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Abstract— In this study the software TELEMAC-2D
(www.opentelemac.org) is used with the OpenTURNS library
(www.openturns.org) to quantify the uncertainty on a real
hydraulic case. The used approach is based on the chaining of
OpenTURNS and TELEMAC-2D using the SALOME
platform (www.salome-platform.org) in order to implement a
Monte Carlo-like algorithms. Each uncertain parameter (inlet
discharge, friction coefficient) is associated to a statistical
distribution (defined using OpenTURNS). A sufficient number
of TELEMAC-2D runs are achieved with respect to the pre-
defined random entries in order to guarantee the convergence
of the studied Monte Carlo-like algorithms. EDF’s cluster has
been used to run the simulations.

Indeed, to handle the uncertainty with the Monte Carlo
method, it is important to run a lot of simulations in order to
have reliable results. The obtained results are analysed
twofold: On one hand, the effect of variability of random
inputs is assessed at some specific points (assumed to be around
a fictive point of interest). On the other hand, a global
statistical analysis all over the domain is done. A spatial
distribution of the mean water depth and its variance is
obtained. These results are of utmost importance for
dimensioning of protecting dykes. Furthermore, they are very
useful when establishing scenarios for flood managing.

However, Monte Carlo technique that while generic and robust
is also computationally expensive. Ways to lower the cost
typically require to replace the pure random sampling that
form the backbone of the Monte Carlo method by alternative
sampling methods such as the Latin Hypercube Sampling
approach and the quasi-Monte Carlo method based on low
discrepancy sequence. The present work aims to compare the
behavior of these Monte Carlo-like algorithms.

This work shows that, thanks to the availability of important
computer resources and to an optimized software, we are able
to consider Monte Carlo-like algorithms for wuncertainty
quantification of real hydraulic models. This critical conclusion
was, even an unfeasible dream, couple of years ago.

L. INTRODUTION

Water resource management and flood forecasting are
crucial societal and financial stakes that require a solid
capacity of flow depth estimation that is often limited by
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uncertainties in hydrodynamic numerical models. In order to
overcome these limits, uncertainties should be analyzed.
Uncertainty analysis means the quantification of the
uncertainty in the model outputs due to uncertainty in the
input data, parameters, model structure and modelling
assumptions.

In this study, we investigate the effect of two uncertainty
sources on water level calculation for extreme flood event,
the roughness coefficient and the upstream discharge.
Indeed, the hydraulic roughness is uncertain because flow
measures are not available or reliable for calibration and
validation. Discharge is also uncertain because it results
from extrapolation of discharge frequency curves at very
low exceeding probabilities.

A variety of statistical methods can be used to propagate
input uncertainties through the model into output
uncertainties. Most classical method to propagate the
uncertainty through the dynamical model is the Monte Carlo
technique. This approach requires random generation of the
ensemble of inputs from their probability distributions and
successive deterministic model simulations to generate a lot
of realizations of the output. The main drawback of this is
the computational cost. A way to lower the computationally
demanding is to replace the pure random sampling that form
the backbone of the Monte Carlo method by alternative
sampling methods such as the Latin Hypercube sampling
approach and the quasi-Monte Carlo method based on low
discrepancy sequence of Sobol. The present work aims to
compare the behaviour of these Monte Carlo-like
algorithms.

This work has been carried out using the SALOME
platform in which the hydraulic software TELEMAC-2D is
coupled with the uncertainty library OpenTURNS.

The paper is organized as follows: in the first section, the
numerical tools used during the study are presented. In
section 3, the model is presented with a description of the
study area, the hydraulic model and the uncertainty study.
Then the results of the simulations are described in the
section 4. Finally, in the last section we discuss the results
and we draw some conclusions.
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II.  NUMERICAL TOOLS

As already mentioned, this study was performed by
coupling the hydrodynamic model TELEMAC-2D and the
uncertainty library OpenTURNS in the SALOME platform.
These numerical tools are presented in this section.

