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I. 

II. 

INTRODUCTION 

Strongly curved alluvial river reaches and channels are 
especially affected by scour phenomena over time due to 
the presence of strong secondary motions in transverse 
sections.  These secondary motions generate highly 
irregular bed profiles.  As a consequence, the channel 
navigability and bank stability are strongly dependent on 
the evolution of the bed deformations in time.  
Additionally, sediment erosion and deposition in time can 
have important environmental repercussions for the river.  
Presence of hydraulic structures in regions of strong flow 
curvature tends to amplify local scour phenomena around 
these structures.  Thus, prediction of the bathymetry and 
scour at equilibrium conditions is of great interest for river 
engineering applications. 

Before considering complex applications involving 
river reaches of complex bathymetry, it is important to 
focus on simpler problems that retain most of the 
complexity of real applications, but allow to separate the 
effects of some of the main factors contributing to the bed 
evolution in real applications.  In this paper we consider 
only curved channel bends of rectangular section with 
non-erodible banks in which a uniform thick layer of sand 
is originally present on the bottom of the channel.   

In the region of strong channel curvature, due to the 
action of the centrifugal forces, the fluid particles follow a 
helical motion.  As a consequence of the action of these 
forces, a pressure gradient is induced between the two 
banks in the region of high curvature such that the fluid 
and sediment particles move from the outer bank toward 
the inner bank in the near bed region.  The main 
characteristic of the bed scouring in these bends is the 
formation of a point sand bar near the inner bank and of a 
pool at the outer part of the bend.  The transversal 
distribution of the streamwise velocity is also affected by 
this strong secondary flow which induces a vertical 
velocity component in the transversal section and locally 
modifies the magnitude and direction of the bed shear 
stress.  In the outer regions, where the bed shear stress is 
strongly amplified, local scour phenomena develop in 
time.  The transversal slope increases until the force 
induced by the secondary current against the transversal 
slope is balanced by the (downwards) component of the 
gravitational force acting on the sediment particles in the 
same direction.  At this point the flow and sediment 
transport are at equilibrium.   

In the present paper, we try to predict the equilibrium 
flow, sediment transport and bathymetry using a fully 
three-dimensional (3D) Reynolds-Averaged Navier-
Stokes (RANS) non-hydrostatic numerical model using 
advanced turbulence models ([1], [2]).  The use of such a 
sophisticated model is needed because of the strong 
transverse non-uniformity of the flow in regions of high 
channel curvature and of the non-local nature of the 
sediment entrainment / deposition processes.  The model 
is fully coupled.  The bed changes induced by deposition / 
erosion phenomena affect the flow which, in turn, 
influences not only the advection of the suspended 
sediment but also the distribution of the bed shear stress. 
Thus, the distribution of the bed load component will also 
change. 

 

BACKGROUND ON NUMERICAL MODELING OF FLOW 

AND SEDIMENT TRANSPORT IN ALLUVIAL CHANNELS 

Due to their obvious limitations, 1D models are clearly 
not appropriate to predict bathymetry changes in curved 
alluvial channels in which large variations of the bed 
profiles are present in the transverse direction.  Two-
dimensional (2D) model are much more successful and 
are presently the most common approach used to predict 
flow and sediment transport in curved bends with movable 
beds.  Duc et al. [3] gives a good description of some of 
the most popular of these 2D models based on finite 
differences, finite volume or the finite element approach 
([4], [5]).  Because of the information lost through the 
depth-averaging process, these 2D models are limited, to a 
degree or another, by the fact that they cannot account 
correctly for the effects of strong secondary currents on 
the flow and sediment transport, or for non-equilibrium 
effects.  The usual way to account for some of these three-
dimensional effects in 2D depth-averaged models is to 
introduce empirical secondary flow corrections.  
However, these corrections typically assume fully 
developed flow in the bend, require additional 
assumptions about the radius of curvature of the flow 
streamlines and do not account for the coupling between 
the primary and secondary flows.  Thus, these models are 
in fact limited to flows with moderate streamline 
curvatures.  Even in these cases, to obtain accurate results 
using these models lots of calibration of the empirical 
model constants is needed.   

