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1 INTRODUCTION 

There is very often a necessity to regulate a river or a stream by changing its slope (what is called: river 
training works), especially in mountain regions where streams are characterized by high gradients and 
heavy scouring and erosion tend to occur. In such cases designing and constructing of hydraulic structures 
has been advised for stabilizing a riverbed and riverbanks (Rhone 1977, Ratomski, 1992). Usually such 
structures are drop hydraulic structures. Their construction is well known to designers and they are de-
scribed in detail in the professional literature (e.g. Shields and Cooper 1995, Rosgen 2001, Scurlock and 
Thornton 2011 and 2012). Unfortunately in many places, if a structure is built, it can spoil the natural 
beauty of a mountain stream. If it functions properly in terms of hydraulics, it is rarely similar to the natu-
ral geomorphological features of a stream (Ratomski, 1992). Construction of rapid hydraulics structures 
(RHS) similar to natural river riffles is advised when considering a channel slope reduction (Kajak, 1992, 
Ślizowski, 1993). Such hydraulic structures are environmentally friendly, since they simulate a natural 
river bed and river bed forms (riffles), do not require additional fish passage consideration, and aerate 
flowing water naturally (Bhuiyan and Wormleaton 2007, Novak et al. 1996). Above all they are similar to 
natural river features and do not disturb a river cross-section appearance when well-constructed (see Fig-
ure 1). 

The process of creating local scour resulting from water and debris is one of the least to identified 
problems in the rapid hydraulic structure systems. So far, there is no sufficiently precise mathematical de-
scription of the process of local erosion arising downstream the rapid structure. Developing fully reliable 
predictions on the basis of laboratory tests has often been impossible because of the time required to ob-
tain experience the so-called final scour. However, Mason and Arumugan (1985) provided comprehen-
sive data analysis in available literature to demonstrate the validity of the ultimate scour hole concept. 
Lack of understanding of the process of creating local scour below the rapid structure is the main reason 
for failure of structure in various studies (e.g. Bormann and Julien 1991). Scour downstream similar 
structures (e.g. block ramps and grade-control structures) has been carried out by various researchers. Ve-
ronese (1937) conducted one of the first studies on scour downstream hydraulic structure. The character-
istic parameters defining scour hole downstream hydraulic structure have been experimentally studied by 
Hassan and Narayanan (1985) and Farhoudi and Smith (1985). Bormann and Julien (1991) used a large 
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scale experiment to investigate the scour downstream a grade control structure with a unit discharge of 
2.5m

2
/s. Mossa (1998) and D’Agostino and Ferro (2003) analyzed the scour formation downstream grade 

control structures. Lenzi and Comiti (2003) analyzed scour hole formation downstream 29 drop struc-
tures, Marion et al. (2004) experimentally analyzed the effect of bed sill spacing and sediment grading on 
potential erosion by jets over fills. Ben Meftah and Mossa (2006) analyzed the formation of scour holes 
downstream bed sills in low gradient channels. Pagliara and Hager (2004) conducted experimental work 
to study the scour process and characteristics downstream a block ramp in case of uniform bed material. 
More recently, Pagliara (2007),and Pagliara and Palermo (2008) investigated the scour mechanics down-
stream a block ramp and examined the influence of sediment gradation on the scour mechanism using two 
physical models. Scurlock and Thornton (2012) studied the equilibrium scour formation downstream 
three dimensional grade control structures. 

Figure 1. RHS on the Krzczonowski stream (photo by A. Radecki-Pawlik) 

Most of the previous experimental studies aimed at characterizing the scour hole downstream grade con-
trol structure by a maximum scour depth, which is a function of the incoming flow conditions and soil pa-
rameters representative of bed particle size distribution (e.g. Mason and Arumugam 1985, Bormann and 
Julien 1991, Lenzi and Comiti 2003, Marion et al. 2004 and Pagliara 2007). However, there are no relia-
ble equations for calculating scour downstream rapid hydraulic structures and thus it is of usual practice 
to adopt scour formulae developed for other structures under different hydraulic conditions. While these 
formulae provide estimates for the required scour depth, they might have some deficiencies in capturing 
accurately the scour downstream rapid hydraulic structures. Errors in prediction of scour hole using some 
of these formulae can reach 300%. Thus, it is required to have specific equations developed mainly for 
rapid hydraulic structures considering real measured rapid parameters. 

Recently, evolutionary algorithms have been used as a superior alternative for regression analysis and 
artificial neural networks, for finding relations between various parameters and producing a higher R-
squared value and less mean error in prediction using newly developed equation. Genetic programming 
(GP) is known as a technique with the capability of generating mathematical equations, which are able to 
define models for the given training data. Genetic programming was proposed by Koza (1992). GP is 
founded on the basic principle of Darwin’s theory of evolution in nature. GP attempts and succeeds at ap-
plying the evolutionary theory in order to find the best or the most appropriate equation (solution)for a 
problem. The motivation of using a GP approach is its ability to evolve a model based entirely on prior 
data without the need of making underlying assumptions. 

