addressed. This recommendation is simply based on the 
mathematical formulations of sediment transport (e.g. 
initiation of motion, bedload). These are essentially empirical 
and might lead to significant errors depending on the time 
scale considered. 

In this manuscript uncertainty analysis will be carried out 
by applying the first-order second-moment (FOSM) method. 
Hydrodynamic and morphodynamic processes are described 
by non-linear relations. However, the direct application of the 
FOSM method using a typical variation range for the input 
parameters, e.g. according to measurement uncertainties, 
could lead to excessive large variances. The main goal here is 
to properly address non-linearities by means of a new 
approach based on the FOSM. In order to test the proposed 
method, two test cases from Telemac-2D will be simulated 
applying both FOSM and Monte Carlo Simulations for 
uncertainty analysis. 

 

II. UNCERTAINTY ANALYSIS 

A. First-Order Second-Moment (FOSM) 
 FOSM 

The FOSM is given by the first order Taylor series 
expansion at the central values of the input variables, which 
is then truncated after the first-order term. Thus, if the 
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variables are statistically independent the output variance is 
given by 

𝜎𝑍2 = ∑𝜎2 (𝜕𝜕𝑝 |𝜇 )2 (1) 

where Z is the model output, pi are the input parameters, 𝜇  
are the mean values and 𝜎2 are the variances of the input 
parameters. All input parameters are considered here to be 
described by a Gaussian distribution, in which the variance 
represents the parameter uncertainty. 

The partial derivatives of output Z with respect to 
parameter pi in (1) has to be computed at the mean value 𝜇  
of parameter pi and can be calculated using Algorithmic 
Differentiation (AD)[14] up to machine accuracy (in contrast 
to numerical differentiation). The great advantage of using 
AD is that the derivatives of the model output with respect to 
an uncertain input parameter can be calculated by one single 
AD simulation. Several studies have been carried out with 
FOSM by means of AD ([4],[7],[10]), but there are still open 
questions regarding its applicability. 

The drawback of the FOSM method lies on the linearity 
assumption. If deviations in the input parameters are not 
small enough, the output variance cannot be approximated 
well with the first-order terms in the series expansion. Since 
the partial derivative in (1) might change over the deviation 
interval considerably, both over– and underestimation of the 
true output deviation are possible. 

 Compound FOSM (CFOSM) 

Compound FOSM is an adaptation of the FOSM method 
for non-linear systems. Instead of considering a single value 
for the variance of each input parameter to represent its 
probability distribution, multiple values are taken into 
account. The Gaussian distribution of an input parameter 
with high variance is substituted by several Gaussian 
distributions with smaller variances. The weighted 
combination of the sub-distributions represents nearly the 
same distribution as the original one. 

For a parameter pi the mean value and variance of a 
compound distribution represented with j sub-distributions is 
given according to [11] by 𝜎2 =∑ 𝜇2 +σ2 − 𝜇2 (2) 

 𝜇 = ∑ 𝜇  (3) 

where wj are the weights of the sub-distributions, 𝜇 , 𝜎  are 
the moments of the sub-distributions for parameter pi. 

In CFOSM we define the variance of model output Z by 
combining (1) and (2): 

𝜎𝑍2 = ∑∑[ 𝜇2 +σ2 − 𝜇2] (𝜕𝜕𝑝 |𝜇 )2 (4) 

given i input parameters and j sub-distributions. 

In CFOSM the uncertainty analysis has to be carried out 
for each member (sub-distribution) of the compound 
distribution (the partial derivatives have to be computed at 
the mean values 𝜇  of the sub-distributions). 

The number of sub-distributions (j), their mean values 
(𝜇 ) and deviations (𝜎 ) will affect CFOSM results. 
Therefore, the mean and the standard deviation of each sub-

distribution should be chosen carefully, so that the original 
distribution is well represented. 

