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Abstract— Derivative-free optimization methods are typically 

considered for the minimization/maximization of functions for 

which the corresponding derivatives neither are available for use 

nor can be directly approximated by numerical techniques. 

Problem of this type are common in engineering optimization 

where the value of the cost function is often computed by 

simulation and may be subject to statistical noise or other form 

of inaccuracy. In fact, expensive function evaluations would 

prevent approximation of derivatives, and, even when computed, 

noise would make such approximations less reliable. Thus, the 

objective of this work is to implement an efficient heuristic-

designed procedure in order to find optimal solution when using 

TELEMAC-2D to assess a hydrodynamic performance. Two 

examples are given dealing with a shape optimization and a 

model calibration. In both cases the underlying optimization 

problems are solved by coupling a population-based 

metaheuristic to the numerical model with the help of TelApy 

[1]. For the shape optimization problem, some design variables 

define the geometrical configuration of the structure whose 

optimal configuration is not known a priori. The shape 

optimization problem consists of finding an optimum position of 

the slots of a typical fish passage. The second application case 

focuses on calibration problem. In fact, calibrating a 

hydrodynamic model (here the Gironde estuary site) is typically 

an engaged and difficult process due to the complexity of the 

flows and their interaction. In this paper, both friction and tidal 

are highlighted. Theoretically, Particle Swarm Optimization 

algorithm does not ensure to find optimal solutions but in 

practice it performs very well. Moreover it does not rely on 

gradient computations as it does not assume the problem to be 

differentiable. Finally its convergence is fast enough in 

comparison with other algorithms even when coupled with 

TELEMAC-2D.

I. INTRODUCTION

Optimization is an area of critical importance in 

engineering and applied sciences. When designing products, 

materials, factories, production processes, manufacturing or 

service systems, and financial products, engineers strive for 

the best possible solutions, the most economical use of 

limited resources, and the greatest efficiency. Although the 

problem of minimizing or maximizing a differentiable 

function is a frequently met problem, the golden age of 

optimization has been enabled by developments in the three 

main areas: computing capability, data, and methods. The 

optimization former can be very different according to the 

form of the cost function to be minimised (convex, quadratic, 

nonlinear, etc.), its regularity and the dimension of the space 

studied. Derivative-free optimization (DFO) methods are 

typically considered for the minimization/maximization of 

functions for which the corresponding derivatives neither are 

available for use nor can be directly approximated by 

numerical techniques. Problem of this type are common in 

engineering optimization where the value of the cost function 

is often computed by simulation and may be subject to 

statistical noise or other form of inaccuracy. In fact, expensive 

function evaluations would prevent approximation of 

derivatives, and, even when computed, noise would make such 

approximations less reliable. Thus, the objective of this work 

is to implement an efficient heuristic-designed procedure in 

order to find optimal solution when using TELEMAC-2D to 

assess a hydrodynamic performance.
Section II and III introduce the principle of the Derivative-

free optimization algorithm and the software tools used for this 
work respectively. Section IV is dedicated to model results 
obtained from several different hydraulic applications: 
calibration and shape optimization. Finally, Section V, offers 
some conclusions and outlook.

II. CONTEXT AND PRINCIPLE

A. Context

Parameter estimation, a subset of the so-called inverse 
problem, consists of evaluating the underlying input data of a 
problem from its solution. The Derivative-free optimization is 
used here for demonstration purpose on two different 
hydraulic inverse problems:

Parameter Calibration. Numerical models are
nowadays commonly used in fluvial and maritime
hydraulics as forecasting and assessment tools for
example. Model results have to be compared against
measured data in order to assess their accuracy in
operational conditions. Amongst others, this process
touches on the calibration, verification and validation.
In particular, calibration aims at simulating a series of
reference events by adjusting some uncertain
physically-based parameters until the comparison is
as accurate as possible. Calibration is critical to all
projects based on numerical models as it takes a very
large proportion of the project lifetime. Thus, in this
work, a real estuary configuration is presented and
calibrated using measurement data.

