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ABSTRACT 

The exposure of bridge foundations due to scouring has been recognized as 

the most critical cause for highway bridge failures in Taiwan, yet difficulties have 

been found to identify its risk level. In an effort to develop an efficient measure for 

the detection and estimation of the scour of bridge foundations, a series of field 

vibration measurements were conducted on selected highway bridges of which the 

foundations had been suffered different levels of scouring. In this paper, theoretical 

background of utilizing vibration measurement to estimate the exposure of bridge 

foundation is introduced. The setup of vibration measurement on bridges and 

schemes of data processing are described. Results of the mentioned field tests on 

bridges are presented, and the feasibility of using vibration measurement to evaluate 

the scour of bridge foundations is thus verified. The findings of this study are helpful 

in developing the inspection and monitoring technology for bridge scouring. 

INTRODUCTION 

Several major highway bridge failures occurred in Taiwan in recent years, 

leading to considerable casualties and property losses. Most of them were due to the 

exposure of the pier foundation due to scouring, which reduced the bearing capacity 

of foundation. These disasters can be prevented if the damage or the insufficient 

capacity of the foundation can be detected in advance, and the repair and retrofit 

works, or the restraint of use is timely executed. However, the exposure of pier 

foundation can not be directly observed visually if the water table is above the 

foundation level. Although it is possible to inspect the exposure in a contact manner 

by using instruments directly installed on the foundation, the flow-induced loading 

and the impact of the flow carryovers may destroy the instruments. Consequently, it 

is necessary to develop reliable non-destructive and indirectly scour evaluation 

techniques for bridge foundations. 

The structural vibration response of a soil-structure system shows the 

characteristics of the system itself, and reflects the boundary conditions as well. 

Therefore, the vibration measurement has been extensively applied to the system 

884 



SCOUR AND EROSION 885 

identification and the damage detection of structures. Similarly, the measurement of 

structural vibration can be used to evaluate the foundation exposure due to scouring. 

It is easy to perform and ensures the durability of sensors since they are not installed 

on the foundation . Moreover, the vibration analysis methods are well-developed, and 

many criteria for damage evaluation were proposed and have been widely used. 

In this study, the influence of foundation exposure on the vibration 

characteristics of the bridge superstructures was firstly investigated. The setup of 

field vibration measurements on bridges and the schemes of data processing were 

accordingly proposed. Field measurements on two highway bridges in Taiwan of 

which the foundations had been suffered scouring were then presented to actually 

examine how the foundation exposure affects the vibration behavior of bridge. Thus, 

the vibration measurement on the bridge can be applied to the scour evaluation of 

bridge foundations. It meets the requirements of regular inspection and long-term 

monitoring, and is therefore helpful to bridge management and disaster mitigation. 

DAMAGE EVLUATION USING VIBRATION MEASUREMENT 

Vibration characteristics for damage evaluation 

The vibration characteristics of a structure system, e.g. the natural frequency, 

the modal shape, and the damping ratio, are related to the stiffness and the integrity 

of the system. When the structure is damaged, its natural frequency will be lowered 

because of the decrease of overall stiffness; the modal shape will be changed because 

of the stiffness redistribution due to the defects; and, the damping will be increased 

because of the development of the cracks. Hence, if the changes in the vibration 

characteristics of the structure can be identified experimentally, the structural 

damage can be thus detected (Doebling et al., 1996). In the vibration measurement 

tests, the obtained vibration time history is often transformed into the frequency 

domain by spectrum analysis (e.g. fast Fourier transformation) to show its frequency 

content, and accordingly the structure can be characterized. 

For the detection of the structural damage, instinctively the variation of the 

natural frequency is used. However, some random errors might be produced in the 

measurement due to the electrical noise, the environmental effects, and the variations 

in test conditions. Although the uncertainty level of the natural frequency is usually 

less than on other structural vibration characteristics (Farrar et at. , 2000), its variation 

is sometimes not sensitive enough to reveal the damage level, especially for the local 

component damage in a complex structure. Therefore, the precision of measurement 

must be high enough and the damage must be not too slight so that the damage can 

be detected merely by the variation of the structural natural frequency. 

