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1 INTRODUCTION 

The simplest and most popular approach of one 
dimensional pollutant transport modelling in 
engineering practice is that based on the 
advection–dispersion equation (Taylor, 1953; 
Fischer et al., 1979):  
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where x is the longitudinal axis, t denotes time, 
C  is the admixture concentration averaged over 
the cross-section A, EL is the longitudinal disper-
sion coefficient and U is cross-sectional averaged 
velocity. Great effort has been performed to de-
velop empirical methods allowing practitioners to 
estimate longitudinal dispersion EL at particular 
river reach without performing time consuming 
and expensive tracer tests. Initially, mostly the re-
gression equations were considered as a predictive 
tool – probably the most efficient ones were pro-
posed by Seo and Cheong (1998)  
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and Deng et al. (2001) 
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In both equations B is the channel width, H is 
the mean depth of flow, U

*
 is the shear velocity 

and EL
P
 is predicted dispersion coefficient. More 

detailed overview of the proposed equations may 
be found in Wallis and Manson (2004). Over the 
last 5 years neural networks have been given  
much attention for this task (Kashefipour et al. 
2002; Rowinski et al., 2005; Tayfur and Singh, 
2005; Piotrowski et al. 2006; Toprak and Cigizog-
lu, 2008; Riahi-Madvar et al. 2009). However, 
neural networks are usually applied somehow au-
tomatically as a predictive tool – without perform-
ing an uncertainty analysis, discussion on the 
proper optimization criteria or verification of the 
optimization algorithms used to find the proper 
weights of the network. These issues cannot be 
considered as technical details only (Rimer and 
Martinez, 2006). In the present paper three Evolu-
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tionary Computation optimization methods be-
longing to so called Differential Evolution family 
are applied in order to optimize the simple multi-
layer perceptron neural network with objective 
function designed specially to allow fitting the 
model to data which differ by a few orders of 
magnitude and consider input variables uncertain-
ty into optimization process. This study concen-
trates on the impact of the optimization method on 
the results and shows the significant uncertainty 
connected with longitudinal dispersion estimation. 

2 DATA 

The data set used in the present study is composed 
of 81 experiments, 70 of them were collected by 
Deng et al. (2002) and 11 by Sukhodolov et al. 
(1997). Experiments were performed by various 
researchers, mostly in moderate climatic condi-
tions of USA and Moldova. More detailed de-
scription of most of experiments performed in 
USA may be found in Nordin and Sabol (1974) 
and Godfrey and Frederick (1970).  

It was verified that for almost every experiment 
the distance to the location where complete hori-
zontal mixing over the river cross-section takes 
place (Jirka and Weitbrecht, 2005) is shorter than 
the distance to the first cross-sections where the 
measurements were taken.  

To estimate the value of longitudinal disper-
sion, the five independent variables were used in 
this paper, namely B, H, U, U

*
 and river sinuosity 

(sin), hence EL
P
 = f(B,H,U,U

*
,sin). All these va-

riables were available for the considered river 
reaches. 50 out of 81 experiments were used as a 
training set to optimize neural networks and the 
remaining 31 were considered as testing set.  

Testing examples were experiments number 3, 
4, 6, 11, 13-15, 19, 20, 24, 26, 30, 37, 40, 41, 44, 
46, 50, 51, 53, 54, 60-63, 67, 70 from Deng et al. 
(2002) and reach numbers 2, 3, 6 (with Q = 0.465 
only) and 9 from Sukhodolov et al. (1997). Note 
that although there were 15 experiments in total 
mentioned in Sukhodolov et al. (1997), 4 of them 
were excluded from considerations in the present 
paper since they were performed in almost iden-
tical conditions at the same cross-sections. Si-
nuosity of river reaches were not reported in Suk-
hodolov et al. (1997) – these were measured by 
authors of the present paper based on available 
maps (see Rowinski et al. (2005).  