Shape optimization configuration. Applications of
shape optimization to hydraulic engineering are rare,
especially for the cases where optimization is used to
inform actual engineering design. The Derivative-free
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optimization is used here to present a methodology 
that can be applied by end users working on their own 
shape optimization problems in the fields of river and 
coastal hydraulics. For example, applications of shape 
optimization could include determining the optimal 
layout of a groyne field along a coastline that could 
address sedimentation and navigation issues, the 
shape and orientation of a breakwater protecting a 
harbour or a marina subject to various environmental 
and economic constraints, as well as many others.

B. Cost function formulation

Thereafter, all model parameters constitute the -
components of the control vector .

The optimization of hydraulic problems is a parameter 
estimation or reverse method used to simulate a series of 
reference events by adjusting uncertain physically-based 
parameters contained in the control vector  to produce a 
solution that is as accurate as possible. Therefore, the optimal 
search for the control vector takes the form of an objective or 
cost function  given in (1).

where the components of  represents parameters to be 
designed / calibrated, is the target state/observation vector, 

 is an operator enabling the passage of the parameter space 
(where the vector  lives) to the target state/observation space 
(where  lives) such that  and  is a weighted 
covariance matrix. This is a formulation of the optimal search 
of control vector  adopted in this work.

Many deterministic optimisation methods are known as 
gradient descent methods. However, sometimes derivatives 
neither are available for use nor can be directly approximated 
by numerical techniques. Problem of this type are common in 
engineering optimization where the value of the cost function 
is often computed by simulation and may be subject to 
statistical noise or other form of inaccuracy. In fact, expensive 
function evaluations would prevent approximation of 
derivatives, and, even when computed, noise would make such 
approximations less reliable. In such cases, Derivative-free 
optimization methods are particularly useful.

In this paper, the Particle Swarm Optimizer (PSO) has 
been used to solve the hydraulic optimization problem.

C. Particle Swarm Optimizer

1) Informal description

Particle swarm optimization is a population-based 

stochastic optimization technique developed by [2], inspired 

by social behaviour of bird flocking or fish schooling. PSO 

shares many similarities with evolutionary computational 

techniques such as Genetic Algorithms [3]. The system is 

initialized with a population of random solutions and searches 

for optima by updating generations. In PSO, the potential 

solutions, called particles, fly through the search space by 

following the current optimum particle. In fact, for each 

particle, it is possible to evaluate the cost function value given 

by Eq.1. Then, the global optimum point of the particle 

swarm, i.e. the one having the smallest cost function value is 

looked for. This is useful to compute a velocity for each 

particle. The particle swarm optimization concept consists of, 

at each iteration of the algorithm, changing the velocity of 

each particle towards the best solution. A particle is made of:

a position inside the search space

the cost function value at this position

a velocity (in fact a displacement), which is used to

compute the next position

a memory, that contains the best position (called the

previous best ) found by the particle

the cost function value of this previous best

2) Mathematical formulation

In a search space of dimension , the swarm particle

has a location and velocity (in fact a displacement) vector 

 and 

respectively. The quality of its position is determined by the 

value of the objective function at this point. Moreover, the 

best position by which the particle has already passed, 

denoted , is kept

in memory. Another “best” value that is tracked by the particle 

swarm optimizer is the best value, obtained by any particle of 

the swarm is denoted as 

.

At the iteration , the new particle position is

computed as expressed in Eq. 2.

(2)

where  is a constant called inertia coefficient,  and

 are two constants representing acceleration coefficients, 

and  are two numbers randomly generated at each iteration

and dimension from the uniform distribution . In this 

work, the parameters , and  are set to the default

value .

As presented in Eq.2 and displayed in Figure 1, the 

particle displacement is governed by the following 

components: inertia term ( ), cognitive and social

component respectively and 

.
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Figure 1. Particle displacement.

Then, the variables  and,  are determined

using Eq. 3 and 4.

(3)

(4)

where  denote the cost function defined in Eq. 1. 

This process is summarized in the algorithm presented 

in Table 1.