The natural frequency and the modal shape can be adopted simultaneously for 

a better estimation of structural damages (e.g. Kim et at., 2003) . Nakamura (1997) 

used both the natural frequency and the amplification amplitude of a system 

estimated from microtremors and proposed the vulnerability indices for the ground, 

the embankment, the viaduct, and the derailment/overturn of trains. 

As for the applications of vibration measurement to scour evaluation of 

bridges, Samizo et at. (2007) utilized the decline of the natural frequency of the 

bridge pier identified from micro tremors and impact tests to evaluate the exposure of 
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the foundation due to scouring. In their study, a data dividing and averaging analysis 

scheme was introduced to eliminate the dispersion of the predominant frequencies 

identified from long-term microtremor measurement. 

Vibration measurement tests 

Vibration measurement tests usually adopted for system identification include: 

1. Ambient Vibration Measurement: The ambient vibration is randomly generated 

by man-made or natural disturbances in the environment and has a wide 

frequency content, and is therefore useful for the identification of structural 

dynamic properties. By measuring the input ambient vibration and the excited 

response of the structure simultaneously, the transfer function can be deduced 

for the identification of structural dynamic properties. For example, Ivanovic et 

af. (2000) extracted the natural frequency and the corresponding modal shape of 

a severely damaged RC building from the transfer function obtained from the 

ambient vibration data. For the case that the input motion is unavailable, it is still 

possible to characterize the structure merely by its excited response based on the 

assumption that the ambient vibration can be regarded as a white noise, that is, a 

random process with a constant power spectral density, e.g. Samizo et af. (2007). 

2. Forced Vibration Test: The artificial vibration sources such as moving vehicles, 

the harmonic vibrator, and the hammer impact are utilized to cause the structure 

to vibrate. It helps to recognize the vibration characteristics of the structure for a 

specific vibration source or under a larger strain level. Ko and Chen (2009) 

derived the natural frequency and the corresponding modal shape of a full -scale 

school building specimen from the results of the forced vibration test using the 

harmonic vibrator. Samizo et af. (2007) conducted the impact test on the bridge 

for the natural frequency of the bridge pier. Chen et af. (2009) characterized the 

attenuation of ground vibration using the field measurement of the high-speed 

train induced vibrations and the falling weight test. 

VIBRATION MEASUREMENT FOR SCOUR EVLUATION OF BRIDGE 

Influence of scour on structural vibration of bridge 

For a pier-soil system, when the ground level is lowered by scouring, the free 

length of the column is increased, leading to the decline of its lateral stiffness. If the 

scour is getting more severe and the foundation is exposed, the foundation stiffness is 

degraded so that the total stiffness of the system is further reduced. The stiffness 

reduction can be reflected by the variation of the structural vibration characteristics. 

In order to investigate the influence of foundation exposure due to scouring 

on the vibration characteristics of the bridge superstructures, a FE model of a typical 

single-span simple supported bridge unit was established using SAP 2000 software, 

as shown in the top of Figure 1. It was composed of two piers with caisson 

foundation and a deck with girders . The structure configurations are based on the 

Wulin Bridge in Taiwan. The column, cap beam, and girder were modeled hy beam 

element, the deck was modeled by shell element, and the caisson was regarded as a 

rigid body with the mass of infillings added. The support condition between the cap 

beam and the girder was regarded as a hinge since the small-strain vibration was 
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considered here. The mass of the deck of the neighboring span is considered yet the 

confinement is ignored. The supporting soil is modeled by spring elements, and the 

foundation exposure is simulated by removing the soil springs. 

Firstly, the modal analysis was performed, as shown in the bottom of Figure l. 