A. Hydraulic modelling system TELEMAC-2D

The modeling system TELEMAC is a hydro-informatic
software developed by the LNHE (National Laboratory for
Hydraulics and Environment) from the research and
development department of EDF. It is an open source
software (www.opentelemac.org) which can be used to
perform numerical simulation in two and three dimensions.
Several modules can be used to solve different problems
such as tidal wave (Artemis, Tomawac), current
(TELEMAC-2D, TELEMAC-3D), sediment transport
(Sisyphe) and water quality (Delwaq, developed by
Deltares).

In this work, hydrodynamic is provided using
TELEMAC-2D depth-averaged hydrodynamic model. It
solves the shallow water equations in two dimensions. In
each point of the mesh, TELEMAC-2D gives the water
depth and the vertically average horizontal velocity field [4].

B. Uncertainty treatment library OpenTURNS

OpenTURNS is an open source library for uncertainty
treatment coded in C++ (www.openturns.org) used through
python scripts. OpenTURNS stands for “Open source
initiative to Treat Uncertainties, Risks’N Statistics”. It is co-
developed since 2005 by EADS IW, EDF R&D and
PHIMECA Engineering. It is used according the uncertainty
method describes as follow by EDF R&D (see Fig. 1) [8].

Step C : Propagation of
uncertainty sources

Step A : Problem specification

Input « Model . u of
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oy Fixed : d f(x.d) Y =f(x.d) probability ..
probability ‘_
distributions y 4
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Direct methods, v . 221 ok =
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Inverse 3 Yo
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Figure 1. Steps for an uncertainty study [8]

C. The SALOME platform

Salome is an open source software (www.salome-
platform.org) which is a platform for pre and post
processing for numerical simulation and where it is possible
to define a chain or a coupling of computer codes. It is
based on an open and flexible architecture with reusable
components. SALOME is developed by EDF, the CEA and
OPENCASCADE S.A.S. with the GNU LGPL license as the
source code can be downloaded and modify from the
website. All the components within SALOME can be used
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together with the YACS module which build a computation
scheme and call each module and make them communicate.
In our case TELEMAC-2D and OpenTURNS are working
together within this platform as shown in Fig. 2.

SALOME platform

/TELEMAC—ZD Response /! \\
g
\
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Probabilistic
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uncertain spectral i \
variables methods

Uncertainty -1
\treatment /
Figure 2. The SALOME principle for uncertainty quantification (inspired
from [9])

III.  PROBLEM SPECIFICATION

In this part the study area is presented with its global
location and general overview of the situation. Then the
model itself with its input parameters are introduced to bring
the uncertainty study. Finally the method used to propagate
and quantify the uncertainty are presented.

A. Study area

The area chosen for this study extends over a reach of
the Garonne river measuring about 50 km, between
Tonneins (upstream), downstream of the confluence with the
Lot river, and La Réole (downstream) (see Fig. 3).
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Figure 3. Study area of the Garonne [1]

This part of the valley was equipped in the 19" century
with infrastructure to protect against floods of the Garonne
river which had heavily impacted local residents. A system
of longitudinal dykes and weirs was progressively built after
that flood event to protect the floodplains, organize
submersion and flood retention areas. This configuration is
also similar to the characteristic of other managed rivers
such as the Rhone and the Loire.

B. The hydraulic model

1)  Boundary conditions
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The 2D Telemac model, constituted by a triangular mesh
of some 41 000 nodes with an extremely small mesh size
around the dykes, has a constant discharge upstream
imposed at Tonneins and downstream, a stage-discharge
relationship corresponding to the stream gauge at La Réole.
This model has been realized by Besnard and Goutal (2008)
[1].

In this work, the upstream discharge is set up to 8 790
m’/s corresponding to a very low exceeding probabilities (a
thousand return period discharge) in order to model an
extreme flood event with points affected around the
floodplain.

2)  Roughness coefficient

The models were calibrated in [1] using steady-state
water surface profiles at high discharge, from bank-full
discharge in the main channel (2 500 m’/s) to bank-full
discharge in the overbank flow channel between dykes.

For the main channel, the Strickler roughness coefficient
was split into three different areas:

*  Tonneins — upstream of Mas d’Argenais: 45

¢ Upstream of Mas d’Argenais — upstream of
Marmande: 38

¢ Upstream of Marmande — La Réole: 40

In floodplain, the roughness coefficient is selected as an
area with cultivated fields all around the river with a
Strickler coefficient of 17.