In order to apply the CFOSM method, wj, 𝜇 , 𝜎  must be 
defined. For given moments (𝜇 , 𝜎 ) of the original 
probability distribution (Fig. 1a), the number of sub-

distributions (j) and their moments (𝜇 , 𝜎 ) must be defined 

(Fig. 1b). After that, based on the cumulative density function 
of Fig. 1a, the partial areas relative to each sub-distribution 
(using the middle point between two successive 𝜇 ) gives its 
corresponding weight (Fig. 1c). The final result for the 
compound distribution is then presented in Fig. 2. 

 

 

Figure 1: Construction of a compound distribution. 
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B. Monte Carlo Simulations (MCS) 
An alternative to the FOSM is to use the MCS approach 

for uncertainty analysis. A large number of model 
simulations (102-104) have to be carried out with different 
setups of uncertain parameters considered to be physically 
and statistically acceptable. Results will cover all possible 
outcomes if the statistical representation of input parameters 
is correct. However, this method requires much more 
computational effort and results might underestimate the true 
distribution of output values. 

The confidence limits (CL) from the simulations can be 
derived from an empirical distribution function (EDF). From 
the cumulative EDF two points corresponding to the CL are 
chosen in order to get the function values. The absolute 
difference gives the CL. 

The CL from the MCS method can be compared to 
FOSM and CFOSM results by calculating their 
corresponding CL as 𝐶𝐿𝐹𝑂𝑆𝑀 = ⋅ 𝑛 ⋅ σ𝑍 (5) 
where n is a factor corresponding to the level of confidence 
(e.g. n=3 means a 99% CL). 
 

III. APPLICATIONS 

A. Analytical example 

An analytical function will be used as test case, in which 
the derivative can be exactly determined. If we take the 
function 𝑓 =c ⋅ arctan ⋅ − +d (6) 
with derivative 

f' = ⋅⋅ − 2 +  (7) 

then the graphical representation of f(x) and f’(x) at = 𝜇 is 
shown in Fig. 3. 

The FOSM method applied to f(x) provides a confidence 
interval of the function, based on the derivative of the output 
at the mean value of the inputs. The confidence interval itself 
is represented by the projection of the tangent on the ordinate 
axis (light red) multiplied by a deviation related to the 
parameter uncertainty. 

In Fig. 4 the same function is presented, but now 
evaluated with the CFOSM method. Instead of using just one 
point to calculate the derivative and estimate the confidence 
interval, several points are selected around the original one. A 
smaller value for the parameter deviation is now defined, and 
the confidence interval is now obtained by projecting all 
tangents on the ordinate axis. The total interval length 
depends on the underlying model. For the analytical example 
the constant b in (6) determines the reducing factor. The 
interval length in Fig. 4 is finally smaller than the one 
obtained in Fig. 3 (see Tab. 1). 

 

 

 

Figure 3: FOSM concept applied to f(x). 

Figure 4: CFOSM concept applied to f(x). 

Figure 2: Simple and compound probability distribution functions. 
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Figure 6: Confidence limits of bottom evolution. 

TABLE 1: CONFIDENCE INTERVAL OF F(X). 

x interval f(x), b=1 FOSM CFOSM 

[µ-3σ , µ+3σ] 8.8 12.0 9.2 

 

B. The bump test case 

This test case also known as “bosse” is used as validation 
test case for SISYPHE, the sediment transport and bed 
evolution module from the Telemac-Mascaret Modelling 
System ([12],[13]). In the experiment a sinusoidal dune 
migrates during four hours due to a constant flow. The model 
topography is shown in Fig. 5. 

The parameters considered to contribute to the overall 
model uncertainty in this example are the bottom roughness, 
the slope effect and the median sediment grain size. The 
transport formula of Engelund-Hansen is applied. The bottom 
roughness is defined by the Strickler coefficient and the slope 
effect using the formula of Koch & Flokstra by the beta 
coefficient. The mean value µ and standard deviation σ for 
each parameter is presented in Tab. 2. 

TABLE 2: STATISTICAL MOMENTS OF THE BUMP MODEL PARAMETERS. 

