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Abstract— the Thompson boundary conditions are used for 

situations where data are lacking, e.g. in tidal computations 

where only the free surface is known. They can also allow a 

free exit of waves through an open boundary. The technique, 

originally published by Thompson in [1] and described in [2], is 

based on the theory of characteristics, which was applied so far 

in a direction normal to the boundary. Adapting Thompson 

boundary conditions to domain decomposition parallelism 

revealed a weakness of this approach which requires specific 

advection fields for every boundary point. These advection 

fields should have been transmitted to every processor, and this 

was considered too cumbersome. A modified theory is 

presented, which consists of applying the theory of charac-

teristics in a direction following the flow. The resulting 

advection fields do not depend on the original boundary point, 

thus the standard method for characteristics in parallel may be 

used.  

I. INTRODUCTION 

The Thompson boundary conditions are used in Telemac-
2D, in cases where data are unknown on open boundaries. 
This is the case with tidal computations when only the free 
surface is known, or when a wave exits an open boundary. 
The original method uses the theory of characteristics, 
linearized in a direction normal to the boundary. In 
Thompson publication finite differences are employed to 
solve the 3 advection problems of the method, this was done 
mainly because at that time regular grids were common 
practice. Eric David, at Sogreah, then resorted to the method 
of characteristics itself to solve these problems on 
unstructured grids. At that time (1999) it precluded 
parallelism. Then Jacek Jankowski (BAW Karlsruhe) wrote 
an amazing parallel version of the method of characteristics 
(module ''streamline'' in library BIEF). More recently, 
module streamline was adapted by Christophe Denis 
(Sinetics, EDF R&D) for dealing with a list of points that are 
not necessarily linked to mesh nodes, to enable the treatment 
of particles on one hand, and Thompson boundary points on 
the other hand. This was not the end of the story. As a matter 
of fact, the advection fields requested by Thompson 
boundary points depend on the starting point, and these 
specific fields must be defined for the whole domain. In 
parallel this implies that every Thompson boundary point has 
to send its advection fields to all processors, in case its 
characteristic path-lines would go to another sub-domain. 
This was considered too cumbersome, a dead end. Moreover, 

the Thompson theory leads to the fact that two nearby 
boundary points may have their characteristics path-lines 
crossing, because linearization was done in two different 
directions. This is somewhat against the nature of 
characteristics that do not cross unless they carry the same 
invariant. For all these reasons it was considered that the 
theory had to be modified. It seems natural that the 
linearization direction should be the direction of the flow. It 
is what is attempted here. We shall first fully explain what 
was done in previous versions, and then we shall move to the 
new idea. 

II. A DETAILED EXPLANATION OF THE ORIGINAL 

TECHNIQUE 

We explain hereafter in more detail what is said in 
Reference [1] page 105 to 108. We neglect diffusion and start 
from the conservative form of Saint-Venant equations, put in 
the following form taken from [1] at page 31, using the fact 
that the free surface Zs is the bottom topography plus the 
depth h. 

 Sceuhdiv
t

h
=+

∂

∂
)(  (1) 

 x

f
hF

x

Z
ghhuv

y

h
ghuu

xt

hu
+

∂

∂
−=

∂

∂
++

∂

∂
+

∂

∂
)()

2
(

)( 2

 (2) 

 y

f
hF

y

Z
gh

h
ghvv

y
huv

xt

hv
+

∂

∂
−=+

∂

∂
+

∂

∂
+

∂

∂
)

2
()(

)( 2

 (3) 

We write: 

 



















=

hv

hu

h

F  (4) 

 



















+

=



















+=

2

2

2

2

2

2

 and 

h

y
h

x

ghv

huv

hv

G

huv

ghu

hu

G  (5) 

and 

142



XVIII
th

 Telemac & Mascaret User Club Chatou, France, October 19–21, 2011 

 

 

 



















+−

+−=

∂

∂

∂

∂

yy

Z

xx

Z

hFgh

hFgh

Sce

FS

f

f

)(        (6) 

so that the system of three equations can be written in the 
following form: 
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The Thompson method as implemented so far in 
Telemac-2D consists of considering a local system of 
coordinates based on a local normal vector n  (normal to the 
boundary) and a local tangent vector t . If the new system of 
coordinates is denoted η  and ζ , we have 
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We keep these notations here, but the directions n  and 
t may not be linked to the boundary. The components of 
velocity in the new system will be denoted uη and uζ. We 
have 
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We first want to put the system in the form: 
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where xA  and yB  are matrices. For this goal: 
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Now we change the coordinates by writing that for every 
function  f  we have: 
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It gives us a system in the form: 
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or even, still denoting uη as the normal component of 
velocity and uζ  the tangential component: 
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Subsequently, we ignore the variations along the direction 
ζ and try to solve the system: 
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An open question is: which part of )(FS  should be kept 
in this equation? We discard Sce , xF  and yF , and keep only 
the variations of bottom along the direction η. It gives: 
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For the time being, we call it )(FSη  whatever its value 
and go on with the diagonalization of ηA . Now ηA is 
diagonalized as LLA Λ= −

