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A. A wide field of new applications 

This new method opens a door to a new range of 
hydraulic models. Typically applications are the impact 
quantification for any point of a TELEMAC-2D -3D or 
SISYPHE model.  

 Any point I (and its connected parameters velocity V, 
water level W.L., manning's n ...)  

• influences the flow conditions at a power plant intake 
and the maximum energy level which results in more or 
less electrical energy.   

• influences robustness and sensitivity of hydraulic 
relevant structures and hydraulic driven processes of all 
kinds (like dams, bridges, flood protection measures, 
morphological aspects, a.o.)  [3]. 

In combination with gradient based optimization methods 
the adjoint technology can be used for 

• automatic calibration of thousands of roughness values at 
the same time, e.g. to fit water levels to measured values  
(until today an unsolved every day problem). 

• semiautomatic modification of single point coordinates 
to modify flow conditions according to a target function. 
Airfoils and drag coefficients of cars have already been 
optimized with AD in mechanical engineering (shape 
optimization). 

B. Using the classic forward calculation 

The influence of boundary & initial conditions like W.L. 
and V(i), i=1...N, on a target parameter like Q for questions 
as in Fig. 1 (middle) is described with the gradient (left part 
of formula 1): 
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Until today the differential analysis is the common way 
to analyze and optimize the flow field or morphology (right 
part of formula 1). Every element of the gradient 
approximation has to be computed separately with slightly 
different input parameters. For millions of points millions of 
calculations are necessary or the points have to be grouped, 
what will bias the results. 

Since the early days of physical flow models the real 
target is to minimize the difference between a real and a 
desired flow field (maximum erosion, water levels, velocity 
field etc.).  The main question in many cases is that one few 
parameter (the difference) depends on many.  

This can be any mathematically relevant variable, but 
especially for open channel flow it is the spatial distribution 
of parameters in big FE meshes. But an analysis for millions 
of points (each one is a bathymetric feature) is too expensive 
normally.  

C. Backward interpretation with adjoint models 

The adjoint model of TELEMAC-AD computes the 
entire gradient from formula 1 in only 1 forward run and its 
following backward interpretation. 

In the adjoint mode, TELEMAC-AD records every 
relevant instruction during a forward evaluation in the so 
called “tape”. At the end of the forward run all target values 
and the process flow is stored in the tape. The backward 
interpretation propagates the adjoints (derivatives) from the 
target parameters (at the end of the tape) to the input 
parameters (at the beginning of the tape). During this process 
every single instruction is interpreted by its adjoint version. 
The adjoints obtained for the input parameters can now be 
used as dependency information, for robustness or sensitivity 
analyses or in a next step for gradient based optimization 
methods. 

II. EXAMPLES 

Two examples with TELEMAC and SISYPHE illustrate 
the potential of the AD technology. Both are based on the 
open source version of TELEMAC v6p2. 

• A morphodynamic 2D SISYPHE flume model with 
92 roughness zones is automatically calibrated. 

• A hydraulic 2D TELEMAC river model is 
examined to quantify the influence of 95000 
spatially distributed parameters on the shear stress 
in 1 specific point. 

Further example cases can be found at [3] and 
www.uwe-merkel.com/TELEMAC-ad. 

 

Figure 2.  Setup of the flume: LxWxH: 16m x 1,1m x 0,6m; dune height: 

0,1m; runtime: 14400 s 
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The target function J is reduced in each iteration step, 

which means that for each step a full SISYPHE-AD run is 
executed and its resulting gradient is used in a wrapping 
minimization program.  This mantle program calls CG, 
BFGS or SLSQP algorithms, which are part of the 
MINPACK optimization library [10]. The optimization 
terminates if the cost function goes below a threshold or 
doesn't converge. The master thesis of Monika Schäfer 
focuses on the performance of these algorithms [4]. 

Fig. 4 shows the progress of the optimization, Fig. 5 the 
development of bathymetry and roughness during the 
optimization process. The observation bathymetry 
(transparent gray) is converging very fast, while the 
roughness (grain size roughness) is developing slower. But 
after 158 full calculations of SISYPHE-AD the cost function 
J is below the terminating threshold 10-14.  