A more complex variant of these 2D models that tries to 
incorporate more of the original 3D characteristics of the 



secondary flow into the depth-averaged model ([6], [7]) 
uses additional conservation equations for the moment of 
the momentum equations.  These quasi-3D models can 
account in a physically more correct way for the 
redistribution of the bed shear stress magnitude caused by 
the momentum transfer between the streamwise and the 
transversal flows along the channel.  Another quasi-3D 
model was proposed by van Rijn [8].  In his model the 
sediment transport was calculated in 3D while the 
horizontal mean flow was obtained using a 2D depth-
averaged model.  The vertical velocity profile needed in 
the sediment transport module was assumed to be 
logarithmic.   

III. 

The next level of modeling is the use of fully 3D 
hydrostatic models.  Gessler et al. [9] integrated a 
complex mobile-bed module into a 3D hydrostatic code 
CH3D that uses the σ-stretching technique in the vertical 
direction.  Their mobile-bed module developed for sand-
rivers included several processes such as aggradation and 
scour, bed-material sorting, and accounted for the 
movement of non-uniform sediment mixtures as bed load 
and suspended load.  Though clearly incorporating more 
physics than 2D depth averaged models, the accuracy of 
the flow and sediment predictions using 3D hydrostatic 
models in strongly curved river reaches or channels, 
where strong secondary motions are present and 
separation may occur, is also limited.  

One of the first successful applications of a fully 3D 
non-hydrostatic finite-volume model for movable bed 
applications was reported by Olsen [10].  The model 
successfully predicted the formation of the meandering 
pattern in an initially straight alluvial channel and 
accounted for wetting and drying caused by channel 
erosion / deposition.  Both the suspended load and the bed 
load were simulated.  The k-ε model with wall functions 
was used.  The same code was used in [11] to predict flow 
and sediment transport in a narrow 900 curved bend.  
Another 3D non-hydrostatic finite-volume model that was 
used to calculate the equilibrium flow, sediment transport 
and bathymetry in curved channel bends was proposed by 
Wu et al. [12].  Their modeling of the bed load was more 
sophisticated and was based on the non-equilibrium 
method proposed in [8].  The water surface deformation 
was calculated from a 2D Poisson equation for the surface 
height obtained from the depth-averaged 2D momentum 
equations.  The k-ε model with wall functions and 
corrections for rough surfaces was used.  The model was 
subsequently used in [13] to predict the flow and 
suspended sediment transport for the reservoir generated 
by the dam of the Three Gorges Project on the Yangtze 
River.   

Because of the empiricism related especially to the bed 
load transport modeling, model validation and a certain 
degree of calibration (though much more reduced than the 
one required by 2D depth-averaged or quasi-3D models) 
is necessary even in fully 3D models.  Thus, comparison 
of computed results with experimental data corresponding 
to well-controlled laboratory experiments is essential 
before application of the model to predict equilibrium 
flow, sediment and scoured bed geometry in realistic river 
reaches.   

 

FLOW SOLVER 

The incompressible RANS and turbulence transport 

equations are first transformed in generalized curvilinear 

coordinates.  However, the primitive variables (Cartesian 

velocity components, Vi) for which the momentum 

equations are solved are left unchanged (partial 

transformation approach).  The continuity and momentum 

equations are: 
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where xi are the Cartesian coordinates and ξi are the 

curvilinear coordinates.  In equation (2), Q=(V1,V2,V3)
T is 

the Cartesian velocity vector; J is the Jacobian 
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The governing equations are non-dimensionalized 

using a length scale H0 (water depth at the inlet) and a 

velocity scale U (bulk velocity in the inlet section) such 

that formally the Reynolds number (Re=UH0/ν) replaces 

the molecular viscosity ν, and the Froude number 

(Fr=U/(gH0)
0.5) is used to scale the free surface 

deformations.  The modified pressure χ is defined as 

χ=p+2/3k and the effective piezometric pressure P is 

defined as P=p/ρ+z/Fr2-2/3k, where p is the pressure, z is 

the free surface elevation and k is turbulence kinetic 

energy.  The Froude number enters the solution through 

the free-surface boundary condition assuming that the 

deformable free surface model is turned on (for more 

details on the free surface module see [1]).  The velocity 

components are set equal to zero on all solid surfaces.  At 

the outflow all variables are extrapolated from the 

interior.  The pressure is extrapolated from the interior of 

the domain on all boundaries except at the free surface.   