3 MULTI-LAYER PERCEPTRON 
ARTIFICIAL NEURAL NETWORKS  

From a number of types of neural networks, the 

supervised multi-layer perceptron feed-forward 
network (Haykin, 1999) is probably the most 
extensively applied to variety of problems. They 
approximate the values of output variable (y) 
based on the set of input variables x1, x2, ..., xK. 
Usually all input and output variables are 
standardized to the [0,1] interval. To avoid the 
possibility of obtaining negative values of 
predicted dispersion, we set y = ln(EL) before 
standardization (see Kashefipour et al., 2002 and 
Rowinski et al., 2005). Artificial neural networks 
are comprised of nodes arranged usually in three 
layers – input, hidden and output one. The 
example of neural network topology is presented 
in Fig. 1. The number of input nodes is the same 
as the number of input variables, the number of 
hidden neurons should be found empirically for a 
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Figure. 1 Scheme of multi-layer perceptron neural network 
scheme. 

given problem. The nodes are linked via weighted 
connections w and v. The values of these 
connections are adaptively modified during the 
process of training the network. Each node 
performs a weighted sum of its inputs and filters it 
through a given, so-called activation function. 
Following a number of other authors, a sigmoidal 
function was used for this purpose in the hidden 
layer, i.e.: 

1
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where z is the weighted sum  
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Afterwards the weighted signals zj (multiplied 
by proper weights vj), are transferred to the neuron 
of the third layer, where the new weighted sum is 
computed: 
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when L is the number of hidden nodes. Finally, 
after re-standardization of y

P
, the predicted longi-

tudinal dispersion value may be obtained as 
EL

P
(w,v) = exp(y

P
).  
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Because of small number of training data (50 
experiments only) and 5 input variables we were 
forced to reduce the number of hidden nodes to 2. 
It resulted in neural network structure of 5 inputs, 
2 hidden units and 1 output (5-2-1) – leaving 15 
parameters for optimization process.  

4 SELECTION OF OBJECTIVE FUNCTION  

The parameters v and w have to be optimized 
based on the knowledge gained from training 
examples according to the assumed criterion. It is 
popular to use the objective function to be 
minimized such as the mean square error 
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which is differentiable and has good statistical 
properties. Unfortunately it has a major drawback 
– the weights w and v would be fitted to properly 
reproduce the highest values of longitudinal 
dispersion in the training set. When dealing with 
dispersion coefficients which frequently differ by 
4 orders of magnitude (see database in Deng et al. 
2001) – it is very unfortunate behaviour. One may 
see that sometimes the models are really fitted to 
the highest examples only, what results in 
outstandingly poor estimation of all lower 
dispersion values (as in Tayfur, 2006). The 
objective function in the form of  
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only partly mitigates this effect. One may of 
course set a criterion of  
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as for example in Kashefipour et al. (2002) and 
Rowinski et al. (2005), what makes the impact of 
different examples more even, but unfortunately, 
due to nonlinear relation between y and EL, fre-
quently min J3 (w,v) ≠ min J1 (w,v) which means 
that we perform optimization of neural network 
not exactly to the task we are really interested in. 
This is why we propose yet another objective 
function J4 which is defined as: 
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which was especially designed for cases when 
all examples are of similar importance, no matter 
how many orders of magnitude they span. This 
expression takes into account the degree of over- 
or underestimation of the measured values – the 

predictions 10 and 0.1 when true value is 1, as 
well as 3000 and 30 when true value is 300 are 
similarly wrong. The second power is taken in or-
der to increase the significance of over- or unde-
restimation.  

5 INCLUDING UNCERTAINTY INTO 
OPTIMIZATION PROCESS  

Although a series of papers have dealt with the 
application of neural networks to estimate the 
longitudinal dispersion coefficients, to the best of 
our knowledge, none of them considered 
uncertainty analysis. Simple analysis of the 
sensitivity of the model results in 10% increase of 
each of independent input variables were 
performed for equation (3) in Deng et al (2001). 
Helton et al (2006) suggests to perform 
uncertainty analysis by generating a sample of 
input variables and propagating it through a model 
to estimate the model uncertainty. The sample 
generation should be, if possible, based on expert 
suggestions. Another options is the generation 
from an assumed distribution either randomly or 
by means of Latin Hypercube method. The second 
method is suggested for computationally 
demanding models to limit the number of the 
generated samples, which is not important in the 
case of simple neural networks.  