η
1 with: 
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This can be controlled by checking that LLA Λ=η . By 
stating that LdFdW = , we then get back to the diagonalized 
system: 
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Each of whose lines is a simple transport equation with 
source term. Thompson proposes to consider that L  is 
constant in the vicinity of a boundary point, and to write  

FLW = , where 
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the over-bar values being considered as constant (these are 
the values deduced from the local conditions: h, u and v at 
the original starting point of the characteristics). The 
Riemann invariants of the vector W are thus: 

•  )(1 ζζ −= uuhW  (advection with  ηu ). 

•  )(2 ηη −+= uuchW  (advection with  cu +η ). 

•  )(3 ηη +−= uuchW  (advection with  cu −η ). 

and to which can be added, if a tracer T also has to be 
considered: 

•  )(4 TThW −=      (advection with ηu ). 

Pure advection is treated with the method of characteristics. 
To be more precise, a first advection is done with velocity 

.ηu This is done backwards in time. For every boundary 
point of Thompson type, we compute the backward trajectory 
and find, at what is called the foot of the characteristic curve 
(starting point of the trajectory which will arrive at the 
boundary point after t∆ ), the values of depth and components 
of velocity which we call 1

~
h , 1

~u , etc. If we neglect the 
source terms and take the invariants at this foot of 
characteristic path-line, we have: 
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Then, after an advection with velocity cu +η , i.e. with 
results now called 2

~
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~v : 

