
Conference Paper, Published Version

Grasset, Judicaёl; Audouin, Yoann; Fontaine, Jacques; Moulinec,
Charles; Emerson, David R.
Improving TELEMAC system pre-processing and IO stages
Zur Verfügung gestellt in Kooperation mit/Provided in Cooperation with:
TELEMAC-MASCARET Core Group

Verfügbar unter/Available at: https://hdl.handle.net/20.500.11970/105185

Vorgeschlagene Zitierweise/Suggested citation:
Grasset, Judicaёl; Audouin, Yoann; Fontaine, Jacques; Moulinec, Charles; Emerson, David
R. (2018): Improving TELEMAC system pre-processing and IO stages. In: Bacon, John; Dye,
Stephen; Beraud, Claire (Hg.): Proceedings of the XXVth TELEMAC-MASCARET User
Conference, 9th to 11th October 2018, Norwich. Norwich: Centre for Environment, Fisheries
and Aquaculture Science. S. 145-150.

Standardnutzungsbedingungen/Terms of Use:

Die Dokumente in HENRY stehen unter der Creative Commons Lizenz CC BY 4.0, sofern keine abweichenden
Nutzungsbedingungen getroffen wurden. Damit ist sowohl die kommerzielle Nutzung als auch das Teilen, die
Weiterbearbeitung und Speicherung erlaubt. Das Verwenden und das Bearbeiten stehen unter der Bedingung der
Namensnennung. Im Einzelfall kann eine restriktivere Lizenz gelten; dann gelten abweichend von den obigen
Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

Documents in HENRY are made available under the Creative Commons License CC BY 4.0, if no other license is
applicable. Under CC BY 4.0 commercial use and sharing, remixing, transforming, and building upon the material
of the work is permitted. In some cases a different, more restrictive license may apply; if applicable the terms of
the restrictive license will be binding.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Hydraulic Engineering Repository

https://core.ac.uk/display/326240429?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


14

Improving TELEMAC system
pre-processing and IO stages

Judicaël Grasset1,2,Yoann Audouin1, Jacques Fontaine1, Charles Moulinec2, David R. Emerson2

1EDF R&D, LNHE, Chatou, 78400, France
2STFC Daresbury Laboratory, Sci-Tech Daresbury, Warrington, WA4 4AD, United Kingdom

Abstract— Improvements in the pre-processing (partel serial) 
and IO stages are presented to facilitate running the suite of 
software on high-end machines. Firstly we present how the
memory consumption of partel serial has been decreased and 
secondly, how partel serial can now generate only a set of files 
for all the MPI processes instead of one for each MPI process.
Finally a work in progress dealing with the reduction of result 
files generated by a run of TELEMAC is presented.

I. INTRODUCTION

In order to prepare TELEMAC-MASCARET for very 
large simulations, we present here some improvements in the 
serial version of partel to facilitate running the suite of 
software on high-end machines:

- We have drastically reduced the peak memory 
consumption of the serial pre-processor partel, as the current 
version of partel uses a huge amount of memory to pre-
process meshes, which makes it impossible to use it for large 
meshes (several 10s or 100s million elements) even with
access to fat memory nodes. However, there exists a parallel 
version of partel in the TELEMAC distribution, to 
circumvent this memory issue. It is split into a first serial 
stage where METIS is used as a default partitioner and where 
the mesh nodes/elements are allocated to their respective 
subdomain; and a second stage, which is parallel, where the 
rest of the pre-processing is carried out. Note that for very 
large meshes, the first stage still requires a lot of memory, 
whereas the second stage requires the same number of 
processors as the number of subdomains to be used, which 
makes the whole process tedious.

- We have reduced the number of files generated by
partel serial; the current version of partel generates a set of
files for each MPI process. This is an issue when using a 
large number of MPI processes as the high-end machine 
operating systems have a hard limit on the number of files a 
single user can open.

- We have worked to reduce the number of files 
generated by the solvers themselves. The issue is very similar 
to the one highlighted in the second item, where the input 
files are generated by partel, although the solution is 
different. This is still work in progress.