C. Uncertainty study

1) Variable of interest

As already mentioned, the quantity of interest considered
in this study is the flow depth all over the computational
domain.

2)  Uncertainty quantification

In this study, we investigate the effect of two uncertainty
sources on water level calculation for extreme flood event,
the roughness coefficient and the upstream discharge. In
fact, the hydraulic roughness is uncertain because flow
measures are not available or reliable for calibration and
validation. Discharge is also uncertain because it results
from extrapolation of discharge frequency curves at very
low exceeding probabilities. The quantification of these
uncertainty sources is given the following subsections.

a) Probability density  function of roughness

coefficient

Classically, according to the available expert knowledge,
the friction coefficient is contained in an interval bounded
by physical values depending on the roughness of soil
material. Consequently, using the principle of maximum
entropy [9], the distribution of the bounded Strickler
roughness coefficient is uniform. The boundaries of the
uniform distribution are arbitrarily chosen + 5 from the
calibrated value given in the section B.2). Fig. 4 shows the
probability density function of the Strickler coefficient in the
floodplain.
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Figure 4. Probability density function of the Strickler coefficient in the
floodplain

b) Distribution of the discharge

As alrecady mentioned, the upstream discharge is
estimated using an extrapolation of discharge frequency
curves at very low exceeding probabilities corresponding to
a thousand year return period event. Confidence intervals on
the extrapolated value can be derived. In that case, when the
mean value (discharge of the thousand year return period)
and the standard deviation (extrapolated from the confidence
intervals) are known, the maximum entropy distribution is
Gaussian [9]. The mean and standard deviation are set to,
respectively, 8 490 m>/s and 900 m’/s. Moreover, to avoid
too high or too low values, the probability density function
is truncated at 5790 m’/s and 11 190 m’/s which means the
probability to have a discharge outside these boundaries is
zero (see Fig. 5).
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Figure 5. Probability density function of the upstream discharge

3) Uncertainty propagation methods
a) The Monte Carlo method

The Monte Carlo method requires random generation of
the ensemble of input random variables from their
probability distributions. The resulted sampling form a
matrix composed by n (number of simulations) Xs (number
of wvariables). Each row of the matrix represents a
configuration that is used as an input for the hydraulic
simulation. A lot of realizations of the output is generated by
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successive deterministic model simulations corresponding to
cach configuration of the sampling matrix. Then, some
statistical estimators can be computed on the output sample.
For example, the mean value @1, and the standard deviation

oy of a response quantity
Y = f(x;) are given by (1) and (2).

By = =21 f () e))

% == rLalf () — B 2

With x the input sample of uncertain variables.

The statistics computed on sample sets are random
quantities in nature. Therefore, confidence intervals on the
results should be provided. Monte Carlo method easily give
a confidence intervals for the estimation by using the central
limit theorem.

It implies that if a random variable Y have a mean u, and
a variance oy? which are finite, then the distribution of the
mean of n independent realizations Y; converge toward a
Gaussian distribution when »n tends towards infinity. More
precisely, if n — oo,

oy L
% - N(0,1). 3)

As show in (3), the convergence speed of the method is
then, on average, o(v/n) independent of the dimension s of
the problem. The Monte Carlo method is theoretically
applicable whatever the complexity of the deterministic
model or the desired statistical estimator. However, its
computational cost makes it rather impracticable when the
computational cost of each run of the model is non
negligible and when the statistical estimator requires a lot of
realization to be converged. One way to lower the
computationally demanding is to replace the pure random
sampling that form the backbone of the Monte Carlo method
by alternative sampling methods such as the Latin
Hypercube sampling approach and the quasi-Monte Carlo
method based on low discrepancy sequence of Sobol. These
sampling methods are developed in the next two sections. In
these sections, it is assumed that the sampling space is the
unit cube IS = [0,1]5. In fact, even if each uncertain
parameter can take values in a certain finite range, it is
always possible to rescale them appropriately to obtain a
unit cube.

b) The Latin Hypercube sampling

The Latin Hypercube Sampling (or LHS) is a sampling
method enabling to better cover the domain of variations of
the input variables, thanks to a stratified sampling strategy.