Applications of evolutionary algorithms, especially genetic programming (GP) in water and environ-
mental engineering is not as much as the other soft computing tools of artificial neural networks. They are 
restricted to relatively fewer sub-areas including; rainfall-runoff relationship and unit hydrographs in 
catchments (Aytek and Alp 2008, Wigham and Crapper 2001, Savic et al. 1999, Keijer and Babovic 2002, 
Dorado et al. 2003, and Rabunal et al. 2006), sewer and water supply networks (Dorado et al. 2002, 
Babovic et al. 2002), river flow and water quality in watersheds (Drunpob et al. 2005, Harris et al. 2003, 
Giustolisi 2004, Preis and Otsfeld 2008), oceanic and sea coastal waves (Gaur and Deo 2008, and Ghor-
bani et al. 2010), irrigation planning (Raju and Kumar (2004), river channel scour downstream spillway 
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(Azamathulla et al. 2008), pan evaporation and evapotranspiration (Guven & Guani 2008, and Shiri and 
Kisi 2011), and suspended sediment transport in open channel (Ayetk and Kisi 2008). Guven & Guani 
(2008) utilized the gene expression programming approach for prediction of local scour downstream 
sharp crested control grade structure. They provided a complicated equation relating various parameter to 
maximum scour hole depth. 

This paper aims at utilizing the power of the genetic programming to develop relations to predict scour 
hole depth downstream rapid hydraulic structures as a function of incoming flow conditions, rapid geo-
metric characteristics and soil parameters using experimental data measured by the authors in an experi-
ment to simulate real rapid structures and other published data of similar hydraulic investigations per-
formed by Pagliara (2007). First an overview of the basic theory of genetic programming is given 
accompanied by implementation technique steps. Afterwards, a description for the experimental setup 
used to collect scour data is given with the results. Finally, the GP is utilized to develop empirical rela-
tionships between various controlling parameters and the maximum scour depth downstream a rapid hy-
draulic structure. The developed relation is compared to other available relations. 

2 EVOLUTIONARY ALGORITHMS 

Evolutionary Algorithms (EAs) is a class of solving technique based on the Darwinian theory of evolution 
which involves the search of a population of solutions and not only one. A possible and acceptable solu-
tion i.e. a member of the population is called an individual. Each iteration of an EA involves a competi-
tive selection that weeds out poor solutions through the evaluation of a fitness value that indicate the qual-
ity of the individual as a solution to the problem. The evolutionary process involves at each generation a 
set of genetic operators that are randomly applied on the individuals, typically recombination (or cross-
over) and mutation. 

2.1 Genetic Programming (GP) 

Genetic programming is an extension to Genetic Algorithms (GA). GA is an optimization and search 
technique based on the principles of genetics and natural selection. A GA allows a population composed 
of many individuals (chromosome) to evolve under specified selection rules to a state that maximizes the 
“fitness” (i.e. minimizes the cost function). The GP is similar to genetic algorithms but unlike the latter its 
solution is a computer program or an equation as against a set of numbers in the GA. 

In GP, a random population of individuals (equations or computer programs) is created, the fitness of 
individuals is evaluated and then the ‘parents’ are selected out of these individuals. The parents are then 
made to yield ‘offspring’s’ by following the process of reproduction, mutation and crossover. The crea-
tion of offspring’s continues iteratively until a specified number of offspring’s in a generation are pro-
duced and further until another specified number of generations are created. The resulting offspring at the 
end of all this process is the solution to the problem. The GP transforms one population of individuals in-
to another one in an iterative manner by following the natural genetic operations like reproduction, muta-
tion and crossover. Each individual contributes with its own genetic information to the building of new 
offspring adapted to the environment with higher chances of surviving. The solution for the problem pro-
vided by the GP algorithm is a tree as seen in Figure 2. 

Figure 2. Tree representation for a GP function 

A tree is a model representation that contains nodes and leaves. Nodes are mathematical operators (multi-
plication, subtraction, etc.). Leaves are terminals and trees are manipulated through genetic operators. The 
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4 GP MODELS FOR SCOUR PREDICTION 

Pagliara (2007) stated that the scour-hole characteristics are related to the ramp slope, water flow dis-
charge, and to the granulometric characteristics of the stream bed material represented as d90. Thus; the 
maximum scour depth can be written as; ℎ𝑚𝑎𝑥 = 𝑓(𝑄, 𝑠,𝑑90,𝜎) (1) 

Pagliara (2007) introduced a dimensionless parameter Zmax, defined as the ratio of the measured maxi-

mum cross sectional scour depth and the approaching flow depth at the ramp, h1 such that; 𝑍𝑚𝑎𝑥 = 𝑓�𝐹𝑑90 , 𝑠,𝜎�  (2) 

where 𝐹𝑑90 is the densimetric Froude number, 𝐹𝑑90 = �𝑣1 𝑔′⁄ 𝑑90, v1 = average approaching flow veloci-

ty, d90 = channel bed sediment diameter,  𝑔′ = [(𝜌𝑠 − 𝜌) 𝜌⁄ ]𝑔, and 𝜌𝑠 = channel bed sediment density. 