The 1st mode is the local bending of the deck, with a corresponding fundamental 

frequency of3.15 Hz; the 2nd mode is the coupled translation-rocking responses of 

the two piers in the horizontal longitudinal CHL) direction, with a fundamental 

frequency of 3.24 Hz; and, the 3rd mode is the coupled translation-rocking responses 

in the horizontal transverse CHT) direction accompanied by some local twist of the 

deck, with a fundamental frequency of 4.40 Hz. Since the local mode of the deck is 

hardly influenced by the foundation exposure, the focus will be on the HL and HT 

vibrations of the pier top hereafter. 
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Figure 1. FE model and modal analysis of a simple-supported bridge unit. 

Then, the dynamic time history analyses were conducted by using white noise 

as the input motion at the foundation. Three foundation exposure conditions were 

adopted, including no exposure, 2.5m exposure, and 5m exposure. The Fourier 

spectra of the excited HL and HT responses at the top of pier in each case are shown 

in Figure 2. The predominant frequencies for the HL and HT vibrations in the no

exposure case are confirming to the fundamental frequencies of the 1st and 2nd 

modes just mentioned, and are lowered as the exposure gets more severe. It is 

noticed that the decline of the predominant frequency for the HT vibration is more 

obvious, and the increase of the peak amplitude with respect to the exposure level is 

also observed. 
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Figure 2. Fourier spectra of excited responses of the bridge unit model. 

Setup and data processing of vibration measurement on the bridge 

1. Vibration sources 

(a) Vehicle induced vibrations: Dynamic loads from the moving vehicles is directly 

applied on the deck and is the main vibration source of the bridge. Nevertheless, 

when the weight of the vehicle is too small or the speed is too low, it might 

merely induce the local vibration of the deck instead of the vibration the entire 

pier-soil system. In this case, the vibration response can characterize only the 

superstructure of the bridge or the vehicle mechanical properties rather than the 

pier-soil system, and in this case the foundation exposure can not be reflected. 

(b) Ambient vibrations : If the ambient vibration is input from the ground into the 

bridge foundation and propagates up to the superstructure, it can be used to 

characterize the pier-soil system. However, the amplitude is usually small and is 

easy to be concealed by the vehicle induced vibration unless no vehicle passing. 

2. Test configurations 

In the vibration measurement, the velocity sensors were used. Sensors were 

deployed on the cap beam of the tested pier or on the deck right above the tested pier, 

as shown in Figure 3, where the vibration responses showed the characteristics of the 

pier-soil system. The vibrations in the HL direction and in the HT direction were 

continuously recorded for 10-20 minute at off-peak traffic flow condition with a 

sampling rate of200 Hz. 

velocity 

I sensor 

... - -. -.~ 

Sensors installed on deck 

Figure 3. Sensor positions in vibration measurement on the bridge. 
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3. Data processing scheme 

When a long-term field vibration measurement is performed, the vibration 

characteristics at different moments show some dispersion since the environment and 

the vibration source are not constant. In order to eliminate the dispersion, Samizo et 

at. (2007) used a concept that sections with a fixed duration are extracted from the 

overall record, and each section is partially overlapped with the next. The Fourier 

spectrum is calculated in each section, and the structural natural frequency is 

identified accordingly. Finally, all these natural frequencies are averaged to obtain a 

representative one. Based on this idea, an averaged Fourier spectrum is deduced in 

this study, as shown in Figure 4. Thus, the structural characteristics can be better 

described, while the time-dependent variance can still be reduced. 

°o~ --T---T---7---7---~ , --~--~ -- ~ ,-~~~ , 
F,aQ""n::)I ll-1.;:) 

Figure 4. Processing scheme of averaged spectrum analysis. 