The eddy viscosity in the simulations discussed in the 

present paper is provided by the k-ω (SST) model.  As the 

standard form of the k-ω (SST) model was used, only the 

implementation of the boundary conditions is discussed.  

The turbulence kinetic energy k is set equal to zero at the 

walls.  For smooth surfaces, ω is calculated 

as where ∆n)/(800 2
1n∆= νω 1 is the normal distance to 

the wall of the first grid point off the wall.  For rough 
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The equivalent bed roughness is estimated using a 

formula proposed by van Rijn [8] in the case in which 

small bed forms are present:  
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where the first term accounts for the sand grain roughness 

contribution and the second term represents the bed form 

contribution.  In equation (4), ψ=∆/λ where ∆ and λ are 

the height and length of the sand waves, respectively.  

Following Wu et al. [12], the length λ is assumed to be 

λ=7.3H and the parameterψ is estimated from: 
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in which H is the local water depth, d50 and d90 are the 

median and 90% diameters of the bed material, and T is 

the non-dimensional excess shear stress.  Its expression is 

given in [8] and [1].    

A fractional step method is used to solve the RANS 

equations.  All terms in the pressure Poisson equation are 

discretized using second-order accurate central 

differences.  The momentum and turbulence transport 

equations are discretized using second order accurate 

upwind differences for the convective terms.  All other 

operators are calculated using second-order central 

discretizations.  All terms are treated implicitly, including 

the source terms in the transport equations for turbulence 

quantities.  To accelerate the convergence of the resulting 

system of equations toward steady state (equilibrium), 

local time-stepping techniques are used.  An approximate 

factorization technique is used to simplify the inversion 

of the discrete form (left hand side) of the momentum, 

pressure-Poisson and turbulence transport equations.  The 

equations are solved implicitly using the alternate-

direction-implicit (ADI) method.  The implementation of 

the deformable free surface module in which the proper 

kinematic and dynamic boundary conditions are applied 

at the top boundary is described in [1]. 

 

IV. SEDIMENT TRANSPORT AND MOVABLE 

BED MODELS 

An advection-diffusion scalar transport equation with 

an additional settling-velocity source term is solved to 

determine the local sediment concentration C and the 

suspended sediment fluxes at the top of the bed load layer 

for simulations in which the suspended sediment load 

cannot be neglected.  The equation is not solved up to the 

wall, as are the momentum equations, but rather up to the 

interface with the bed load layer (δ(x,y)) which typically 

corresponds to a k=constant surface in the computational 

domain.  In curvilinear coordinated, the equation is: 
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where ωs is the setting velocity of the sediment, δ3j is the 

Kronecker delta symbol with j=3 indicating the vertical 

direction and σc is the Schmidt number.  Its role is to 

relate the sediment (turbulent) diffusivity to its (eddy) 

viscosity.  At the free surface, the total vertical flux of 

suspended sediment is set to zero:  
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At the interface between the suspended sediment and the 

bed load layers situated not far, but not necessarily at the 

reference level z=a, following van Rijn [8] and Wu et al. 

[14], the entrainment rate is assumed to be equal to the 

one under equilibrium conditions.  The total vertical 

sediment flux at the interface is equal to the net sediment 

transport (deposition minus entrainment) across the 

interface.  This can be written as 
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where Cb** is the equilibrium concentration at z=δ, 

Db=ωsCb is the deposition rate and  Eb=ωsCb**  is the 

entrainment rate at the top of the bed layer. The value of 

Cb** can be calculated assuming Rouse formula to be 

valid between the reference level where C=Cb* (z=a) and 

the interface between the bed and the suspended load 

layers (z=δ(x,y)).  There is no unique way to choose the 

reference level a.  In some cases it is taken equal to the 

bed roughness, in other cases it is taken as a percentage 

of the total depth.  At the inlet section a concentration 

profile needs to be prescribed, while at the sidewalls and 

outlet a zero gradient boundary condition is imposed. 

  The empirical formulas proposed in [8] are used to 

estimate the equilibrium concentration at the reference 

level (Cb*) needed to calculate Cb** in (8), the equilibrium 

bed load transport rate (Qb*) and the non-equilibrium 

adaptation length (Ls).  Their detailed expressions are also 

given in [1] and [2] along with several methods to 

numerically estimate the local bed shear stress τ*.  The 



equilibrium bed load transport rate and the non-

equilibrium adaptation length are needed to close the 

non-equilibrium bed transport model (see (10) below).  