It is difficult to define the uncertainty of EL, B, 
H, U and sin – as it depends mostly on a quality of 
on site measurements, performed by different re-
searchers in various conditions. Hence, in this pa-
per it is assumed that these 5 variables are realiza-
tions from the normal distribution with μij = uij 
and σij = 0.1uij, where ui1 = yi, ui2 = xi1,…, ui5 = xi4; 
i = 1, N represent each training example and j = 1, 
5 represent input or output variables: EL, B, H, U 
or sin. The coefficient of 0.1 used to define the va-
riance was estimated empirically. The smaller σij 
indicates that the variable is less uncertain. If this 
value was set as too small it would result in limit-
ing the neural network robustness, whereas too 
high would make prediction very poor. Note that 
the true distribution of a particular variable at 
each experiment may differ from the Gaussian one 
and the observed uij may even be an outlier far 
from the true μij. However, we cannot find proper 
distributions since the only information we have is 
single realization. Note that shear velocity U

*
 not 

considered above may be approximated by 
*U gHs=   (11) 

where s is the bed slope. It seems reasonable to 
assume that the bed slope – which is usually 
measured rather than U

*
 – is a realization from 

normal distribution with μij = sij and σij = 0.1sij. 
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In the present paper at each iteration, any vari-
able for each individual (see section 6) and for 
every experiment was generated 100 times from 
pre-defined distributions. Together with the meas-
ured values it gave 101*50 training examples. All 
of them were used for the determination of value 
of objective function (Eq. (10)) of a particular in-
dividual at the given iteration. This process is sim-
ilar to the approach that is called noise injection 
(jitter) in neural network literature (Bishop 1995; 
Reed et al. 1995; Zhang 2007)  and allows for in-
cluding the uncertainty of the measured training 
examples into optimization process improving the 
neural network robustness. 

6 OPTIMIZATION ALGORITHMS BASED 
ON DIFFERENTIAL EVOLUTION  

In most of the applications the gradient-based 
methods are used to train the neural network – 
probably the most popular are simple gradients, 
conjugant gradients (Haykinn, 1999) and the 
Levenberg-Marquardt algorithms (Press et al. 
1990). Such methods were also used in previous 
papers applying neural networks to dispersion 
assessment. However, they are only local search 
methods which require many independent runs. 
Different runs usually provide very different 
results depending on the initial parameter values – 
many of them are outstandingly poor when the 
algorithm sticks in a shallow local optimum. They 
also require a differentiable objective function, 
what is very restrictive in many cases. Most 
evolutionary computation (EC) techniques do not 
suffer from such drawbacks and, as long as the 
dimensionality of the problem is not too high, 
almost always provide reasonable results. 
Examples of EC methods recently used for neural 
network training may be found in Sedeki et al. 
(2009), Lin et al. (2009) and Aliev et al. (2009). 
Among a variety of methods we chose three 
algorithms belonging to Differential Evolution 
(DE) family – the basic DE method (Storn and 
Price, 1995), Self Adaptive DE (SaDE, Qin et al., 
2009) and Grouped Multi-Strategy DE (GMS, 
Piotrowski and Napiorkowski, 2010). The basic 
DE method has been applied to neural network 
training several times, for example by Illonen et 
al. (2003), Yu and He (2006), Jordanov and 
Georgieva (2007), Rowinski and Piotrowski 
(2008). The remaining two algorithms are recent 
modifications which, until now have been tested 
only on artificial test functions.  

In all DE-based methods (in fact – most EC 
ones) to find the optimal solution, the population 
of P individuals pi (represented by vectors of M 
parameters which are to be optimized) is search-

ing for the optimum in the M-dimensional space. 
There are different opinions about the relation be-
tween P and M. Storn and Price (1995) suggested 
P = 10M, but later various researchers, including 
Weber et al. (2009) suggested smaller popula-
tions. Since the number of parameters in 5-2-1 
neural network is 15, we set P to 60 for all 3 algo-
rithms (DE, SaDE and GMS). Usually EC tech-
niques need some stopping criteria – it may be the 
maximum number of the objective function calls, 
lack of sufficient improvement during the prede-
fined period or more complex stopping criteria 
(used in GMS). In this paper maximum number of 
function calls was used and set to a relatively high 
value of 600000. In GMS, apart from maximum 
number of iterations, the stopping technique pro-
posed by Piotrowski and Napiorkowski (2010) 
was used to cease the algorithm when the popula-
tion structure does not justify further search.  