FIELD VIERA nON MEASUREMENTS OF BRIDGES 

Case study 1- Wensui Bridge 

The Wensui Bridge of Provincial Highway No.3 in Taiwan had suffered the 

exposure of the caisson foundations of the piers located on the riverbed due to 

scouring, and the reconstruction using the pile group to replace the caisson was 

started in late 2008 and has been finished in late 2009. During the reconstruction, the 

riverbed level beside the pier P3 was lowered for the work space below the deck, 

causing the caisson to be exposed around 6-7m, as shown in Figure 5. In order to 

investigate the difference of the vibration characteristics of the bridge superstructures 

at different levels of foundation exposure, the field vibration measurements were 

made simultaneously at the pier P3, of which the foundation was severely exposed, 

and at the neighboring pier P2, of which the foundation was slightly exposed and had 

been reinforced by gabions. In this case, the sensors were deployed on the deck right 

above P2 and P3 respectively since there was no access to the cap beam. 
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Figure 5. Foundation exposure of Wensui Bridge at the field measurement. 

The previous mentioned average spectrum analysis scheme is adopted here to 

reduce the time-dependent variability of the field measurement. Figure 6 shows the 

averaged Fourier spectrum of the vibrations at P2 and P3. For the HL direction, the 

spectral curves of P2 and P3 are similar, with a main peak at the frequency of about 

3.5 Hz. It might be the constraint in the HL direction provided by the deck and 

girders to make the characteristics of the HL vibration of the two piers close to each 

other. Hence, the vibration in HL direction can not reflect the foundation exposure 

very well in this case. As for the HT direction, the averaged Fourier spectrum of P2 

has two peaks, located at 1.7 Hz and 2.1 Hz, respectively; whi le only a major peak at 

1.7 Hz shows for P3 , with a larger amplitude than the peak at 1.7 Hz for P2. 

For a better interpretation of the peaks in these averaged Fourier spectra of 

HT vibrations, the FE model of the unit P2-P3 of the Wensui Bridge was generated 

for the modal analysis. The model is similar to that one in the previous section, yet 

the degree of freedom in the HL direction is restrained for simplification. The modal 

shapes obtained are given in Figure 7. The 1st mode shows the in-phase coupled 

translation-rocking responses in the HT direction of P2 and P3 with a fundamental 

frequency of 1.72 Hz, in which the modal displacement ofP3 is larger than that ofP2. 

The 2nd mode represents the out-of-phase coupled translation-rocking responses in 

the HT direction of P2 and P3 with a fundamental frequency of 2.09 Hz, in which the 

modal displacement of P2 is larger. Consequently, the peak at 2.1 Hz in the averaged 

Fourier spectrum of the HT vibration of P2 characterizes the structural behavior of 

P2, while the peaks at 1.7 Hz in both the spectra of the HT vibration of P2 and P3 

characterize P3. Since the severe foundation exposure of P3 reduced its lateral 

stiffness, the lower predominant frequency and the larger amplitude of the vibration 

ofP3 exhibited, which even influenced the vibration response ofP2. 
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Figure 6. Averaged Fourier spectra of vibration at P2 and P3 of Wen sui Bridge. 
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Figure 7. Results of modal analysis of Wensui Bridge unit model. 

Case study 11- Hsichou Bridge 

891 

The Hsichou Bridge of Provincial Highway No. I in Taiwan also had 

suffered the scour of its group-pile foundation and the piles had been severely 

exposed. The retrofit work of foundations by lowering the foundation level, adding 

piles and enlarging the pile cap was started in May 2009 and is expected to be 

finished in September 2010. The pier P36 was adopted for study. Before the retrofit 

(April 2009) the piles of P36 were about 4.5m exposed, while during ·the retrofit 

work (July 2009) the riverbed level beside the P36 was lowered for the work space, 

causing the piles to be exposed around 7.5m, as shown in Figure 8. Field vibration 

measurements were made at P36 under the two mentioned foundation exposure 

conditions respectively. In this case, the sensors were installed on the cap beam. 