How these improvements have been made is explained in 
the following sections.

II. THE HIGH END MACHINE

All the benchmarks presented here have been carried out 
using the UK National Facility ARCHER [3].

The ARCHER supercomputer is made of 4,544 compute 
nodes. Each of these compute nodes has two twelve cores 
Intel Ivy Bridge E5-2697v2 and 64 GiB of memory. These 
are the nodes used to carry out all the benchmarks presented 
in this article.

ARCHER has also 376 high memory nodes with 128 GiB 
of memory, but these nodes have not been used for the 
present benchmarks.

III. IMPROVING PARTEL

A. Reduce peak memory consumption

partel is the pre-processing tool used by the TELEMAC-
MASCARET hydrodynamic suite of software. It is used to 
pre-process a mesh in order to distribute the simulation load 
accross the MPI processes. 

A major problem with partel is that it requires a lot of 
memory if a mesh has more than 6 million elements. In order 
to understand the root of the problem, we have used the heap 
profiler called massif [7] from the Valgrind profiling suite. 
This tool can provide the exact line of the program where a 
faulty allocation occurs. 

massif shows that the memory intensive arrays are 
CUT_P, KNOGL, GELEGL. After looking at the contents of 
these arrays, it appears that they are mostly used to store 
zeros, e.g. in some cases the arrays have a non-zero density 
of less than 0.01%!

In order to reduce the peak memory consumption, we 
need to save only the non-zero values while still being able to 
know at which position the zero values should be. To achieve 
this, a better data structure than the existing one is needed. 
Using a hash table seems to be the right solution. It provides 
a quick insert and lookup (O(1) on average) as well as a low 
memory footprint, because it uses a default value of zero (if a 
lookup fails, it means that the index is not in the table and 
then the default value, e.g. zero, is returned). As hash tables 
do not exist in the Fortran standard library, a custom one had 
to be implemented.

The hash table (see Appendix) can insert, modify, lookup
but cannot delete because the original code does not remove 



XXVth Telemac & Mascaret User Conference Norwich, UK, 10-11 October, 2018

14

any element from the arrays. This functionality is thus not 
implemented. The modify function is simply done by a call to 
the insert function. It looks for the value and modifies it. The 
hash table grows by doubling its size (default size is 220 at the 
creation of the hash table).

The arrays are in two dimensions, which means that the 
key for the hash table is a pair of integers. These two integers
are paired together into a single one by using the Elegant 
pairing algorithm of Matthew Szudzik [1]. Then this integer 
is hashed with a modified version of a hash function taken 
from the Google FarmHash library [2].

The internal structure of the hash table is made of an 
array of structures which contains a pair of integers and an 
indicator to know if the element is used or not. The collisions 
– a collision happens when two different keys are hashed to
the same value, and so they should be placed in the same cell 
of the hash table – are solved via linear probing, which 
means that if the cell is already taken, we put the value in the 
next free one. If this mechanism becomes too slow for some 
reasons in the future, we could reduce the maximum number 
of collisions by using a better algorithm or combining it with 
another method, as for instance, the robin hood hashing 
method [4].

The effect of using the hash table instead of the original 
big arrays can be seen in Fig. 1. The benchmark uses the 
geo_malpasset-small.slf mesh from the TELEMAC2D 
examples and METIS [5] is used for partitioning. The 
original mesh is globally refined several times using 
STBTEL (see Table 1), the new meshes are then partitioned 
using both versions of partel serial. The objective is for each 
partition to contain about 10k elements, which is a good 
estimation of the smallest number of elements to be used per 
subdomain for TELEMAC2D to still show good scalability 
on fast high-end machines. The two compared versions are 
the last stable version at the time of this work (V7P3R1) and 
the trunk revision 11,882 with the last patch for the hash 
table [6].