In basic DE, at each iteration, for each of i = 1, 
…, P individuals (pi), three other distinct points 
(pa, pb, and pc) are randomly chosen. The new 
point (pnew) is generated, according to the strategy 
described as a weighted (w) perturbation of the lo-
cation of point pc:  

( )F= + −
new c a b

p p p p   (12) 

The value of F is the parameter of the algo-
rithm, suggested by Storn and Price (1995) to be 
0.8. Then, in the basic DE, for each of j = 1, …, M 
elements separately, the crossover of vectors pi 
and pnew is performed, yielding the final offspring 
poff. The probability of crossover (CR) – in other 
words probability of adopting the location for 
element j from pnew point – may vary depending 
on the problem, but 0.5 is an average, usually suc-
cessful choice. In DE terminology the strategy 
(12) with such binominal crossover is called 
DE/rand/1/bin. The objective function value of 
poff is compared with the objective function value 
of pi. Only the better one is moved to the next ite-
ration.  

In SaDE, instead of only one strategy, four dif-
ferent strategies are used together, each one with 
adaptively changed probability. They include:  
1. the basic strategy DE/rand/1/bin,  
2. DE/target-to-best/2/bin, where pBEST is the best 
individual in population 

( )
( ) ( )

F

F F

⋅

⋅ + ⋅
new i BEST i

a b c d

p = p + p - p +

p - p p - p
 (13) 

3. DE/rand/2/bin, where pd, and pe are two another 
distinct individuals from population 

( )
( )

F

F

⋅

⋅
new a b c

d e

p = p + p - p +

p - p
  (14) 

4. and DE/current-to-rand/1/none (no crossover), 
where F2 is an additional scaling factor, each time 
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generated anew from standardized normal 
distribution 

( ) ( )2F F= ⋅ + ⋅
off new i a i b c

p p = p + p - p p - p  (15) 

SaDE allows for adaptation of probability of 
choosing each strategy by particular individual at 
the given iteration according to the success rates 
obtained during a number of previous generations. 
Similarly, also CR parameter is adapted according 
to the developed procedure and F values are gen-
erated from normal distribution with 0.5 mean and 
0.3 standard deviation. For more details we refer 
the reader to Qui et al. (2009). In our application 
we followed the parameter setting and adaptation 
methods developed in that paper. 

An outline of GMS algorithm is as follows. It 
also uses three strategies:  
1. basic DE/rand/1/bin,  
2. DE/rand/1/exponential – which is basic DE 
strategy but with exponential crossover (for de-
tailed definition see Price et al., 2005 and 
Piotrowski and Napiorkowski, 2010) and  
3. DE/rand/1/Mod-either-or: 

.(1.12) [0,1]

( 2 ) (0,1)
i b c i

j

new jj

off j j j j j

new

p from Eq if rand CR
p

p p p p p RN otherwise

⎧ ≤⎪= ⎨
= + + − ⋅ ⋅⎪⎩

 (16) 

where RN(0,1) is random value generated from 
standardized normal distribution and rand[0,1]j is 
random number from uniform [0,1] distribution 
generated for each parameter j (j = 1, M) separate-
ly. In this strategy the parent pi does not take part 
in the creation of an offspring. The parameters F 
and CR are both equal 0.5, independent of the 
strategy. 

In GMS algorithm population is divided into 4 
groups, 3 of them are most of the computing time 
searching for the optimum separately (what means 
that the individuals pa, pb, and pc are chosen only 
from individuals belonging to the same group as a 
parent pi) when the fourth one gains the know-
ledge from the entire population. The specific 
conditions are defined when individuals from one 
of 3 separate groups may learn from the whole 
population, and the idea of “freezing” some of the 
best individuals is introduced (“frozen” individu-
als are not considered as parents – hence they 
cannot be lost from population but may be chosen 
as pa, pb, and pc). For the detailed description and 
pseudocode of the algorithm, see Piotrowski and 
Napiorkowski (2010).  