Both of these two relations shall be used to develop a GP-based model for prediction of maximum scour 

hole depth. Data included 18 points from this study, 49 points from Pagliara (2007) and 45 points from 

Bormann and Julien (1991) with a total of 112points. 80% shall be used for training the model (89 points) 
and 20% shall be used for testing (23 points). 

To apply the GP, we need to define the learning environment using a fitness function. The fitness func-
tion defined here is the mean squared error (MSE); it helps an efficient evolution for the model and al-
lows it to travel fitness landscape until it finds an optimal solution for the given problem. The mean 
square error Ei of an individual program i is defined by the following equation; 

𝐸𝑖 = �∑ �𝑃(𝑖𝑗)−𝑇𝑗�2𝑛𝑗=1∑ �𝑇𝑗−𝑇��2𝑛𝑗=1 (3) 

where P(ij) is the value predicted by the program i for fitness case j; Tj is the target value for fitness case j; 
and 𝑇� = 1 𝑛⁄ ∑ 𝑇𝑗𝑛𝑗=1 . For a perfect fit Ei=0, and thus the index of RRSE ranges from 0 to infinity, with 
zero corresponding to the ideal. Thus the fitness of an individual model fi can be calculated from the fol-
lowing equation which ranges from 0 to 1000, with 1000 corresponding to perfect fit; 𝑓𝑖 = 1000 ×
1 (1 + 𝐸𝑖)⁄ . It is important to choose the set of functions that will create the chromosomes. These func-
tions are the essence of evolution of the GP; they allow modifications without restrictions leading to 
compact correct programs for a specific function. The choice of an appropriate function set is not the 
same for every problem and depends mainly on the program performance with some chosen arguments. If 
the evolution is not satisfactory, one can use a wider set of functions until optimum fitness is achieved. 
However, a professional approach would be to initially use the basic mathematical operators (+, -, *, /) to 
allow for production of simple models. A second run of GP is performed using a different set of functions 
as shown in Table 3. Then, we have to set the linking function, which is the interaction between all sub-
expression trees of the model, these linking functions can be addition, subtraction, division, and multipli-
cation. The choice of linking functions depends on the complexity of the problem and the experience of 
the model user and for simpler models for a certain problem, addition or subtraction would be appropri-
ate. The last step is to set the values controlling various genetic operations controlling the evolutionary 
process of GP. The most efficient operator in GP are the mutation and cross over rates; which causes 
populations of individuals to adapt very efficiently, allowing for the evolution of good solutions to all 
problems. Values assigned for all genetic operators are shown in Table 3 for various GP models. To test 
the performance of the developed model, the mean square error MSE, mean absolute error MAE, and rel-
ative squared error RSE were used as indicators, as calculated from the following equations respectively; 𝑀𝑆𝐸𝑖 = 1 𝑛⁄ ∑ �𝑃(𝑖𝑗) − 𝑇𝑗�2𝑛𝑗=1 (4) 𝑀𝐴𝐸𝑖 =

1𝑛∑ �𝑃(𝑖𝑗)−𝑇𝑗𝑇𝑗 �𝑛𝑗=1    (5) 

𝑅𝑆𝐸𝑖 =
∑ �𝑃(𝑖𝑗)−𝑇𝑗�2𝑛𝑗=1∑ �𝑇𝑗−𝑇��2𝑛𝑗=1 (6) 
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Table 3. Optimal Parameter settings for the GP Algorithms 

Parameters Settings-GPI-hmax 

Number of generations 100 

Number of populations 500 

Function set + , - , *, /

Terminal set 𝑄, 𝑠,𝑑90,𝜎
Fitness function error type MSE 

Selection method Tournament 

Mutation rate 0.01 

Crossover rate 0.9 

Based on the optimal parameter settings in above table, the following GP-based equations were developed 
and are considered to be valid within the ranges given back in Table 2. The best individual for all genera-
tions for GPI-hmax can be presented as; ℎ𝑚𝑎𝑥 = 0.38𝑄𝑠 − 𝑄 +

𝑑900.50−𝑄 + (1.92 − 𝜎)(𝑑90 + 𝑄) (7) 

Using the performance indicators discussed before, MSE, MAE, RSE and R-squared, Table 4 shows the 
comparison between developed GP-model and similar equations (Veronese, Martin, Mason, and Pagliara) 
for prediction of scour holes downstream ramp structures. 