Following [12], the mass balance equation for the 

sediment within the bed load layer, in which the storage 

term is neglected, is: 
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In the above equation is the porosity, Jp′ b is the Jacobian 

of the geometric transformation in the bed load layer, 

(Jb= (ξ, η)/ (x, y)), z∂ ∂ b is the bed level  above a datum, 

Qbξ  and Qbη are the components of the bed-load transport 

in the two directions.  Then, in the present model we use 

the same non-equilibrium bed-load model as in [12] in 

which the relation between the bed change due to 

deposition from the bed load layer and the bed load 

transport rate is: 
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such that the total change in the bed elevation is: 
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The equation for the bed load rate Qb is derived from (9) 

in which we made the substitution corresponding to the 

model assumed in (11):  
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Equation (12) which is solved to determine the bed load 

Qb is the same for the case when the suspended sediment 

transport module is active and for the case when the 

suspended sediment transport can be neglected.   

To close the model, one has to express Qbξ and Qbη in 

(9) and (12) as a function of Qb.  When the bed becomes 

sloped, the gravitational force on the particles will resist 

the shear force to further carry the particles to the upper 

part of the slope.  The sediment transport direction will 

deviate from the local direction of the bed shear stress.  

Especially for simulations in which the suspended 

sediment load becomes comparable or larger than the bed 

load, it is important to account for bed slope effects on 

the total load and not only on the bed load component, 

as it is generally done.  To do that, in our model we 

define the total load (considered as a vectorial 

relationship in the horizontal directions) as simply: 

TQ
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where is the suspended sediment load flux in the local 

water column from the top of the bed layer to the free 

surface.  By taking the divergence of (13) we obtain, 

using the mass conservation equation in the water column 

corresponding to the suspended sediment domain 

(between z=δ(x,y) and free surface) and neglecting the 

storage term, 

SQ
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Then, we rewrite (12) for the total load using (13) and 

(14) as 
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As the new variable in (15) is , we rewrite (11) as TQ
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where use was made of (9) and (14).  At this point the 

model is closed, provided that we are able to estimate 

from the concentration field and a formula to split 

 after the two horizontal directions (ξ,η) is available. 

SQ

TQ

To evaluate , one simply has to apply the definition 

to calculate the two components of the flux of suspended 

sediment in the two horizontal directions (x,y) as 

SQ
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The magnitude of the suspended sediment flux is:  

 

( )22
SySxS QQQ += .                 (19) 

 

To introduce bed slope effects directly for , the 

formula proposed by Sekine and Parker [14] for bed slope 

effects affecting the bed load transport is used, but with 

replaced by : 

TQ
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where is the angle between the bed 

shear stress vector and the streamwise direction, 

,  is the nondimensional longitudinal 

Shield stress , 

)/(tan **
1

ξη ττθ −=b

m
Lc )/( *** ττββ = *

Lτ

50*
* /cos RgdbL ρθττ = 1/ −= ρρsR , 

sρ is the sediment density, ρ  is the water density, the 

critical shear stress is given by Shields 

diagram, m is a coefficient (m=1),

2
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ξlzb ∂∂ , ηlzb ∂∂  are the streamwise and transverse bed 

slopes, and Gα  is a coefficient typically in the range 

0.45-0.7.  In the present simulations we used Gα =0.6.   

Thus, the divergence operator TQ∇ can be calculated 

in curvilinear coordinates (ξ,η).  Once is calculated 

from (16), the grid points between the bed level and the 

free surface are redistributed vertically based on the new 

positions of the water surface and bed level elevations.    

bz

 

Figure 1.   Flume layout and cross section 

geometry at the start of the 1400 curved bend 

experiment of Olesen [15]. 