The sampling procedure is based on dividing the domain
of each variable into several intervals of equal probability. A
unique random value is chosen in each interval and then the
values obtained for the variables x; and x; are randomly
combined. This step is repeated for all the random variables
to give a n Xs matrix which can be used as an input sample.

Fig. 6, extracted from [2], shows the comparison
between the two sampling methods of two random variables
(x4, x,) taken from a wuniform distribution in the
interval [0,1]. This figure demonstrates the sampling
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strategy of the LHS as each row and column are filled with
points instead of the Monte Carlo sampling in which some
rows and columns does not have points.

|- e LHS

v v Monte Carlo‘

v

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
X1

Figure 6. Comparison between Latin Hypercube and Monte Carlo sampling
with 10 values [2]

According to [7], if the function f is monotonic in each
of its arguments, then the variance of the estimator of the
LHS is lower than the Monte Carlo one given by (4).

Var(ﬁyLHS) = Var(‘aYMC) “

The expression of the estimator is defined by (1) where
the input samples x; are generated according the LHS and
Monte Carlo techniques.

Therefore, by (4) the LHS technique is supposed to be
more efficient in term of convergence rate than the Monte
Carlo method.

¢) The quasi-Monte Carlo method

Quasi-Monte Carlo (or QMC) techniques are
deterministic methods that have been designed by analogy
with Monte Carlo simulation. In quasi-Monte Carlo, the
random sample of Monte Carlo is replaced by a sequence of
well distributed points called a low discrepancy sequence
[7]. Fig. 7 presents the comparison between the sampling
from the Sobol sequence and Monte Carlo. It demonstrates
that the Monte Carlo does not fill the domain as the Sobol
sequence does.
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Figure 7. Comparison between low discrepancy sequence and Monte Carlo
sampling with 64 values

A low-discrepancy sequence is a sample whose points
are in a way that approximates the uniform distribution as
close as possible. The discrepancy is a measure of deviation
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from uniformity of a sequence of points in D = [0,1]°. The
discrepancy of a quasi-Monte Carlo sampling is known and
given by (5).

D*(Pn) < c@ (5)

With ¢ a constant which depends on the sequence used.

Moreover, the discrepancy contributes to the error in
quasi-Monte Carlo methods. The deterministic error bounds,
through the Koksma-Hlawka theorem, can be estimated by

(6).
IXILF @) — [ fw)du| < V(D (P) (6)
With V (f) the variation in the sense of Hardy and Kraus

of the f function in the mono dimensional case on I = [0,1]
given by (7).

V() = suppep Zp7y 1f (uipr) = f@)l (7)

Where P is a set of all the partitions P of I = [0,1] and
P,, a low discrepancy sample.

Thus, when V(f) < o and P, = {u,,u,, ... } is based on
a low discrepancy sequence, the control of the variance of

[In m]* [
n

the approximation is about o 7]. Comparing this

with the probabilistic Monte Carlo error that is in o \/%, one

can argue that for a fixed dimension s, the quasi-Monte
Carlo method converges faster than with Monte Carlo. So,
for function that are smooth enough and if you are willing to
take n sufficiently large, the error with quasi-Monte Carlo
technique will be smaller than the Monte Carlo one.

d) Quantity of interest

The objective of an uncertainty study is to assess some
characteristics of interest of the uncertain output variable
distribution, such as, probability of exceeding a threshold,
quantile, or expectation and variance. In this study, the
considered characteristics of interest are the first four
statistical moments (mean, variance, skewness and kurtosis)
of the water depth.

To ensure the relevance of the comparison of the
different Monte Carlo-like algorithms, the “bootstrap”
method is used to estimate confidence intervals on the
Monte Carlo results.

CONFIDENCE INTERVAL BY BOOTSTRAP

The “bootstrap” method is the practice of estimating
properties of an estimator (such as its variance) by
measuring these properties when sampling from an
approximating distribution. This technique is easily
implemented and rely on few hypothesis [5]. In this work,
the non-parametric bootstrap is used.

Letx = (x4, ..., x,) denote a sample of n independent
realizations and identically distributed according to the
probability density function F. The statistical estimator
6 = T(F) (mean, variance...) is sought. To estimate 6,

0= T(F";) is calculated where F‘;L is the empirical
cumulative density function defined by (8).