1-Initialisation of the swarm composed by  particles: 

pick a random position and velocity

2-Compute the particle positions

3-For each particle , 

4-Compute 

5-While the stop criterion is not satisfied do:

6-   Compute the particle displacement (Eq. 2)

7-   Evaluate the particle positions (call of hydraulic solver)

8-   update ,  and ,  (Eq. 3 and Eq. 4)

9-End

Table 1. Particle Swarm Optimization Algorithm

III. SOFTWARE TOOLS

The particle swarm optimization algorithm presented in 
the previous section (section II) combines different fields such 
as optimisation, numerical analysis, parameter estimation, and 
free surface flow hydraulics. The software implementation of 
the algorithm has to be designed for different architectures 
with reusable components. This study is performed by 
coupling the hydrodynamic solver TELEMAC-2D and the 
toolkit library PYSWARM for particle swarm optimization in 
python within the SALOME platform, through the component 
TelApy of the TELEMAC system.

A. The SALOME platform

SALOME is an open source platform (www.salome-
platform.org) for pre and post processing of numerical 
simulations, enabling the chaining or the coupling of various 

software tools and codes. SALOME is developed by EDF, the 
CEA and OPENCASCADE S.A.S. under the GNU LGPL 
license. It is based on an open and flexible architecture with 
reusable components, which can be used together to build a 
computation scheme assembling each module or external 
codes together through specific communication protocols. In 
our case, the TELEMAC-2D model is driven through the 
TelApy component and dynamically linked to PYSWARM 
library within SALOME (See Fig. 2). In fact, all the 
components within SALOME can be used together with the 
YACS module which builds a computation scheme and call 
each module and makes them communicate. In our case 
TELEMAC-2D and PYSWARM are working together within 
this platform. Moreover, the platform supports advanced 
generation of numerical model geometry through it extensive 
CAD modelling computational engine, thus making it 
applicable to a wide variety of studies and applications. Its 
meshing capabilities are also extensive, allowing a user to 
generate meshes using common 2D and 3D formats. 
Moreover, the SALOME platform has provided its users 
access to all of its functionalities through an integrated Python 
interface. These features make for the SALOME platform an 
ideal choice for a tool set used shape optimization studies 
where meshes need to be generated automatically for each new 
designed parameters.

Figure 2. The SALOME composition linking TelApy to PYSWARM
library

B. The TelApy component of the TELEMAC system

The recently implemented TelApy component is 
distributed with the open source TELEMAC system 

(www.opentelemac.org). It aims at providing python source 
code that wraps and controls a TELEMAC simulation through 
a Fortran API (Application Program Interface) [1]. The API’s 
main goal is to have control over a simulation while running a 
case. For example, it allows the user to hold the simulation at 
any time step, retrieve some variables and / or change them. 
The links between the various interoperable scientific libraries 
available within the Python language allows the creation of an 
ever more efficient computing chain able to more finely 
respond to various complex problems. The TelApy component 
has the capability to be expended to new types of TELEMAC 
simulations including high performance computing for the 
computation of uncertainties, other optimization methods, 
coupling, etc.

C. The particle swarm optimization PYSWARM

The population-based metaheuristic algorithm used for 
this work is a Particle Swarm Optimizer written in Python that 
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is a fork of the open source module PYSWARM1. PSO defines 
and iteratively improves a set of candidates (particles) towards 
optimality. Theoretically, PSO does not ensure to find optimal 
solutions but in practice it performs very well. Moreover it 
does not rely on gradient computations as it does not assume 
the problem to be differentiable.

IV. APPLICATIONS

A. Shape Optimization application

1) Numerical configuration

The shape optimization problem used in this work consists 

of finding an optimum position of the slots of a typical fish 

passage. The geometry of the fish passage used in this example 

is obtained from [4], where a similar problem is solved (albeit 

in a different way). The fish passage consists of ten identical 

compartments, with each having two slots (See Fig. 3). The 

slots are referred to in this work as upper and lower. The 

position of the slots for any given shape is specified with four 

variables representing the center point of the upper 

and lower  slot, respectively (See Fig. 3). A 

combination of the four values thus defines a particular shape 

of the flume. Thus, the objective is to design the fish passage 

shape by changing the position of the slots ( ) in

order to obtain a desired target velocity in the channel. The 

optimization problem is to select the position and length of the 

upper and lower slots, such that it optimizes the objective 

function while satisfying the problem constraints. In fact, in 

the numerical optimization the search space is restricted to a 

rectangular zone bounded by  on the lower left, and

 on the upper right. A constraint is specified in the

optimization to ensure the slots are spaced at least 

 apart horizontally, and at least  vertically.