B. Dependency of shear stress in a groyne head scour 

221_Donau is a public validation example for 
TELEMAC-2D and it is available at 
OPENTELEMAC.ORG. It is used here to analyze how the 
surrounding bathymetry and the neighborhoods roughness 
distribution influence flow conditions in a certain point of a 

real river. The shear stress τ  (taken from 12 points in the 
middle of the groyne head scour, see marker in Fig. 6 is the 
target of this analysis.  

 

Figure 6.  Perspective view of the 221_Donau model, with a dominant 

groyne and its head scour. Right: Geometry defined with approx. 47500 
mesh points. Left: Scalar velocities. 

In difference to the first example this real world example 
has highly complex multidimensional flow conditions with 
islands, groynes, tidal flats, and many other flow interacting 
features. The spatial interaction is broken down to local 
values for every point with TELEMAC-2D-AD, here with 
focus on the roughness and elevation values of the 47500 
points in the 2D mesh. The dependency is individually 
quantified in total for 95000 parameters. This example is 
chosen to proof the usability for practical purposes.  

1) Classic solution with finite differences (FD): 

Solving per point independent dependency analysis 
requires a base calculation and 95000 full TELEMAC-2D 
calculations with a slight modification of one input 
parameter. Only this will proof spatial independent input-
output dependencies.  

See formula 4 and 5:  

z(i)h)+(z(i)
τ(z(i))h)+τ(z(i)

δz(i)
δτ

−
−

≈   (4) 

ks(i)h)+(ks(i)
τ(ks(i))h)+τ(ks(i)

δks(i)
δτ

−
−

≈   (5) 

One calculation runs 5min on a up to date desktop 
computer, this means 330 days for all calculations or a very 
expensive outsourcing on a bigger cluster. 

And the result is only valid for:  

• one parameter set (discharge, bathymetry, 
roughness, turbulence setting ...) 

• the simulated time span 

• very limited extrapolation, due to the nonlinearity 
in many sub models (see Fig. 8!).  

Practical projects usually observe many variants, 
optimization projects even more, which leads to very 
expensive computational costs, making this technology 
economically unusable for most small and medium size 
projects. 

2) Adjoint solution (AD): 

TELEMAC-AD calculates the full forward run and 
backward interpretation in 678 min on the same desktop 
computer, and returns all 95000 adjoints for the shear stress 

τ. The gain of computational speed equals the usage of an 
approx. 1000-core cluster when using the classic FD method. 
Some results are displayed in Fig. 7. At the time of writing 
TELEMAC-2D-AD is still not parallelized, and not 
optimized for speed, which means that a further speedup is 
expected after completion of these ongoing developments. 

3) Interpretation of the resulting adjoints: 

Adjoints computed by TELEMAC-2D-AD describe the 

change of the output τ  as a linear relation of its specific 
input. Therefore extrapolations for other input parameter sets 
can only be done with great care.  

The dependency of the bathymetry on τ  at the simulated 
flow conditions is dominated by the obvious separation of 
the 2 arms around the upstream island. If the southern arm, 
which has low flow, is lifted, then more water is pushed to 
the main channel (1). The same happens if the surrounding 
of the groyne and the opposite site (2) of the cross section 
are elevated. A kind of funnel effect increases the shear 
stress. Decreasing the scour itself increases the shear stress 
as well (3).  

The perspective view from downstream (4) reveals that 
some other groynes have a high impact, as they influence 
with their back draft the water level in the examined area. 
The lower groynes, which are smaller and shaded by the 
bigger ones therefore don't influence the examination zone 
anymore. Again the reader shall be warned that only a 
change of few decimeters in any topographic feature might 
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change the result totally. The general noise in the adjoints 
origins from bumps and holes in the bathymetry. Following 
the direction of the adjoints will smoothen the main channel 
and therefore accelerate flow and increase the shear stress.  

On the contrary for bed roughness a clear tendency is 
visible: the smoother the bed along the main channel, the 
higher the shear stress at the groyne head scour. If the 
roughness gets higher on the opposite shore (5), more water 
is pressed to the scour. Classic methods (numerical and 
physical) would have given a rough idea about this 
dependency, but for the first time a hydraulic model can 
exactly define the spatial limits of the relevant area. The 
scour itself has a different tendency (6): Increasing the 
roughness in the target point obviously increases the local 
shear stress. 