As the original partel requires too much memory we do 
not have enough measurements from the stable version to 
carry out the full comparison. However, we have added an 
estimation of the minimal memory required, which is 
obtained by summing up the memory needed by the three 
biggest arrays (CUT_P, GELEGL, KNOLG), as p*(2n+e)*i ; 
where p is the number of partitions, n is the number of grid 
nodes, e is the number of elements and i is the size of an 
integer (4 bytes in the code). Using this estimation we can 
perform the comparison and see that the peak memory 
consumption has been drastically reduced.

TABLE 1. MESH CHARACTERISTICS AFTER REFINING WITH STBTEL

Case # 1 2 3 4 5 6

No. 
elements

104K 416K 1.66M 6.65M 26.6M 106M

No. points 53K 210K 836K 3.33M 13.3M 53M

Case 4, see Table 1, does not require more than the 
maximum memory available on the compute node (about 
33GiB vs 64GiB), but the simulation still crashes because 
one of the arrays (GELEGL) exceeds the maximum memory 
per allocation prescribed by the cluster administrator. For
Cases 5 and 6, even if we assume that there is no maximum 
memory per allocation imposed, the original partel would 
still crash because the compute node does not have hundreds 
of GiBs of memory available. With the hash table version, 
the memory consumption is much less intensive and it is 
possible to partition a one hundred million element mesh 
without any issue. Note that the main source of peak memory 
consumption is now due to the use of the METIS library.

Figure 1. Peak memory consumption of 2 different versions of partel for 

different size of meshes. (y-axis in logarithmic scale)

We can also see on Fig. 1 that the estimation is below the 
measurements for the first two cases but is on par for the 
third case. This can be explained for the small cases by the 
memory consumption mostly coming from METIS and many 
small allocations. However, when the number of elements 
increases the memory consumption becomes dominated by 
the three aforementioned arrays.

During this optimisation stage, some useless iterations in 
some loops have been removed and the number of readings 
from the disk have also been reduced. These two 
modifications are completely independent from the hash 
table. However, Table 2 shows that they improve the 
execution time.

TABLE 2. COMPARISON OF THE EXECUTION TIME FOR BOTH VERSIONS OF 
PARTEL (IN SECONDS)

Case #. 1 2 3
V7P3R1 0.395 3.49 48.1

Trunk+patch 0.34 1.415 7.73

To replicate this experiment on your own cluster, you 
would need to download TELEMAC from the trunk and set 
it to the revision 11,882. You would also need to download 
the patch that contains the last version of the hash table and 



XXVth Telemac & Mascaret User Conference Norwich, UK, 10-11 October, 2018

14

the benchmarks script from [6]. Other details on how to 
apply the patch are available in the repository.

B. Reduce the number of files created

In the current version of the suite, each MPI process must 
have its own set of input files. These files are generated by 
partel from the original input files given by the user (mesh, 
boundary conditions and potential extra files to account for 
some more physics). For instance, the geometry file is 
divided into p files (one per MPI process). This division is 
repeated for every input file, which leads to at least X*p files 
where X is the number of original input files.

For example, for the TOMAWAC case called 
opposing_current, which requires 4 input files (WACGEO, 
WACCLI, WACPAR, WACCOB), if it is run using 250 MPI 
processes, 1,000 input files will be created by the pre-
processing tool partel. This high number of files can be a real 
issue on a cluster, as the cluster administrator usually limits
the number of files per user. With the high number of files 
generated by partel, it can be a source of problem. 
Furthermore, operating systems have a limit on the number 
of files opened at the same time, and some users have noticed 
this limit which causes TELEMAC to crash.

The patch described in this section intends to reduce the 
number of input files to 2*X for TELEMAC2D, 
TELEMAC3D, TOMAWAC and SISYPHE, by making it 
independent from the number of MPI processes used.

To reduce the number of files generated by the pre-
processing stage, there are mainly two solutions. The first 
one consists of removing the pre-processing tool and carry 
out the partitioning at the beginning of the simulations, so 
that every MPI process would access some parts of the 
original geometry file using MPI-IO. This solution would 
require to modify a lot of files in the codebase and add some 
complexity because of MPI-IO.