Table 4. Performance of developed equations for hmax versus some available equations 

GPI 
Veronese Martin Mason Pagliara (2007) 

train test 

R-Square 0.88 0.84 NA NA NA NA 

MSE 0.0259 0.029 0.69 0.55 3.3 NA 

MAE 0.087 0.110 0.90 0.99 0.75 33.3 

RSE 0.116 0.255 27.1 13.9 60.99 NA 

It is noticed that the developed GP relation had the highest representation of scour database, which result-
ed in highest value of R-squared and lowest values for errors. All existing formulae deviated in their pre-
dictions from measurements with huge RSE reaching 60.99 for Mason and 27.1 for Veronese. Due to 
huge errors in predictions of many of the existing formulae, the R-squared could not be calculated mean-
ing that they do not represent measured data of rapid structures at all. This is mainly attributed to the 
presence of large scale experimental data, which are outside the limits of values used in developing most 
of these equations. Thus, this shows the importance of including the measured data from large scale ex-
perimental tests that are similar to real rapids on mountain streams. Results show also that genetic pro-
gramming (GP) is capable of mapping data into a high dimensional feature space with variety of methods 
to find relations and trends in data. The following figures show the predictions of hmax as calculated by the 
developed GP model versus measured values for both training and testing datasets. 

 
 
 
 

Figure 7. R2 for training and testing data sets for GPI model for hmax 
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For risk assessment studies, the uncertainties of many influencing parameters have to be included. Thus; 
Wahl (2004) provided quantitative assessments for the uncertainty in breach parameter prediction using 
many of the available prediction relations on 108 documented dam failure case studies. In this part of the 
study, Wahl (2004) approach is adopted to test the ability of the developed GP models to predict scour 
hole depth. The analysis is applied to the dataset of 112 scour hole measurements including the measure-
ments on large scale experiments. While this could provide some advantages for the GP model, it pro-
vides fair indication for comparison of ability of prediction for various equations (Wahl 2004). The uncer-
tainty analysis defines the error in as;  𝑒𝑖𝑗 = 𝑃𝑖𝑗 − 𝑇𝑗, and then calculates main indicators defined as; 
mean prediction error (�̅� = ∑ 𝑒𝑖𝑗𝑛𝑗=1 ), width of uncertainty band, 𝐵𝑢𝑏 = ± 2𝑆𝑒 and the confidence band 
around the predicted value {�̅� + 2𝑆𝑒 , �̅� − 2𝑆𝑒}, where Se is the standard deviation of prediction errors. It is 
shown that the mean prediction error of developed GP model is -0.192 with prediction error standard de-
viation of 0.336 and width of uncertainty band of ±0.67, while the prediction error interval ranged from -
0.48 to 0.87. Unfortunately, other formulae produced large errors mainly due to the presence of large 
scale experiments in the used data base, which likes outside their applicable limits. Thus, this confirms 
the necessity to include more data related to large scale experiments in order to increase the range of ap-
plicability of various prediction equations for scour hole downstream rapid hydraulic structures. 

5 CONCLUSIONS 

Despite being important river training low head structures, there has not been much experiments on rapid 
hydraulic structures on large scale. However, many experimental studies are available for similar struc-
tures with ramps. This paper presents experimental work on rapid hydraulic structures investigating the 
characteristics of the downstream scour hole. Experimental data from this study have been used with oth-
er experimental data for similar ramp structures capturing the rapid and flow main characteristics with a 
total of 112 points including experimental data from large scale experiments on rapids. Genetic program-
ming has been used to develop a relation for predicting maximum scour depth as a function of various 
rapid and flow parameters. Developed relation gave reasonable score in various indicators; it gave 0.84 in 
R-squared and 0.02 MSE with lowest errors amongst some of the available equations. While more data is
still needed to enhance the prediction capability of the developed relation, however it can be used as pre-
liminary estimates for scour hole formation downstream rapids while considering that errors are expected
and shall have an uncertainty band of ±0.67 orders of magnitude.

NOTATION 

Β Rapid width 
BUB Width of uncertainty band 
d90 Bed sediment size 
Fd90 Densimetric Froude number 
e prediction error 
h Height difference between upstream and downstream of rapid 
hmax Maximum score hole depth 
ρ Water density 
ρs Sediment density 
Q Flow across rapid 
g' reduced gravity acceleration 
S rapid slope 
Se Standard deviation of prediction error 
v Flow velocity through rapid 
σ Coefficient of sediment variation 
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