III. ALGORITHMIC DIFFERENTIATION 

Algorithmic differentiation (AD) is a mathematical 
method that extends existing computer programs in a way 
that for a priori chosen results their dependency to a priori 
chosen input variables is additionally calculated. AD tools 
work on the original source code, and not as a new 
implementation of the mathematic model. Differentiated 
models obtained by AD compute derivatives in machine 
precision for a given input parameter set. 

Since some time aerospace, mechanical engineering and 
meteorology are working successfully with adjoint models. 
They use AD for uncertainty quantification, data 
assimilation, optimization strategies and inverse problems. 

Inverse problems in hydraulic engineering are for example 
the quantification of boundary and initial conditions for 
given results. 

The principles of AD are based on the fact, that every 
calculation is finally a combination of basic operations (+, -, 
*, /, exp, sin,...) with well known differentiation rules. All 
more complex formulas are a sequence of these; derivatives 
of basic operations are combined by the chain rule to 
derivatives of sequences. 

Two basic techniques are used for first order derivatives:  

• Tangent linear models (forward models) work the 
same direction as finite difference (FD) 
approximations of derivatives, but at machine 
precision. Fig. 8 shows this advantage against FD, 
which has to use 2 calculation results for each 
derivative. 

• Adjoint models (inverse interpretation of the 
forward model) propagate the adjoint (derivative) 
from the final results back to initial and boundary 
conditions. For the backward interpretation the full 
path of the forward calculation has to be recorded. 
If the forward model has just a single target 
parameter value, the vector of derivatives (the 
gradient) can be calculated in only one backward 
interpretation. 

 

 

 

Figure 7.  Result of a single TELEMAC-2D-AD calculation. Top: Dependency of the shear stress in the scour (marked) to neighbouring geometry information. 

Bottom: Influence of the roughness on the shear stress [values per m²]. Values are only valid for the current flow conditions and setup! 
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Second or higher order derivatives can be calculated by 

combining the basic techniques. Higher order derivatives 
might speed up optimization processes significantly. For 
further information see [5]. 

The AD-enabled NAG Fortran Compiler [7], developed 
at the Institute”Software and Tools for Computational 
Engineering” (STCE, University RWTH Aachen) is a 
commercial extension of the NAG FORTRAN compiler 
(Numerical Algorithm Group, Oxford, UK). It uses a hybrid 
technique of source code transformation and an efficient 
overloading based run time library. [6] discusses this 
methods in detail. The hybrid approach allows an efficient 
differentiation of large projects like the TELEMAC-SUITE. 

For practical usage the recording of all iterations and all 
operations within these iterations is a memory consumption 
problem. For the 221_Donau example 10TB of RAM would 
be necessary. Therefore TELEMAC had to be extended by a 
so called checkpointing technology. What means that every 
calculation can be saved to RAM and restarted from RAM 
with binary identically results at any point in time, with only 
a minimum recording of variables.  

For the backward propagation of the adjoints (backward 
time step wise) the necessary detail information about 
subprogram internal operations is recalculated from the 
checkpoints in reverse order. This increases calculation 
effort by 200%, but reduces the RAM usage, as the 
minimum checkpointing system only needs 300MB for 1000 
time steps in the 221_Donau example, plus 10GB for the 
current time step. 

 

Figure 8.  Water level as a function of the roughness ks. Normally the 
dependency is not linear. Dependency is described as first derivation, this 

means the ascent of the tangent is defined in only one point for algorithmic 

(~analytic) differentiation and in two for finite differences. 

IV. CONCLUSIONS 

The methods of reverse interpretation and algorithmic 
differentiation enable a very fast quantification of 
dependency gradients with millions of influence parameters! 
The dependency of any numerical result (energy, evolution, 
transport rates, risk ...) on any numerical input value (spatial 
or global) can be quantified independently within only one 
run of the adjoint model. For hydraulic modelling especially 
the ability to dissolve spatial interactions opens a gate to a 
new generation of models, which solve until now unsolved 
problems. Spatial independent sensitivity and robustness 
information helps to understand complex flow situations and 
can be used for gradient based optimization processes [3]. 
This method is currently unique for open channel flow 
software, and the growing number of new examples will be 
continuously updated on www.uwe-
merkel.com/TELEMAC-ad. 

This first project was funded by the BAW with 
participation of the EDF. Their aim is to have a tool that 
dissolves the interaction between morphology, flow and 
constructions. 
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