This constraint is required in order to prevent the numeric 

optimizer from selecting invalid and physically irrelevant 

geometries (such as one where the upper and lower slots touch 

or overlap).

Figure 3. Geometry definition of the fish flume test case

The particulars of the problem simulated here are (units in 

meters, unless otherwise specified): Search space

, , , and , width of

1 https://github.com/fzao/pyswarm

the slots ; channel slope ; bottom Chezy

friction coefficient ; initial water depth

; discharge in the flume ;

constraint values , and .

2) Optimization problem definition

One way to validate the tool chain developed in this work 

is to artificially set up a desired state. The aim of this 

optimization configuration is to find optimal shape design 

based on a numerically generated synthetic data from the so-

called “identical-twin-experiment”, in which true state is 

known. The initial (starting shape) used in the optimization 

process is defined as,

, while the target shape to recover is 

defined as ,

where the subscript denotes the initial and target shape 

respectively. The optimization process is then started with 

some initial state, with an end goal to recover the specified 

(or desired) shape. In order to solve the shape optimization 

problem applied in hydraulic engineering the end user is 

required to possess a set of tools that can: 

i) simulate a given shape and obtain a simulated 

system state,

ii) extract results from the simulated system state 

and obtain a value of a pre-defined objective 

function,

iii) try a new shape, and simulate its system state,

iv) carry out as many new iterations until a global 

optimum is found.

3) Cost function formulation

In the cost function formulation given in Eq. 1, the

target state vector is the and components of the flow 

velocity, in the middle compartment (See Fig. 3), extracted 

from the steady state solution of the target shape such as

.

The operator  enabling the passage of the parameter 

space (slots coordinates) to the target state space (velocity 

fields) consists of a tool chain that can automatically:

generate new shapes (which requires create a new

mesh, assigning bathymetry/topography to the

mesh, assigning initial and boundary conditions)

that are ready to be used in a numerical model,

call the hydraulic solver TELEMAC-2D,

and extract from the steady state solution of the

shape the  and  components of the flow velocity

 in the middle compartment.

Thus, the main issue for the shape optimization is to have 

a tool allowing to mesh automatically new shapes. The 

SALOME platform supports advanced generation of 

numerical model geometry through its extensive CAD 

modelling computational engine, thus making it applicable to 

a wide variety of studies and applications. The SALOME 

platform has provided its users access to all of its 

functionalities through an integrated Python interface. These 
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features make the SALOME platform an ideal choice for a 

tool set used in the shape optimization studies where meshes 

need to be generated automatically for each new designed 

parameters.

And finally,  is diagonal matrix containing node 

weighting according to their area.

4) Numerical results

In this work, the optimizer selects and tries new shapes

during its course of execution. Each iteration of the optimizer 

requires a TELEMAC-2D solution of a shape where positions 

of the slots are evaluated for each considered particle. In this 

example, the swarm of PSO optimizer is composed of 10 

particles and the maximum number of iterations is set to 20. 

After specifying initial and target shapes the optimization 

simulations are carried out. Table 2 shows the results of the 

simulations.

Simulation 

shape

 [m]  [m]  [m]  [m]  [-]

Initial 6.700 0.230 7.230 0.150 0.137

Target 6.927 0.147 7.168 0.054 0.0

optima 6.924 0.152 7.193 0.052 0.0033

Table 2. Slot positions and cost function at initial, target and optima 
configurations

Figure 4 presents the generated optimum graphically and 

optimizer convergence plots is shown in Figure 5.

Figure 4. Fish flume at initial (a), target (b) and optima (c) configurations

Figure 5. Cost function evolution in function of the number of computation 
calls

As shown in Figure 4, the fish flume optimum structure is 
much closer to the target shape than the initial one. As 
expected, the final results emphasises the efficiency of the 
parametric shape optimization tool which is able to deliver 
optimal structure design for hydraulic engineering 
applications. However, some slot position differences can be 
observed (see Tab. 2). The defined objective function does not 
seem to be sensitive to small fluctuation in the position of the 
slots. Given the shape optimization tool kit is working as 
intended, a relevant question to pose is what are the effects of 
the four design variables on the previously defined 
optimization problem. This question is answered by carrying 
out a global sensitivity analysis using Morris’s method [5] on 
the four design variables , and to analyze how
they influence the defined objective function  in the fish 
flume case.