 

Median grain 
size (d50) 

[m] 

Roughness 
coefficient (ks) 

[m1/3s-1] 

Slope effect 
coefficient (β) 

[-] 

µ 3·10-4 40 1.3 

σ 3·10-6 0.5 0.3 

 

The FOSM method is directly computed with AD in 
Telemac (Telemac-AD branch Foxface, based on Telemac-

2D V7P2). Results from [9] already showed good agreement 
between the FOSM calculated and MCS methods. The new 
proposed method using j=9 and 𝜎 = . 5 ∗ 𝜎 has been 
applied. Results from CFOSM also perform very similar to 
MCS with 1000 members, here presented for a 99% 
confidence interval (see Fig. 6). 

 

Results presented so far do not add any improvement, as 
the linear approach already shows good agreement with the 
MCS method. With regard to computation times, FOSM 
(Telemac-AD) takes about 9 times longer than calculations 
with Telemac-2D for a single simulation. In total simulation 
time, FOSM took 2.7 min (1 distribution, 3 parameters), 
CFOSM 23.9 min (9 sub-distributions, 3 parameters) and 
MCS 100 min (1000 simulations). 

However, a second test was carried out, in which a new 
set of parameters has been defined in order to consider more 
non-linearities (see Tab. 3). 
TABLE 3: STATISTICAL MOMENTS OF THE BUMP MODEL PARAMETER SET 2. 

 

Median grain 
size (d50) 

[m] 

Roughness 
coefficient (ks) 

[m1/3s-1] 

Slope effect 
coefficient (β) 

[-] 

µ 3·10-4 40 1.3 

σ 3·10-5 4.0 0.3 

 

In this second parameter set the median grain size and the 
roughness coefficient are considered to have a larger standard 
deviation, equals to 10% of the respective mean value. 
Results from the uncertainty analysis (see Fig. 7) differ 
among the three methods. Up to position 8 m the methods 
show a good agreement, but the peak around position 10 m 
happens before in FOSM and after in CFOSM. In general, 
assuming that the profile shape given by the MCS method is 
correct, the results of CFOSM approximate the true 
uncertainties better than FOSM. With respect to the number 
and deviation of the sub-distributions, a few tests showed that 
results differ very little for 𝑗 ≥ 5. However, the chosen 
standard deviation should be chosen accordingly. Therefore, 
further testing is still necessary on this topic. 

 

Figure 5: Model topography. 
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C. The flume experiment test case 

In this example the new method can be tested in a less 
theoretical case. The numerical model is designed based on 
the experiment of [5], a 180° channel bend with a constant 
radius of curvature. The experiment is conducted during 
almost 6 hours with unsteady flow given by a hydrograph 
(see Fig. 8). The initial bottom is flat with a small slope 
downstream and it develops to a typical cross-section with 
sediment deposition near the inner side along the channel 
bend (Fig. 9). Also this example is used as validation test 
case for SISYPHE. 

 

  

Figure 9: Initial (left) and final (right) model topography. 

In this test case the same input parameters as in the bump 
test case have been considered, and additionally the α 
parameter related to secondary currents is taken into account. 
The transport formula of Meyer-Peter and Müller is applied 
and the roughness coefficient is defined after Nikuradse. In 
Tab. 4 the mean and standard deviation from each parameter 
are given. 

TABLE 4: STATISTICAL MOMENTS OF THE FLUME MODEL 

PARAMETERS. 

 

Median 
grain size 

(d50) 

Roughness 
coefficient 

(ks) 

Slope effect 
coefficient 

(β) 

Secondary 
currents 

coefficient 
(α) 

[m] [m] [-] [-] 

µ 1·10-3 3·10-3 1.3 1.0 

σ 1·10-4 3·10-4 0.3 0.1 

 

Similarly to the previous test case, the CFOSM method 
has been applied using j=9 and 𝜎 = . 5 ∗ 𝜎. The results 
from the uncertainty analysis are shown in Fig. 10. The 
confidence limits from the MCS with 1000 members indicate 
higher uncertainty at the outer side and at the exit from the 
bend on the right side (in flow direction). At the center of the 
flume along the bend results present a smaller deviation. 