• )~(
~~

)( 2222 ηηηη −+==−+= uuchWuuchW   

with  ghc = , 
yx

vuu ∂
η∂

∂
η∂

η +=   

and  
yx

vuu ∂

η∂

∂

η∂
η += 222

~~~   

Then, after an advection with velocity cu −η , i.e. with yet 
other values denoted 3

~
h , 3

~u  and 3
~v : 
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All this is valid only if the backwards characteristic goes 
inside the domain. This can be checked by the fact that  

0. >nuconv  , where convu  is the advection velocity field (i.e. 
based on ηu , cu +η  or cu −η , respectively for 1W , 2W  and 

3W ). If 0. <nuconv , all variables with a tilde will be based on 
the boundary conditions prescribed by the user. For example, 
u 1 may be taken equal to:  

xborybor vu
∂

η∂

∂

η∂
+−  

where boru  and borv  are the prescribed components of the 
velocity field. Source terms will be considered later. Once 
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the Riemann invariants are known, the primitive variables 
can be restored by the following formulae: 
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Equation (14) can be used to eliminate h from the three 
others, yielding 
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This form is not the most practical but readily gives, if 
necessary or for checking: 
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We will favour the following formulas for the imple-
mentation: 
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If we do not neglect source terms, they have to be 
integrated along the characteristic curve. Assuming a 
constant L  as done before we have 
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Neglecting again Sce , xF and yF , we are left with 
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Though the source terms could be treated in an explicit way, 
we do the following approximation: η∂∂ /fZ is approximated 
as: 

  ( ) tcu

ZZ ff

∆+

−
~

 

i.e. the variation of fZ along the (backwards) characteristic 
curve divided by the length of the curve, then u is neglected 
so that we have: 
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and eventually η∂∂∆− /fZtgh  is simplified into: 
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It gives the following new formulas for 2W  and 3W :  
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III. NEW THEORY 

A. Linearisation in the direction of the flow 

 

All what has been said in previous section is valid up to 
version 6.0 if we choose for n  the outward normal vector to 
the boundary. The problem is that in this case the three 
advections fields depend on the boundary point under 
treatment. This was heavy in scalar mode, where points with 
the same normal were grouped for optimization and shared 
the same advection field. It becomes even more heavy in 
parallel because these advection fields should be built for the 
whole domain, which implies that for every Thompson point, 
its normal vector must be exported to all sub-domains. It also 
appears very strange that characteristics of the same family 
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stemming from two different points may cross because they 
have a different original direction. 

The new theory consists of choosing advection fields that 
would not depend on a given boundary point. It seems very 
natural to choose, instead of the outward normal vector n , 
the direction of the velocity field itself. We have then: 
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An important consequence of this choice is that the velocity 

ζu  is always 0 by definition, which would lead to  01 =W . 
This is true in fact only if we consider that the direction n  
changes along characteristics, it is false if we keep the 
original n , which would be consistent with the linearisation 
leading to L . Tests show that it is better to consider that 

ζu is indeed not 0, thus sticking to the linearisation. A 
possibility that remains to be tested would be considering 
that ζu is indeed 0, and taking the norm of velocity for the 
component ηu . 

In any case there is an obvious problem when there is no 
velocity, the direction where to apply the celerity c is then 
undefined. A first idea is to cancel also the celerity c  in this 
case, so that all variables will keep their original value. This 
is not possible, because a velocity equal to 0 for a given 
boundary point would then trigger that the depth and velocity 
at this point remain unchanged. This is valid only if there is 
no wave approaching the point, i.e. no velocity and no free 
surface slope. When there is a free surface slope, it seems 
then natural to choose the direction of the vector  

sZgradg− , which is the driving term in momentum 
equation that will create velocity at the next time step. This 
happens to be very important in tests, especially the Gaussian 
hill test case. 

B. Depth and velocity for interpolation 

 

An unexpected problem occurred in the results, showing that 
the tests  0. >nuconv , to decide whether we should take e.g. 
the depth h or the prescribed depth borh for computing h, 
could happen to be wrong. As a matter of fact the method of 
characteristics itself is able to check if the path-line goes out 
of the domain, and in this case it stops and interpolates at this 
exit point. In a corner the average n  of the corner point may 
lead to a different decision, thus leading to wrongly choose 
for example h instead of  hbor. Any case where the value 

nuconv .  is very close to 0 will lead to a random choice, and 
then to large differences if h and hbor are very different. It 
was thus decided to discard the tests 0. >nuconv  and to use 
interpolation fields of h, u and v  that already contain the 
prescribed boundary conditions. A characteristic path-line 
that exits a Thompson boundary will thus find naturally that 

borhh =
~

, without resorting to testing 0. >nuconv . A 
drawback is that for small Courant numbers, when the 
characteristics path-lines will not go far from boundaries, 

their interpolated values will be influenced by the prescribed 
values of the boundary. When prescribed values are correct, 
which is generally the case with box models and 
measurements, this could be also an advantage. With this 
new approach there can be no discontinuity of choice due to 
a truncation error. 

C. Tests 

The more convincing test is the Gaussian hill test, if we 
consider that all the boundaries of the square domain are 
open (test thompson in folder test.gb in telemac-2D release). 
In this case no information is given on the boundaries. The 
circular wave spreading in the square domain is supposed to 
exit freely the domain, without any reflection on the 
boundaries. The results are shown on Figure 1. The new 
method, on the right, gives slightly more circular iso-lines of 
depth. 

Test-case number 2 checks a boundary with prescribed 
elevation and free velocity. In a channel 600 m long and 6 m 
large, a solitary wave is imposed at the left entrance (x = 0). 
The original depth is 10 m and the wave height 2 m. The 
original position of the wave at the beginning of the 
computation  is x0 = −80 m, so that velocity and depth in the 
channel are undisturbed. With A the amplitude and ghc = , 
the celerity of the wave, depth and velocity are: 
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Two cases are considered, both with elevation declared as 
imposed at the entrance and velocity free at both ends, but 
the first one (top of Figure 2) with Thompson boundary 
conditions and the second one (bottom of Figure 2) without. 
The arrival of the wave is equally well treated, but the exit is 
correct only with Thompson conditions, a totally free output 
yielding a spurious reflection. In this solitary wave case we 
have solved the Boussinesq equations, knowing that the 
solitary wave employed here is a first order solution of 
Navier-Stokes equations, which is rather badly treated by 
Saint-Venant equations. The drawback is that Boussinesq 
equations will perhaps not comply with the theory of 
characteristics underlying Thompson conditions… however 
the result clearly shows the improvement brought by 
Thompson. 
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Figure 1 – A circular wave exiting through a square open boundary. 

Comparison of version 6.0 and 6.1 of Telemac-2D. 

 

Figure 2 – A solitary wave with Boussinesq equations, with Thompson 

boundary conditions (top) and without (bottom). 
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