HENRY

Hydraulic Engineering Repository

Schefczyk, Lukas; Gutjahr, Oliver; Heinemann, Günther
 Climate change impact on thunderstorms: Using highresolution COSMO-CLM simulations to determine changes in thunderstorm occurrences

Zur Verfügung gestellt in Kooperation mit/Provided in Cooperation with: Deutsche Meteorologische Gesellschaft, KlimaCampus Hamburg

Verfügbar unter/Available at: https://hdl.handle.net/20.500.11970/104464
Vorgeschlagene Zitierweise/Suggested citation:
Schefczyk, Lukas; Gutjahr, Oliver; Heinemann, Günther (2015): Climate change impact on thunderstorms: Using high-resolution COSMO-CLM simulations to determine changes in thunderstorm occurrences. Poster präsentiert bei: 10. Deutsche Klimatagung, 21. bis 24. September 2015, Hamburg.

Standardnutzungsbedingungen/Terms of Use:

Die Dokumente in HENRY stehen unter der Creative Commons Lizenz CC BY 4.0, sofern keine abweichenden Nutzungsbedingungen getroffen wurden. Damit ist sowohl die kommerzielle Nutzung als auch das Teilen, die Weiterbearbeitung und Speicherung erlaubt. Das Verwenden und das Bearbeiten stehen unter der Bedingung der Namensnennung. Im Einzelfall kann eine restriktivere Lizenz gelten; dann gelten abweichend von den obigen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

Documents in HENRY are made available under the Creative Commons License CC BY 4.0, if no other license is applicable. Under CC BY 4.0 commercial use and sharing, remixing, transforming, and building upon the material of the work is permitted. In some cases a different, more restrictive license may apply; if applicable the terms of the restrictive license will be binding.

Climate change impact on thunderstorms: Analysis of thunderstorm indices using high-resolution COSMO-CLM simulations

Lukas Schefczyk, Oliver Gutjahr, Günther Heinemann

Environmental Meteorology, University of Trier, Germany
ta RheinlandPfalz
MINISTERUM FÜR BILDUNG,
WISENCCAAT, JUCEND
UND KULTTUR

1. Introduction

It is generally assumed that temperature increase, due to global climate change, will increase thunderstorm and heavy precipitation intensity. In the present study it is investigated whether the frequency of thunderstorm occurrences will in- or decrease and how the spatial distribution will change for the A1B scenario. The region of interest is the Saar-Lor-Lux region (Saarland, Lorraine, Luxembourg) with a focus on Rhineland-Palatinate.

2. Study area

Abstract

 Figure 1a: The domain of the COSMO-CLM of 0.04 , with the borders of Saar-Lor-Lux model with height of orography (resolution and Rhineland-Palatinate marked) of 4.5 km , borders of Saar-Lor-Lux and of $4 . \mathrm{km}$, borders of Saar-L-L-Lux and Rhineland-Palatinate marked, black box is area of interest)

3. Model and data

COSMO-CLM

- COSMO-CLM (v4.8_clm11, [1]) forced by 18 km consortial runs [2]
- 30-year time slices: 1971-2000 (C20) and 2071-2100 (A1B)
- only sommer months (JJA) are used
- Indices CAPE, SLI, TSP
- Runge-Kutta scheme, Tiedtke scheme, graupel scheme, $\mathrm{dt}=45 \mathrm{~s}, 42$ levels, 65×65 grid points and 254×254 whole

- Used indices to determine potential occurrences of thunderstorms
- Convective Available Potential Energy CAPE [3] $C A P E=\int_{z_{0}}^{z} \frac{g}{T_{v U}}\left(T_{v}-T_{v U}\right) d z$
- Surface Lifted Index SLI [4] $T_{e 500 h P a}-T_{p}$
- Thunderstorm Severity Potential TSP [5]

$$
D L S \times w_{\max }
$$

DLS $=$ Deep-Layer-Shear, wind difference between 6 km height and 10 m
$w_{\max }=\sqrt{2 \times C A P E}$

- Classifying indices for counting purposes
Table 1. : Classes for CAPE, TSP and SLI class CAPE / TSP in J/kg SLI in K effect

$0-100$	>0	non
$100-300$	0 to -3	shower
$300-1000$	-3 to -5	light Thunderstorm
$1000-2500$	-3 to -5	medium TS
$2500+$	<-5	severe TS

- Counting the occurrences based on daily maximum data
- Calculating differences: A1B-C20
- Performing a t-test and a power analysis to quantify the significance and uncertainty of the signal [6]

5.Results

Figure 3: Relative differences of potential thunderstorm occurrences (CAPE, SLI and TSP) between 1971-2000(C20) and 2071-2100(A1B).

Table 2 : Area mean climate change signals (D) of potential thunderstorm occurrences of the significant grid boxes for CAPE classes. The corresponding results of the two-sided t-test ($\alpha=$ 5%) with its power (\tilde{x}) and standard deviation (σ) of the power is shown. The ratio of significant grid boxes to the total number of grid boxes is shown in the $\%$ column. n shows the area mean of occurrences per year for C20/A1B.

\[

\]

Figure 2 shows the number of potential thunderstorm occurrences of the severe classes per year.

Nearly no occurrences over the North Sea and high occurrences over mountainous regions.
All three indices show a local maximum in the Rhine valley near the Black Forest.

- Figure 3 shows the relative differences of the most severe thunderstorm occurrences (A1B - C20)
- High CAPE values show an overall decrease, with significant decrease over the Netherlands.
A significant increase can be found over the Alps. Slight non significant increase in the regions of between the Hunsrück and Palatinate Forest for the severe classes. All Classes of CAPE show a decrease (Table 2), except the non thunderstorm class (class 1).
SLI and TSP show same results as CAPE.
All three non-severe classes (class $1-3$) have high power values.
Higher uncertainty for climate change signal for severe thunderstorms (power $=0.60-0.68$).

6. Conclusion

The investigation shows a significant increase in the non-thunderstorm class and an overall significant decrease in the light to medium thunderstorm classes.

The severe thunderstorm classes also show a decrease in occurrences, but the changes are not overall significant with high uncertainties.
Regions like Netherlands, Belgium and Northern France show significant decrease. The Alps even show a significant increase.

It can be concluded, that an overall decrease of thunderstorm occurrences most likely happens. The assumption of a raise in thunderstorm occurrences intensity, due temperature increase in the future, cannot be confirmed. At least with our simulations.

Acknowledgements

References

[2] Hollweg et al. (2008): Ensemble Simulations over Europe with the Regional Climate Model CLM forced with IPCC AR4 Global Scenarios
[3] Doswell, C. A. und Rasmussen, E. N. (1994): The Effect of Neglecting the Virtual Temperature Correction on CAPE Calculations. Weather and Forecasting 9(4), 625-629.
Galway, J. (1956): The lifted index as a predictor of latent instability. Bull. Amer. Meteor.Soc. 37, 528-529.