5) Sensitivity Analysis

The sensivity analysis aims at quantifying the relative

importance of each input parameter of a model. The variance-

based methods aim at decomposing the variance of the output 

to quantify the participation of each variable when these ones 

are considered as independents. Generally, these techniques 

compute sensitivity indices called Sobol Indices [6]. The 

definition of Sobol indices is a result of the ANOVA 

(ANalysis Of VAriance) variance decomposition. Morris’s 

method, unlike Sobol’s method, only provides qualitative 

answers regarding parameter interactions but it does so with 

much less model evaluations. In fact, Morris’s method 

measures global sensitivity using a set of local derivatives 

(elementary effects) taken at discrete points sampled through 

the parameter space. Each parameter is perturbed along a pre-

defined grid to create a trajectory through the parameter 

space. For a given model with d parameters, one trajectory 

will contain d perturbations. Each trajectory yields an 

estimate of the elementary effect for each parameter (ratio of 

the change in model output to the change in parameter). Once 

trajectories are sampled, the resulting set of elementary 

effects are then averaged to give an estimate of total order 

effects [5]. The standard deviation of the elementary effects 

describes the variability through the parameter space, and 

thus describes the degree to which interactions are present. 

Total order effects are described with a parameter μ; the 

higher the value for a particular parameter, the more 

influential that parameter is. The degree of interaction is 

captured with a parameter σ; the higher the value for a 

particular parameter, the more the parameter in question 

interacts with other parameters.

Thus, in this work, the variables (or parameters) 

considered in the Morris’s method are the four design 

variables of the shape optimization problem .

The bounds of each design variable had to be individually 

specified such that 

and , to make sure

the set of samples generated by Morris’s method actually 

meets the constraints of the optimization problem. For the 

sampling of the parameter space using Morris’s method, the 
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number of trajectories, , is set at . The number of grid 

points, , to sample the parameter space in each dimension is 

also set at . From the theory embedded in Morris’s method, 

the number of parameter samples that is generated is

. Application

of Morris’s method, in combination with the tool chain built 

in this work, produce the Morris’s effects plot shown in 

Figure 6.

Figure 6. Global sensitivity analysis of design variables using Morris’s 
method

From Morris’s effects plot shown in Figure 6, it is readily 

discernible that the  coordinates of the fish slots are the most 

influential variables, together with the fact that they are also 

the ones that are most likely to interact with each other. This 

conclusion is consistent with the findings discovered through 

the numerical results presented in Figure 4, where it was 

found that varying the x coordinates of the slots have less 

influence on the velocity magnitude.

B. Calibration application

1) Context
The Bordeaux harbour, located in the largest estuary in 

Western Europe, faces many challenges of development in the 
Gironde estuary area. It must simultaneously manage the 
estuary natural constraints and improve its capacity of 
reception of larger ships in the next two years to answer the 
growing international market demand. In fact, the increasing 
use of maritime transport leads to an increase in ship size in 
order to minimize the transport costs in terms of budget and 
time. On the other hand the dimension of access channels and 
harbours cannot follow the expansion rate of the vessels. Thus, 
in order to satisfy the demand of the market for increasing 
ships size, while ensuring navigation safety, the water-depth 
evolution in the estuary needs to be predicted with a maximal 
accuracy. Numerical models are nowadays commonly used in 
fluvial and maritime hydraulics as forecasting and assessment 
tools for example. Model results have to be compared against 
measured data in order to assess their accuracy in operational 
conditions. Amongst others, this process touches on the 
calibration, verification and validation. In particular, 
calibration aims at simulating a series of reference events by 
adjusting some uncertain physically based parameters until the 
comparison is as accurate as possible. Calibration is critical to 
all projects based on numerical models as it requires a very 
large proportion of the project lifetime. The objective of this 

work is to implement an efficient calibration algorithm, 
capable of processing measurements optimally, to estimate the 
partially known or missing parameters (bathymetry, bed 
friction, inflow discharge, tidal parameter, initial state, etc.).

2) Numerical configuration and available data

The Gironde is a navigable estuary in southwest France and 

is formed from the meeting of the rivers Dordogne and 

Garonne just downstream of the centre of Bordeaux, it is the 

largest estuary in western Europe. The hydraulic model used 

in this work covers approximately  between the 

fluvial upstream and the maritime downstream boundaries 

conditions representing an area of around . The

finite element mesh is composed of  nodes (see Fig. 