The second solution is to concatenate the partitioned
geometry files into a single file. Instead of writing each 
partition in its own file, all of them are appended in a single 
file, as if they were in a queue. This is easy to do because 
partel is sequential and creates the partition in an ordered 
manner, from 1 to p. So when partel has finished to write the 
partition X in the file we know that we can safely append the 
(X+1)th in the same file. This is the solution we chose to
implement.

1. SERAFIN geometry files
All the geometry mesh files created by partel are

concatenated into a single file named XXXGEO-CONCAT 
(XXX stands for T3D/T2D/WAC/SIS). Neither information 
nor padding is added between the meshes. If you know at
which byte the mesh begins and ends it is possible to read it 
as a normal serafin mesh. This information is stored in a 
second file called XXXGEO-INDEX. This index file 
contains the pairs of offsets on which the mesh begins and 
ends. The offsets are encoded in 64 bits integers and should 
be in big-endian (default for the TELEMAC system). The 
offsets are ordered from the mesh part 0 to p-1.

As an example, if the MPI process number 10 needs to 
read its mesh subdomain from the concatenated mesh file, it 
should retrieve the offsets which are in the position (10-
1)*8*2+1 (two integers of 8 bytes on which we add one 
because the first position in the file is one, not zero). When 
these offsets are retrieved the open_mesh_srf subroutine uses 
the first one to set pos_title which corresponds to the 
beginning of the mesh. The other one is used to compute the 
number of timesteps.

2. MED geometry files
The MED file format allows the user to store several

meshes into the same file, so we neither need to concatenate 
nor need the index file. In order to add a mesh into a file, we 
simply concatenate the original name of the mesh with the 
rank of the MPI process that uses it and then add it to the file 
with the normal MED function.

However, there are still some edge cases: TELEMAC 
uses what is called parameters in the MED file format to 
store some information which might be different for each 
mesh part, but MED only allows one set of parameters per 
file. Therefore, in order to store the parameters NPTIR for 
each mesh, its name has been concatenated with the rank of 
the MPI process. It would have been better to create one set 
of parameters per mesh part, but it is not possible.

3. Boundary files (CLI) and PAR files
These two files are ASCII files and for this reason very

easy to concatenate. The boundary file uses the same kind of 
index file as the concatenate SERAFIN geometry file. The 
main difference is that the index is encoded as a 32 bits 
integer, but as it represents a line number and not a byte 
count, this should be sufficient. The main reason to do so is 
because it is then used in the HERMES module to perform a 
comparison against another 32 bits integer.

4. Index files
The index files for the GEO and CLI files are only a list

of integers in 32 or 64 bits. They are binary files as they are 
not meant to be used by the end user. But if someone would 
like to take a look at it, it is easy do so by using the od 
command. For instance, to read the index of a concatenate 
SERAFIN file: od --endian=big -t d8 T2DGEO-INDEX

5. Steering configuration files
A new boolean keyword has been introduced

"CONCATENATE PARTEL OUTPUT" to the dictionaries
of the various modules in order to be used in the steering 
files. If concatenation is asked for, but there is only one 
process, no concatenation is performed. By default the 
concatenation is not activated.

6. partel itself
partel serial has been modified to ask the user whether it

should create concatenated files or not. This has been done 
by adding another question to homere_partel.f. The python 
script runcode.py has also been modified to take the new 
keyword into account. It takes the value written in the 
steering file. If it is not present the default value is NO. This 
value is then added to the input file used by partel.



XXVth Telemac & Mascaret User Conference Norwich, UK, 10-11 October, 2018

1

Some modifications have also been made in order to 
manage the PARAL and WEIRS files which are in read only 
mode. Previously all these files were copied and renamed, 
one for each MPI process, even if the process was only 
reading it. This has been changed, and the files are not copied 
anymore in such cases.