Figure 9 depicts the averaged Fourier spectra of the vibrations at P36 at 4.5m 

exposure and at 7.5m exposure. For the HL vibration, the predominant vibration 

frequency is about 3.6 Hz at 4.5m exposure and is 3.4 Hz at 7.5m exposure. The later 

is slight lower yet the difference is smalL It might be also due to the constraint in the 

HL direction from the superstructure. As for the HT vibration, the averaged Fourier 

spectrum of the 4.5m exposure case has two peaks, located at 2.0 Hz and 3.7 Hz, 

respectively, and the averaged Fourier spectrum of the 7.5m exposure case also has 

two peaks located at 1.5 Hz and 3.5 Hz. Assuming that the peaks around 1.5-2 Hz 

and around 3-4 Hz are corresponding to two different vibration modes, then the 

former one reflects the foundation exposure better. The corresponding predominant 

frequency at 7.5m exposure is 20% lower than at 4.5m exposure. It should be noted 

that though the amplitude of the averaged Fourier spectrum is larger for the 7.5m 

exposure case in both direction, it is not appropriate to attribute this to the foundation 

exposure since the test conditions (especially the vibration source) were not the same. 

Similar to the previous case study, the FE model of the unit P35-P36 of the 

Hsichou Bridge was established to perform the modal analysis for a better 

interpretation. The model is similar to the previous models except the pile was 

modeled by beam element. The modal shapes of the model with an exposure of 4.5m 

are given in Figure 10. The 1st mode is the in-phase coupled translation-rocking 

responses in the HT direction of P35 and P36 with a fundamental frequency of 1.97 

Hz, close to the first predominant frequency from the field vibration measurement in 

the 4.5m exposure case. The 2nd mode is the out-of-phase coupled translation

rocking responses in the HT direction ofP35 and P36 with a fundamental frequency 
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of 2.29 Hz. The 3rd and 4th modes are the local bending and twist of the deck, with 

the fundamental frequencies of 3.49 Hz and 3.83 Hz. For the case of 7.5m exposure, 

the modal shapes of the first four modes are similar. The fundamental frequencies for 

the 1st and 2nd modes are 1.54 Hz and 1.74 Hz, which dropped significantly, while 

those of the 3rd and 4th modes are 3.42 Hz and 3.60 Hz, only slightly lowered. Thus, 

it can be concluded that the predominant frequencies of the HT vibration around 

1.5-2 Hz from the field measurements were corresponding to the in-phase coupled 

translation-rocking mode in the HT direction of the two piers, and were lowered 

significantly when the foundation was more severely exposed. While those around 

3-4Hz were related to the local mode of the superstructure and therefore were close 

in the two foundation exposure condition. 

April 2009 (piles exposed around 4.Sm) July 2009 (piles exposed around 7.5m) 

Figure 8. Foundation exposure of Hsichou Bridge at the field measurement. 
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Figure 9. Averaged Fourier spectra of vibration at P36 of Hsichou Bridge. 

1st mode 

f= 1.97Hz 

Figure 10. Results of modal analysis of Hsichou Bridge unit model. 
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CONCLUSION AND FUTURE APPLICATIONS 

According to the results of the numerical analyses and field vibration 

measurements presented, several conclusions can be drawn as follows: 

I. By the dynamic analysis of the bridge unit FE model, it is shown that the 

foundation exposure will decrease the overall stiffness of the bridge-soil system 

and lower the predominant frequency of the vibration of the superstructure, 

especially in the HT direction. 

2. According to the results of field vibration measurements, the influence of the 

foundation exposure on the vibration behavior of the superstructure of the bridge 

is actually verified. 

3. The vibration measurement on the superstructure of the bridge gives a reasonable 

assessment of the foundation exposure due to scouring. In addition, since the real 

bridge is a complex soil-structure system, it is recommended that a numerical 

model should be established for a better interpretation of the vibration response. 
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