 

 

V. RESULTS 

The equilibrium flow, sediment transport and scoured 

bed in the 1400 curved bend of rectangular section (see 

sketch in Figure 1) studied experimentally by Olesen [15] 

are computed in the present study.  Specifically, we 

validate our method by computing the flow 

corresponding to the experimental conditions in test case 

T4 in [15].  The curvature radius of the flume in the 

curved region was 11.75m.  Both ends of the curved 

region (bend) were connected to straight channels toward 

the inflow and outflow sections.  Their lengths were 7m 

and 11m, respectively. The width of the channel was 

B=2.0m wide.  The inflow discharge was 0.118m3/s.  The 

mean inlet velocity was U=0.44 m/s and the water depth 

at the inlet was H0=0.135m.  The Froude and Reynolds 

numbers upstream of the curved region were 0.38 and 

59,400, respectively.  The incoming flow was fully 

turbulent.  The flume bed in the experiment was initially 

leveled with a layer of relatively uniform sand whose 

thickness was 0.3m.  The mean sand diameter was 

d50=0.80mm (d90=1.61mm).  The main parameters of the 

experiment are summarized in Table 1.  The experiment 

was run for approximately 72 hours to reach equilibrium 

steady state.  In the experiment it was observed that the 

sediment moved mainly as bed load.  The bathymetry and 

water levels were then measured at several selected 

sections.  These measurements are used for validation of 

the present numerical model.  

The flow was simulated on a computational mesh 

with close to 350,000 grid points (99x101x35 mesh 

points in the streamwise, spanwise and vertical directions, 

respectively).  Two simulations were performed using the 

k-ω (SST) model.  In the first simulation the 

contributions of both the bed load and the suspended 

sediment transport were considered (kω_total_load).  In 

the second simulation only the bed load transport was 

considered, and the suspended sediment module was 

turned off.  One of the goals of the present study is to 

investigate if the predictions of the equilibrium scour 

bathymetry are closer to experiment when considering 

both modes of sediment transport for a test case in which 

the suspended sediment transport is not thought to be 

important.  

In both simulations the bottom roughness was 

estimated by using (4) and (5) in the initial straight part of 

the channel.  The value of the bottom roughness  was 

found to be close to 0.0185m (~20d

Sk

90), corresponding to 

 (well into the fully rough regime).  The mean 

nondimensional value of the friction velocity at the bed 

was close to 0.11 in the same initial region.  The side 

walls were considered smooth.  The first points off the 

side-walls and channel bottom were situated at 

∆n/H

920~+
Sk

0~0.0002 (∆n+~0.7).   

Fully developed turbulent flow was specified at the 

inflow section.  The profiles of the streamwise velocity 

and turbulent quantities were obtained from a preliminary 

simulation of the flow at the same Reynolds number in a 

straight periodic channel of identical section to that of the 

curved channel at its inlet section.  Non-gradient 

conditions were used at the outlet to impose the velocity, 

concentration profile above the bed load layer and the 

value of the bed load transport rate.   

The experimentally measured value of the bed-load 

transport rate (Qb=0.0205 Kg/(ms)) was used to specify 

the inlet boundary condition for bed load transport.  The 

suspended sediment concentration at the inlet was set 

equal to zero over the whole section as no measurements 

were available and the incoming flow is assumed to 

contain very little sediment above the bed load layer.  The 

Schmidt number was equal to 0.85.   The reference level 

corresponding to the thickness of the bed load layer (a) 

was assumed to be close to 3d90. This made that 16 mesh 

points were contained in the vertical direction inside this 
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Figure 2. Predicted ratios of suspended sediment 

load and bed load to the total load along longitudinal 

direction in the kω_bed_load simulation. 
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Figure 3. Comparison of longitudinal relative water 

depths at three positions inside the channel bend. H 

is local water depth.  Only the results of  simulation 

kω_bed_load are shown. 

 

layer.  This is different from models employing wall 

functions in which the bed load transport is generally 

assumed to occur within the first layer off the wall. 

Similarly to the experiment, the simulations started 

from an initial flat bed and continued until equilibrium 

flow and bathymetry were reached in the curved channel.  

However, as we are using a steady state model in which 

local time stepping techniques are used to accelerate the 

convergence of the solution toward steady state, the 

transient in our numerical simulation is not expected to 

follow the evolution of the flow and bathymetry in the 

experiment.  Only the steady state solution is expected to 

be close to the flow and bathymetry observed at 

equilibrium conditions in the experiment. 

 

Figure 2 shows the variation of the ratio of the cross-

section averaged suspended sediment load to the total 

load (Qs/Qt) in the longitudinal direction for the 

kω_total_load simulation.  The average value of this ratio 

for the simulated flow conditions is close to 0.2 over the 

whole length of the curved bend, confirming the fact that 

the suspended sediment component does not play an 

essential role in the overall sediment transport process.   