C. Intermediate conclusion

These modifications work fine and are about to be 
commited to the main repository. The added code only 
impacts some parts of the TELEMAC suite. The major 
changes are within the function bief_open_files. However, 
the complexity of the subroutine has not increased. The code 
was slightly refactored and might be even simpler than in 
previous versions. This new functionality is almost 
transparent for the user, the only change residing in adding a 
new keyword in the steering file if needed.

IV. REPLACING THE FORTRAN IO BY MPI-IO TO OUTPUT 
THE RESULTS

In the current version each MPI process outputs its result 
in its own file. This means that for p processes, p result files 
are generated. At the end of the computation the post-
processing tool gretel is called to merge all the result files 
into a single one. As for the input, generating one file per 
process is a bad idea, it can quickly fill up the allowed quota 
given by a cluster administrator.

This section describes the proposed solution to reduce the 
number of result files to only one by making all the MPI 
processes write directly their results at the correct place in a 
unique result file. This implementation is available in the 
rainbowfish branch of the TELEMAC repository.

A. Explanation of the implementation

So far, the implementation only exists for the SERAFIN 
mesh files, so most of the modifications are made inside the 
utils_serafin.f file of the HERMES module. This file contains 
all the subroutines to read and write SERAFIN files. All of 
them use pure Fortran IOs. Writing the results is carried out 
sequentially, e.g. primarily some metadata are written at the 
beginning of the files and then, during the simulation, the 
result of each timestep is added at the end of the files. gretel
is used to read all these results, reordering them and writing 
them into a single result file when the simulations are 
complete. By using MPI-IO it would be possible to write the 
results into a single file directly at the right offset while 
performing the simulations, hence removing the need for a 
post-processing tool.

As can be seen in the algorithm Algo 1, using MPI-IO is 
more complex than just changing Fortran IO for its MPI-IO 
counterpart, particulary if good performance is expected.

B. Performance considerations

Most high-end clusters use a parallel filesystem. For 
ARCHER it is Lustre. In order to get good performance on 
Lustre, frequently reading and writing operations should be 
avoided. In the original TELEMAC distribution, each 
process writes all the data to be dumped on the disk 
sequentially in a single file (the file index is the #processor 

minus one). As this step is sequential, only a few writings are 
required. But to get rid of the post-processing tool gretel 
another method is needed.

Furthermore, striping should be considered to reach good 
performance on Lustre, when using large files. On Lustre, 
each file can be divided transparently into several chunks. 
This is called striping. Each of these chunks can be modified 
in parallel. It is usually advised to stripe big files that are 
modified by several MPI process in order to achieve good 
performance (see [3]). Unfortunately, we did not have the 
chance to test different stripings, as it was corrupting the 
results produced by our implementation.

C. The algorithm step by step

In this section the algorithm Algo. 1 is explained. 
However its description is presented in a different order to 
the one it is actually executed in the code, as a way to more 
simply explain why the main operations are performed.

Create a subcommunicator
Create an MPI derived datatype for the whole file
Write the header
Repeat for each "graphic printout" until end of
computation

Gather results
Order results
Write results

ALGO. 1. STEP TO WRITE THE RESULTS WITH THE MPI-IO VERSION

1. Write results
Switching from Fortran IO to MPI-IO is not as easy as 

just replacing writing statements with mpi_file_write. By 
using mpi_file_write each MPI process writes independently 
from the others resulting in a lot of small outputs. To increase 
performance a collective writing is required, as for instance 
mpi_file_write_all. With this collective call all the writing 
processes synchronise and write at the same time. It the end 
the MPI runtime should be able to merge all the writes into a 
single one, or at least reduce the total number of writing
operations.

Another optimisation is to overlap the writing by the 
simulations themselves. This can be done by using the 
nonblocking function mpi_file_iwrite_all. The only problem 
is that this function has been only added to the MPI 3.1 
standard (2015), and is not supported by older MPI libraries.