=~ 1

F(x) = ;Z?ﬂ 1uisx (8)
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The idea of the non-parametric bootstrap is to simulate
data from the empirical cumulative density function F,.
Here F, is a discrete probability distribution that gives
probability % to each observed value x4, ..., x,,. A sample of
size n from F, is thus a sample size n drawn with
replacement from the collection x4, ...,x,. Once the

bootstrap samples done, the properties of the estimator 8 can

be determined as shown in Fig. 8.
X1

o [ Xy XiXi X3 Xi K = 01 Bias : iz 6,6
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£l v X; X5 X5 .. X .. Xy > 0 1o, .
%’ Xi 10273 l " b Variance : EZ(GD - 6)2
X, X; X3 X3 .. X] .. Xy > 05 b=1
6

Figure 8. Bootstrap algorithm [5]

IV. RESULTS

Firstly, in this section, results induced by the Monte
Carlo technique are presented. In fact, a sufficient number of
TELEMAC-2D runs has been carried out with respect to the
pre-defined random entries in order to guarantee the
convergence of the method. The obtained results provide the
reference statistical estimators used to compare the
efficiency of the Monte Carlo-like methods which constitute
the second part of this section.

A. Monte Carlo results

To handle the uncertainty with the Monte Carlo
technique, it is important to run a lot of simulations in order
to have reliable results. In this work, around 70 000 Monte
Carlo computations have been carried out. EDF’s cluster has
been used to run these simulations. MPI library was used for
launching and managing the uncertainty quantification
study. Post-processing of the huge amount of results files is
tackled through some Python scripts specifically developed
within OpenTURNS.

The obtained results are analyzed twofold: On one hand,
the effect of variability of random inputs is assessed at some
specific points (assumed to be around an industrial plant, for
example). On the other hand, a global statistical analysis all
over the domain is done, as shown in Fig. 9.

A spatial distribution of the mean water depth and its
variance is obtained. These results are of utmost importance
for dimensioning of protecting dykes. Furthermore, there are
very useful when establishing scenarios for flood managing.
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Figure 9. Mean and variance all other the domain (m node 37 242)

To be sure that the obtained results are reliable, it is
important to verify the convergence of them, especially by
plotting the graph of the dispersion coefficient (o/u) as a
function of N: if the convergence is not visible, it is
necessary to increase N or if needed to choose another
propagation method to estimate the uncertainty [8].

Fig. 10 shows the convergence of the dispersion
coefficient and the mean of the water depth at the node
number 37 242 located on Fig. 9.
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Figure 10. Convergence graphs of the dispersion coefficient and the mean

according to the logarithm of the number of simulations

0.0024

These graphics shows that the convergence of results are
guaranteed from 30000 simulations of Monte Carlo
Technique. These results are then used to provide reference
statistical estimators in the comparison of the efficiency of
the Monte Carlo-like methods.
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B. Comparison of Monte Carlo-like algorithms

As shown in IV.A, thanks to the availability of important
computer resources and to an optimized software, we are
able to consider Monte Carlo uncertainty propagation
algorithm for real hydraulic models. This conclusion was,
even an unfeasible dream, couple of years ago.

However, the growing complexity of studies (such as
coupled waves and hydrodynamics or  hydro-
sedimentological simulations, for instance) and the ever-
greater needs in terms of precision in results (very fine mesh
simulations) tend to encourage the use of techniques
requiring less computation time.

As mentioned previously, a way to lower the
computationally demanding of the Monte Carlo method is to
replace the pure random sampling by alternative sampling
methods such as the Latin Hypercube sampling approach
and low discrepancy sequences. The section presents the
comparison of Monte Carlo, quasi-Monte Carlo and Latin
Hypercube Simulation on fourth first statistical estimators
(mean, variance, skewness and kurtosis) of the distribution
of the water depth.