In general, the FOSM confidence limits agree well with 
the MCS results. Along the outer side, however, FOSM  
clearly underestimates the uncertainty. FOSM results before 
and after the bend are very similar to MCS results. With 
regard to computation times, FOSM (Telemac-AD) takes 
about 10 times longer than calculations with Telemac-2D for 
a single simulation. In total simulation time, FOSM took 20.5 
min (1 distribution, 4 parameters), CFOSM 184.2 min (9 
sub-distributions, 4 parameters) and MCS 516.7 min (1000 
simulations). 

 

Figure 8: Hydrograph used in the flume experiment. 

Figure 7: Confidence limits of bottom evolution for parameter set 2. 
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The CFOSM confidence limits also agree qualitatively 
well with MCS results. Along the outer side CFOSM 
performs better than FOSM, and it produces an overall larger 
uncertainty. 

(a) 
 

(b) 

 

(c) 

 

Figure 10: Confidence limits (99%) of bottom evolution from the 
(a) MCS, (b) FOSM and (c) CFOSM methods. 

In order to have a clearer comparison among the three 
methods, a similar analysis to the bump test case has been 
carried out. For that, three profiles have been defined along 
the flume to evaluate the final bottom evolution (after 5.5 h): 
one at the center, one 40 cm to the left and one 40 cm to the 
right (Figure 11). 

 

 

 

Figure 11: Confidence limits of bottom evolution along the flume: 
(l) left, (c) center and (r) right profiles. 

Through this analysis it becomes clear that results are 
very similar before (0°) the bend among the three methods. 
Along the bend, FOSM agrees very well with MCS along the 
center and right profile, but shows a smaller uncertainty 
along the left profile (outer side). CFOSM reveals higher 
uncertainties at the center and right profiles, whereas at the 
left profile it gives a closer estimation to MCS along the 
bend. 

 

IV. DISCUSSION 

In the analytical example (section III.A), the advantages of 
the CFOSM concept have been verified. The main idea is to 
improve the FOSM method and make it more robust for 
highly non-linear models and larger input variances. 

In the bump test case (section III.B), results from the first 
simulation indicated that the proposed method does not im-
prove the analysis of uncertainties. By considering larger 
deviations for the median grain size and bed roughness, how-
ever, new results showed a different situation. Because the 
first set of parameter deviations was relatively small, produc-
ing a quasi-linear variation in the bottom evolution, the use 
of the FOSM was good enough. In the second test, the larger 
deviations in the parameters led to a non-linear variation in 
the bottom evolution, which could not be fully determined by 
a single derivative. The CFOSM method indicated qualita-
tively better results taking the MCS method as reference, but 
with the benefit of computational costs 3 to 4 times lower. 
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Results from the flume experiment (section III.C), at first 
sight, indicated an overall increase in the confidence limits 
from the beginning until the end of the flume. This makes 
perfectly sense, as on a river usually downstream morphody-
namic conditions depend on upstream conditions. Results 
before the bend given by the three methods agree very well, 
most probably due to linear and quasi-linear conditions found 
at those regions. Along the bend non-linear processes are 
probably dominant and should not be neglected. 

 

V. CONCLUSION 

A new uncertainty analysis method based on the first-
order second-moment (FOSM) was proposed for non-linear 
processes. The compound FOSM (CFOSM) method was 
compared to FOSM and MCS methods. 

The results from three test cases – an analytical, a bump 
and a flume bend – provided an insight on suitable conditions 
for using FOSM and CFOSM uncertainty analyses. 
According to those results, CFOSM showed its potential in 
the first two tests, but did not produce convincing better 
results in the 2D case. Although FOSM might work when 
dealing with small parameter deviations, it cannot 
approximate the true confidence interval of non-linear 
processes well. 

Finally, there are still some open questions regarding the 
CFOSM method, such as the definition of the number of sub-

distributions and their standard deviations, the performance 
of the method under more complex conditions, and 
covariance effects among parameters. Possible further 
development and tests still need to be discussed. 
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