2. Create an MPI derived datatype for the whole file
With the Fortran IO version (current distribution), each

MPI process is writing parts of the final result in its own file 
sequentially. The new MPI-IO version is implemented to get 
rid of the post-processing tool gretel. This means that all the 
writers need to know where to write the data in the final file, 
and so each MPI process reorders its result. But this
generates a non-contiguous array of data to dump to the disk. 
And this cannot be done in a single write by default.

The MPI standard provides a way to write efficiently data 
with this pattern. The solution is to create a model of the 



XXVth Telemac & Mascaret User Conference Norwich, UK, 10-11 October, 2018

whole file by using a MPI derived datatype. Each MPI 
process creates a type that represents the exact location of the 
part of the file it wants to modify. Then this type is used in 
the collective call of the mpi_file_set_view subroutine. With 
this new "view" of the file, each MPI process can write its 
result in a single write as if it was writing contiguous data. 
Since every process is doing a single write, they can do it 
with a collective write. This collective write should be
optimised by the MPI runtime to obtain maximum efficiency.

3. Create a subcommunicator
A collective writing operation is needed to have good 

performance. But even with the collective writing routine, 
outputting the solutions can be still relatively slow when all 
the processes try to write at the same time. Profiling the code 
has shown that the more MPI processes try to write, the 
slower it will be. Profiling reports also identified as the cause 
the numerous small writing operations. This means that even
with the collective routine, the MPI runtime is not able to 
merge the writing requests. To help it in this task, the number 
of writers has been reduced.

For each compute node one process is selected as the 
writer of the corresponding nod, usually the first one. All 
these writers are connected via a new communicator. When 
the program needs to write a result, all the non-writers of the 
compute node send their contribution to the writer. 
Afterwards all the writers start writing via a collective call 
using the new communicator, which is not the world 
communicator any longer. With this new way of writing the 
MPI runtime is now able to merge most of the small writes 
into bigger ones, which significantly improves the 
performance.

4. Gather the results
Since only one process per compute node writes the 

result, all the non-writers need to send their data to this one. 
This is done by a MPI communication before every writing. 
Even if it adds some complexity to the code, it is greatly 
beneficial because otherwise the collective call could not be 
used. 

This step is performed by some gather functions, and is 
not very costly because the data do not move from a compute 
node to another one, hence all the operations use the memory 
of the same compute node.

5. Order the results
The MPI-IO version of the code needs to order the 

results. This step requires to be done before every writing
operation and is actually carried out after every gathering
step. Since there exists no sort function in the Fortran 
standard library, we have implemented a basic one (quicksort
[8]), that might become a bottleneck in case of simulations 
using very large meshes, but this has not be observed yet in 
all the tests carried out in this work.

6. Other considerations
The SERAFIN files need to be written in big-endian 

format. The MPI standard provides a way to specify the 
endianess of the data to be written as an option in the 
mpi_file_set_view, native, internal or external32.

The external32 option provides a way to write in big-
endian even when the processor is little-endian (most of the 
current existing processors), but it seems to be pourly
implemented or not at all implemented in most MPI libraries. 
So we had to write a small set of functions to perform the 
conversion before writing the results.

Figure 2. Execution time comparison of the malpasset fine case with 

different writing methods and different numbers of compute nodes

D. Performance comparison

The benchmarks have been carried out on ARCHER. 
Very different timings were obtained for a given simulation, 
and they showed a strong dependence on the load of the 
whole machine. In the worst case scenario a twofold increase 
in execution time could even be observed.

The performance comparison has been carried out in a 
way that all the measurements are recorded as closely to each 
other as possible. In order to do so, the number of executions 
was reduced, and the trust on the timings obtained was
increased.

The test case used in the comparison is malpasset from 
the examples folder, with the case file t2d_malpasset-
fine.cas. The mesh file has been refined twice via the script 
named converter.py to get a new mesh of 1,664,000 
elements. The trunk code revision is 11,883 and the 
rainbowfish branch has been updated to that revision.