The characteristic of interest of the output distribution is
considered as stabilized when its variation are contained in
the confidence interval of the reference solution. This
confidence interval is calculated using the bootstrap
technique, described in II1.C.3)d), on the 70 000 Monte
Carlo simulation results. The comparison was carried out at
some points all over the computational domain. Since the
obtained results are similar to each other, only one node
results (node 37 242) are presented in Fig. 11. Firstly, the
response variability limited to the mean value and the
variance is studied. This constitutes the central part of the
model response. In that case, the quasi-Monte Carlo
algorithm has a faster convergence rate than the others
techniques. In fact, from the beginning (about 1 024 runs),
the mean value and the variance estimates are in the
reference confidence
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Figure 11 Comparison of the first four statistical moments on the node 37 242

intervals in contrary of the Latin Hypercube simulation and
the Monte Carlo technique. The Latin Hypercube Sampling
technique is more efficient than the Monte Carlo technique.
Respectively, these techniques needs 2 000 and 4 000
simulations in order to obtained results contained in the
reference confidence intervals.

The computation of higher order moments (skewness
and kurtosis) do not converge as fast as for the mean and
standard deviation since the variation of the related
estimators of these moments is large. However, as observed
for the central part of the model response, the quasi-Monte
Carlo is the technique more efficient to determine these
moments. In fact, about
4 000 runs are sufficient to reach the reference interval with
the quasi-Monte Carlo method. It is more complicated for
the Monte Carlo and Latin Hypercube simulation. In fact,
the skewness estimated by the Monte Carlo converge as fast
as the quasi-Monte Carlo whereas the estimation provided
by the Latin Hypercube Sampling is oscillating at the upper
bound of the reference confidence interval. At the opposite,
the kurtosis estimation based Latin Hypercube Sampling has
the same behavior that the low discrepancy sequence of
Sobol and the Monte Carlo estimation needs more runs
(about 10 000 runs).

As expected, sampling techniques, with their better
exploration of the uncertain variable domain of variation, are
more efficient than the brute random sampling. However,
among the two techniques tested in this work, the quasi-
Monte Carlo method is more effective. In fact, according to
[3], unlike the quasi-Monte Carlo method, the LHS does not
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control the quality of the joint distribution of samples when
the dimension is higher than two.

V. CONCLUSION AND DISCUSSION

In this paper, the feasibility of an uncertainty
propagation with the Monte Carlo method on a two
dimensional real case with TELEMAC-2D has been
presented. In order to improve the converge speed of the
Monte Carlo method, the Latin Hypercube Sampling and the
quasi-Monte Carlo method are tested. In all cases, the more
efficient technique is the quasi-Monte Carlo method. The
improvement of the convergence speed induced by this
method opens the doors of uncertainty studies with more
complicated cases and bigger meshes where the computation
time is crucial. However one of the drawbacks of the quasi-
Monte Carlo method is that it does not possess a confidence
interval of the results which is essential in practice. In fact,
the error estimation, possible in theory using (6), is
intractable in practice in contrary of the Monte Carlo method
which easily provides a statistical confidence intervals [11].
In order to get the error estimates, the randomized quasi-
Monte Carlo method can be used. This method, which
constitutes an outlook of the current study, applies a
randomization technique to the low discrepancy sequence
[7].

Moreover, in the spirit of decreasing the computation
cost of uncertainty studies, some techniques can be applied
on the sensibility analysis too. The sensibility analysis
intends to quantify the relative importance of each input
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parameter of a model. The variance-based methods aim at
decomposing the variance of the output to quantify the
participation of each variable. Generally, these techniques
compute sensitivity indices called Sobol indices. In practice,
these sensibility indices are calculated using the Monte
Carlo simulation. However, as for the uncertainty
propagation, this technique requires a lot of computation
time. So, in order to decrease the computational cost, some
techniques such as the polynomial chaos method and
derivative-based global sensitivity measures can be tested:

* The polynomial chaos method is a spectral method
which gives a representation of the random response of
the experiment. Based on this technique, it is possible
to obtain sensitivity indices [10].

* When the derivatives of a computer program are
known (Adjoint code for example), it is possible to
apply the derivative-based global sensitivity measures
(DGSM) [6] to perform sensitivity analysis.

These methods reduce drastically the number of runs needed
for the sensitivity indices estimation and should be
applicable to more complicated studies. Therefore, in the
same way as this work, the sensitivity analysis can be
optimized as well with further research.
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