The streamwise variation of the relative water depth 

at three positions situated 0.15B from the two banks and 

along the center line of the channel is shown in Figure 3.  

The longitudinal distance Dx, nondimensionalized by the 

width B of the channel, is measured along the centerline 

from the entrance in the straight reach of the channel. The 

entrance into the curved bend is situated at Dx=3.5B and 

the entrance into the downstream straight reach is situated 

around 18B.  As no significant differences were observed 

in the distributions predicted by the two simulations, only 

the kω_total_load simulation results are shown.  Overall, 

the predictions of the longitudinal water depth levels 

within the bend are in good agreement with 

measurements.  In particular, the predictions near both 

banks are very close to the experiments in the region 

around the bend end (15<Dx/B<20).  At the location 

situated 0.15B from the outer bank, the deepest scour is 

observed to occur in the experiment at Dx/B~7.  The 

water depth at that location is 1.7H0.  In the simulation 

the maximum scour occurs slightly downstream at 

Dx/B~7.6 and the water depth is somewhat 

underpredicted (1.55H0).  At the inner bank side, where a 

deposition sand bar has formed, the minimum water 

depth is observed to occur at Dx/B~8.2 in both simulation 

and experiment.  However, at that location the flow is 

shallower in the experiment (H=0.45H0) compared to 

simulation (H=0.5H0).  A second region, where some 

disagreement is observed between the simulation and 

experiment, is situated between Dx=10B and Dx=15B.  

Over this region the scour at the outer bank and the 

deposition at the inner bank are larger in experiment 

compared to simulation by about 0.1H0. 

The numerical predictions of the water depth levels 

are compared with the measurements in Figure 4 at 12 

cross-sections along the channel.  The cross-sections 

cover the entire curved region of the channel, starting at 

its entrance (Dx/B=3.5), and the first 3.5B of the 

downstream straight reach (Figure 1).  The transverse 

(lateral) slope gradually increases from zero at the bend 

entrance, to a maximum value that occurs at streamwise 

locations at which 9<Dx/B<10.  This region corresponds 

to the location of the highest sand bar and deepest scour 

hole (maximum water depth variation in the section is  

TABLE 1. THE  MAIN PARAMETERS OF THE EXPERIMENT  CONDUCTED BY OLESEN [15] 

Test 

Case 

B 

(m) 

H0 

(m) 

U 

(m/s) 

C 

(Chezy) 

(m0.5/s) 

I 

(surface slope) 

d50 

(mm) 

d90 

(mm) 

Fr Re 

T4 2.0 0.135 0.44 29.9 1.58x10-3 0.80 0.855 0.38 59,400 

approximately 20cm in the experiment).  The slope then 

slowly decays until Dx/B~15 and then remains almost 

constant until the end of the bend region (Dx/B=18.5).  

Once the flow enters the downstream straight reach, the 
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Figure 4.  Comparison between predicted (kω_total_load and kω_bed_load simulations) and measured water 

depth levels at equilibrium conditions at different cross sections along the curved bend. 

 

lateral slope returns quickly to horizontal and then 

becomes slightly negative.  For example, in the section 

situated at Dx/B=21.53 the water depth is slightly higher 

near the inner bank, as the scour and deposition patterns 

switch to the opposite bank.   

The variations of the water depth profile in the 

transversal direction predicted by the two simulations are 

found to be in good agreement with the ones obtained 

from experiment over the whole bend.  The only region 

where some noticeable disagreement is observed is 

situated between Dx/B=6 and Dx/B=11.  Over this region 

the largest differences in elevation between the two banks 

are observed in experiment.  Though this is also true for 

the simulations, the maximum difference between the 

water depths in the regions close to the two banks is 

somewhat underpredicted in the simulations.  For 

example, the maximum scour depth at the outer bank is 

underpredicted by 1.5cm at Dx/B=6.32, by 4cm at 

Dx/B=7.65 and by 2.5cm in the section at Dx/B=8.9.  

Though the prediction of the maximum scour depth is 

very close to the experimental value at Dx/B=10.07, the 

water depth starts being overpredicted at the inner bank, 

where the level of the sand bar is about 1.5cm lower 

compared to the experiment.     