Figure 2 shows the comparison between two versions of 
MPI-IO, and Fortran IO from the trunk. In the rainbowfish 
blocking-write (BW) version, the program waits for the 
writings to be completed before continuing the computation. 
In contrast, the rainbowfish non-blocking write (NBW)
version tries to overlap writings and computations.

Using a single compute node all the versions show the 
same performance. But when going for a second compute 
node, the BW version is outperformed by the NBW one. The
NBW version and the trunk show similar performance for all 
tested numbers of compute nodes. Small differences may
occur and result from the interference of the other 
users/processes running on ARCHER at the same time as the 
tests.



XXVth Telemac & Mascaret User Conference Norwich, UK, 10-11 October, 2018

15

E. Intermediate conclusion

The MPI-IO implementation works fine and shows good 
performance for the SERAFIN file format. However, it adds 
a lot of new and complicated code lines to the HERMES 
module. It should also be noted that if the results produced by 
this new implementation are correct with the default options 
of the Lustre filesystem, they become wrong when changing 
the striping. It has not been possible so far, to identify where 
the problem comes from, whether it is because of our 
implementation, the Lustre filesystem or the MPI library.

Because of this issue the branch has not been merged, but 
this feature is at the moment available in the branch 
rainbowfish.

V. CONCLUDING REMARKS

In this paper an efficient way of reducing peak memory 
consumption in the pre-processing tool partel serial has been
presented. This new implementation is aimed to be the 
default one for the next TELEMAC release.

Furthermore, a way to reduce the number of files 
generated by partel by concatenating them has been 
presented. This method works fine and should be pushed to 
the trunk in the coming weeks.

Finally, a method to reduce the number of result files 
generated by a run of TELEMAC by using MPI-IO has been 
presented. This method is still a work in progress and 
requires a lot of complex modifications to the codebase. 
Since the method used for partel has been proved 
successfully, more work should be devoted to investigate if 
this method could be used for the result files too instead of 
the here presented method using MPI-IO.

Appendix: Brief description of how a hash table works
In an array, every array index is mapped to an entry of the 

array. For instance, index 10 maps to cell 10 of the array. 
This data structure gives access to the cell in O(1). A 
downside is that if the index 106 has to be accessed but the 
previous one has not, it is still required to allocate an array of 
at least 106 elements. This is what happens in the original 
version of partel, the index being taken from a big set of 
indeces even if only a few of them are actually used.

A hash table is an array which indices are not necessary 
consecutive integers. More precisely a hash table is made of 
a standard array and a hash function. 

The hash function is used to transform the non-
consecutive indices given by the user to a smaller set of 
consecutive integers that map on the internal array of the 
hash table. An example of a very simple (but bad!) hash 
function would be h(k) = k mod n with k the index given by 
the user and n the size of the internal array. This function 
reduces the input integer enough to make it always fit in the 
table. The problem is that it outputs a lot of the same number 
for different inputs, which is called collision.

Even when using a good hash function, there will always 
be some collisions. There exist several techniques to manage

these collisions. The one used in the newly developed 
version of partel is called linear probing. If two different 
inputs are mapped to the same cell of the table, we try to put 
the second one in the very next cell of the array; if this cell is 
already taken then we try the next one and so on until an 
empty cell can be found. The more we move further away 
from the original cell the more it takes time to write and read 
values in the table.

REFERENCES

[1] Matthew Szudzik, Elegant Pairing, 2006,

http://szudzik.com/ElegantPairing.pdf

[2] https://github.com/google/farmhash
[3] http://www.archer.ac.uk/documentation/best-practice-guide/io.php
[4] Celis, P., Larson, P. A., & Munro, J. I. (1985, October). Robin hood 

hashing. In Foundations of Computer Science, 1985., 26th Annual 
Symposium on (pp. 281-288). IEEE.

[5] http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
[6] https://doi.org/10.5281/zenodo.1323750
[7] http://valgrind.org/docs/manual/ms-manual.html
[8] Introduction to algorithms, second edition, Thomas H. Cormen, 

Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, MIT Press, 
2001