7). The mesh size varies from  within the area of interest, 

the navigation channel, to  offshore (western and 

northern sectors of the model). As shown in Figure 7, six 

friction areas are considered in the hydraulic model.
The boundary conditions along the marine border of the 

model have been set up using depth-averaged velocities and 
water levels from the Legos numerical model TUGO dataset 
(46 harmonic constants). Surge data, describing the difference 
between the tidal signal and the observed water level, are taken 
into account using a data file that comes from Hycom2D 
model of the SHOM [7]. Surface wind data is also considered 
in the model to simulate the flow under wind blowing 
conditions. A flow discharge is imposed upstream of the 
Gironde estuary model on the Garonne and the Dordogne 
rivers. Time series are available for these two liquid 
boundaries.

Several observation stations are available in the region of 
interest. These stations measure the free surface flow 
evolution every  seconds at the The Verdon, Richard, 
Lamena, Pauillac, Fort Médoc, Ambes, The Marquis, Bassens 
and Bordeaux locations (see Fig. 7). For this study, 
observation results are used over a 36 hours period from 
August 12th to 14th, 2015.

Figure 7. Model mesh with friction coefficient areas and observation station 
locations
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3) Sensitivity analysis
Calibrating a hydrodynamic model (here for a real tidal 

site) is typically an engaged and difficult process due to the 
complexity of the flows and their interaction with the 
shoreline, the bathymetry, islands, etc. Thus, it is essential to 
understand in depth the relationship between the modelling 
calibration parameters and the simulated state variables which 
are compared to the observations. In this case, the 
identification of the most influential input parameters by 
sensitivity analysis has been led to target the calibration 
parameters when observations are available. In particular, both 
friction and tidal amplification were highlighted.

a) friction coefficient
Friction comes into the momentum equations of the 

shallow water equations and is treated in a semi-implicit form 
within TELEMAC-2D [8]. The two components of friction 
force are given in Eq. (6).

where  is the water depth,  a dimensionless friction

coefficient and  and  are the horizontal  and  components 
of the current velocity.

The roughness coefficient often takes into account the 
friction by the walls on the fluid or other phenomena such as 
turbulence. Thus it is difficult to define directly from available 
data and must be adjusted using the water surface profiles 
measured for a given flow rate.

b) Tidal amplification parameter
Tidal characteristics are imposed using a database of 

harmonic constituents to force the open boundary conditions. 
For each harmonic constituent, the water depth  and 
horizontal components of velocity  and  are calculated, at 
point  and time  by Eq. (7).

where  is either the water level (referenced to mean sea level) 
 or one of the horizontal components of velocity  or , i

refers to the considered constituent,  is the period of the
constituent,  is the amplitude of the water level or one of

the horizontal components of velocity, is the phase, 

and  are the nodal factors and  is the phase at the
original time of the simulation. The water level and velocities 
of each constituent are then summed to obtain the water depths 
and velocities for the open boundary conditions (8).

where  is the bottom elevation and the mean

reference level. In Eq. (8), the tidal amplitudes multiplier 
coefficient of tidal range and velocity, respectively  and , at 
boundary locations and the sea level correction  are assumed 
to be the tidal calibration parameters [9].

c) Analysis of variance
The sensivity analysis has been carried out based on the 

computation of Sobol sensitivity indices according to the 
methodology presented in [11]. In this paper, we investigate 
the effect of three sources of uncertainty, the friction 
coefficients, the tidal amplification coefficients along the 
marine boundaries ( and ) and the mean water level 
correction coefficient . The source quantification of the 
uncertain variables, arbitrarily chosen, is summarized in Table 
3.

Parameter Probability density function

 [m1/3s-1]

 [m1/3s-1]

 [m1/3s-1]

 [m1/3s-1]

 [m1/3s-1]

 [m1/3s-1]

and  [-]

 [m]

Table 3. Source Quantification of uncertain variables

To handle the sensitivity analysis, it is important to run a 

lot of simulations in order to have reliable results. In this 

work, around 15,000 Monte-Carlo computations have been 

carried out based on TELEMAC-2D through the SALOME 

platform described in [10].
Figure 8 displays the total Sobol sensitivity indices 

obtained at the Bordeaux observation station.