As expected, the inclusion of the suspended sediment 

transport in the model did not have a large effect on the 

final equilibrium bathymetry.  Still, the water depths 

predicted by the kω_total_load simulation appear to be 

slightly closer to the experiment in the middle of the 

channel (-0.3m<Y<0.7m) in the sections situated at 



Dx/B=7.65 and Dx/B=8.9 where both simulations 

underpredicted the overall bed slope in the transversal 

section.  The kw_bed_load simulation appears to 

overpredict by about 1cm the water depth at the entrance 

in the bend (Dx/B=3.5) over the whole section compared 

to experiment and to the kω_total_load simulation results.    
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Figure 5. Distribution of the non-dimensional 

bed shear stress (τ/ρU2) at equilibrium 

conditions in the kω_total_load simulation. 

 

Figure 5 shows the contours of the predicted bottom 

shear stress (τ⁄ρU2) inside the channel bend at 

equilibrium for the kω_total_load simulation.  This 

distribution can not be obtained in an easy and accurate 

way from experiment.  The distribution for the case in 

which only the bed load transport is considered was 

found to be quite similar and is not shown.  The values of 

the bed shear stress in Fig. 4 are non-dimensionalized by 

the mean value of the bed shear stress at the inlet section 

obtained from the periodic straight channel simulation.  

As expected, a patch of relatively high bed shear stress 

values is present at the entrance into the bend closer to 

the inner wall.  This happens because the position of the 

maximum streamwise velocity in sections close to the 

entrance into the curved region is situated closer to the 

inner wall.  In fact, this effect, observed around the 

upstream part of the curved channel region in our 

simulation at equilibrium conditions, is present even for 

flat bed channels and was explained, among others, by 

Henderson [16] using Euler equations.  As one moves 

downstream, the area of high bed shear stress gradually 

switches toward the deeper outer wall region inside the 

bend region.   

For polar angles larger than 100
0 inside the bend, the 

maximum bed shear stress is observed to occur close to 

the outer bank.  Interestingly, the maximum value in 

cross sections situated past the end of the curved region 

continues to increase for some distance in the 

downstream straight reach due to the transverse 

momentum acquired by the flow inside the bend.  As one 

moves further downstream, the position of the maximum 

bed shear stress starts moving again toward the center of 

the section.  Sane is true for the depth averaged 

streamwise velocity distribution (not shown).  However, 

as observed from Fig. 4 this process is very slow and the 

distance needed for the distributions of the (depth-

averaged) streamwise velocity and bed shear stress to 

recover the symmetrical shapes corresponding to fully 

developed flow in a straight channel is estimated to be of 

the order of 15-20B.   

 

SUMMARY VI. 

A fully 3D non-hydrostatic model developed by Zeng et 
al. [1,2] to predict the flow, free surface deformation, bed 
load, suspended sediment transport and bed morphology 
in open channels at equilibrium conditions was tested for 
the case of the flow in an 1400 curved bend studied 
experimentally by Olesen [15].    One of the novelties of 
the present model is the use of RANS closures in versions 
that do not necessitate the use of wall functions and in 
which the small-scale bed roughness effects are 
incorporated via the specification of the wall boundary 
conditions.   

The simulations confirmed the experimental 
observations that showed that most of the sediment moves 
as bed load.  The suspended sediment load was estimated 
to contribute only 20% to the total sediment load for the 
flow and geometrical conditions considered in the test 
case.  Consequently, the inclusion of the suspended 
sediment module in the numerical model did not affect 
significantly the equilibrium flow and bathymetry 
predictions.  Comparison of the simulation results with the 
experimental data showed that the model was able to 
predict reasonably well the water depth levels over the 
whole length of the channel.  A slight underprediction of 
the mean transverse bed slope was observed in the 
upstream part of the bend around the region where 
maximum scour occurs.  The reason was an 
underprediction of the maximum scour depth at the outer 
bank, or an overprediction of the minimum water depth at 
the inner bank.   

The model is being applied to predict flows in curved 
open channels with substantial amounts of suspended 
sediment transport and with very strong curvature in 
which three-dimensional effects are expected to be even 
more important than the ones present in the application 
considered in the present paper.  Eventually, the goal will 
be to use the present model to predict equilibrium 
bathymetry in straight and curved channels containing 
hydraulic structures (e.g., bridge piers, bridge abutments, 
spur dikes, intakes, etc.) where local scour phenomena are 
important.  
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