Figure 8. Total Sobol indices at the Bordeaux station

As shown by the sensitivity analysis, the most influent 

variables on the water depth variation are the friction 

coefficients  (in ), the tidal amplitudes

multiplier coefficient of tidal range  and the sea level 
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correction  (in ). The other variables can be considered 

negligible in comparison. These results depend, of course, on 

the hypothesis on the input random variables and especially 

on the choice of their distributions. Consequently, the 

calibration of the model is focused on these parameters.

4) Parameter calibration

In the cost function formulation given in Eq. 1, the

observation vector is the free surface flow evolution extracted 

every  seconds at the The Verdon, Lamena, Pauillac, Fort 

Médoc, Bassens and Bordeaux locations. The observation 

operator  represents a call to the hydraulic solver and the 

observation covariance matrix  contains small value terms 

leading to represent a huge confidence on the observation 

value. At each iteration of the optimization algorithm,  

particles fly through the search domain. The algorithm is 

stopped after  iterations. Moreover, the PSO algorithm 

results are compared with the results obtain from the gradient 

based method described in [11]. The obtained results are 

summarized in the Table 4.

parameters

Initial 19 50 50 0.75 -0.0562 6,34e6

PSO 

optimum

40.8 58.3 107 1.00 0.502 1,63e5

Gradient 

optimum

39.2 60.5 98.5 0.99 0.497 1,64e5

Table 4. parameter values and cost function at initial, gradient based and 
derivative free optima configurations

Calibrated parameters (see Tab. 4) with derivative free 

and gradient based approaches are not so far. The number of 

function calls is 224 for the gradient based method and 4480 

for the PSO algorithm. In fact, the derivative information in 

optimization process allows to drastically reduce the number 

computations.
Figure 9 displays the results of the automatic calibration 

over a 36 hours period.

Figure 9. Free surface evolution at the Lamena station

As shown in Figure 9, the water surface profiles calculated 
are much closer to the measurements than the initial model 
calibration. The final results emphasises the efficiency of the 
automatic calibration tool in the framework of a maritime 
configuration. Moreover, the computation time is a crucial 
point from operational point of view. Thus, the algorithmic 
optimization tool implemented in this work has been written 
to make use of multiprocessor parallelism in order to be 
efficient and compatible with industrial needs. In fact, at each 
PSO iteration, the computation of each particle is an 
independent hydraulic state. Thus, the particle swarm can be 
evaluated in parallel. As TELEMAC is also a MPI-based 
parallel code, different configurations for parallelism are 
possible. In this work, the particle swarm is distributed on 
cluster to run in parallel and the particle computation is 
sequential.

V. CONCLUSIONS

Derivative-free optimization methods are typically 

considered for the minimization/maximization of functions for 

which the corresponding derivatives neither are available for 

use nor can be directly approximated by numerical techniques. 

Problem of this type are common in engineering optimization 

where the value of the cost function is often computed by 

simulation and may be subject to statistical noise or other form 

of inaccuracy. In fact, expensive function evaluations would 

prevent approximation of derivatives, and, even when 

computed, noise would make such approximations less 

reliable. Thus, the objective of this work is to implement an 

efficient heuristic designed procedure in order to find optimal 

solution when using TELEMAC-2D to assess a hydrodynamic 

performance. Two examples are given dealing with a model 

calibration and a shape optimization. In both cases the 

underlying optimization problems are solved by coupling a 

population-based metaheuristic to the numerical model with 

the help of TelApy [1]. The population-based metaheuristic is 

a Particle Swarm Optimizer written in Python that is a fork of 

the open source module PYSWARM. PSO defines and 

iteratively improves a set of candidates (particles) towards 

optimality. Theoretically, PSO does not ensure to find optimal 

solutions but in practice it performs very well. Moreover it 

does not rely on gradient computations as it does not assume 

the problem to be differentiable. Finally its convergence is 

fast enough in comparison with other algorithms even when 

coupled with TELEMAC-2D. Future works will include the 

multicriteria optimization and combination of DFO and 

gradient based algorithms to take advantage of both 

approaches.
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