To perform a fair comparison, 20 neural net-
works were optimized by each algorithm, starting 
from the randomly selected weight values within 
the [-1,1] interval. The bound constrains for opti-
mized weights were set to [-1000,1000], rebound-
ing procedure was applied when an algorithm 

proposed a solution outside the bound constrains 
(Piotrowski and Napiorkowski, 2010).  

7 RESULTS  

The best (MIN), average (AVE) and worst (MAX) 
values of objective function (10) obtained from 20 
neural networks trained by each algorithm are 
presented in Table 1. One may easily conclude 
that networks are better trained by GMS and 
SaDE algorithms than by the basic DE method. 
Difference between GMS and SaDE algorithm is 
rather small, especially comparing to the average 
results. However, GMS is slightly better and fast-
er. While SaDE always performed 600000 itera-
tions, GMS stopped after 150000-575000 itera-
tions, with average of 285500. 
 
Table 1. The performance of neural networks trained by 
each algorithm: TR – training set, TE – testing set. 

Obj 

funct 

DE SaDE GMS 

TR TE TR TE TR TE 

MIN 377.7 828.6 298.7 757.0 293.3 672.7 

AVE 425.7 1138.9 314.1 867.9 309.1 837.2 

MAX 515.1 1719.4 390.6 1148.2 332.1 1063.5 

 
It is clear that the criterion values for testing set 

are about 3 times higher than those obtained for 
training examples. The reason may be seen in 
Fig 2, which presents uncertain longitudinal coef-
ficient values predicted (101 black cases) and 
measured (101 grey cases) for 31 testing data by 
the example of moderately performed (objective 
function value J4 for: training set – 304, testing set 
– 792) network trained by GMS algorithm. These 
plots would differ for different neural networks 
trained by GMS or SaDE algorithms and the rela-
tion between the uncertain predicted and the 
measured dispersion values would be poorer for 
basic DE method, but general appearance would 
remain the same.  

It seems that 5 major issues may be noted from 
the plots 1) predicted uncertain values are almost 
always more scattered than the measured ones, 2) 
in most cases substantial part of the measured val-
ues are within an interval covered by the predicted 
ones but 3) for 6 cases all the predicted values are 
over- or underestimated, 4) in 2 cases (number 9 
and 11) the under- or over estimation is very sig-
nificant, and finally 5) the quality of longitudinal 
dispersion estimation does not depend on the or-
der of magnitude of longitudinal dispersion.  
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Figure 2. Uncertain longitudinal dispersion coefficient val-
ues predicted by neural network (black cases) and measured 
(grey cases) for testing data collected in 31 rivers. 

The mentioned 2 very poorly predicted testing 
cases (nr 9 and 11) contribute significantly to the 
poorer objective criterion for testing data. Of 
course the precise number of poor cases may dif-
fer depending on the used neural network and the 
training algorithm, but always some testing exam-
ples are over- or underestimated.  

Comparing the neural network results with the 
one obtained from the regression equations (2) 
and 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Uncertain longitudinal dispersion coefficient val-
ues predicted from Deng et al (2001) equation (black cases) 
and measured (grey cases) for testing data collected in 31 
rivers. 

(3) shown in Table 2, one may see some im-
provement. Both equations make constant error of 
overestimation of the longitudinal dispersion. Fig-
ure 2 presents the uncertain longitudinal disper-
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sion coefficients estimated from Deng et al. 
(2001) equation. The significant difference with 
the neural network prediction trained for uncertain 
data is obvious.  

 
Table 2. The performance of empirical equations with divi-
dion into two sets like in Table 1: TR – training set, TE – 
testing set. 

 Seo Cheong Deng 

TR TE TR TE 

Obj 

funct 

1368292.4 135865.5 88039.2 33665.6

8 CONCLUDING REMARKS 

The final results seem to restrained optimistic. Al-
though properly trained neural networks may sig-
nificantly outperform the well known regression 
equations from the literature, the confidence in 
their results remains limited. It is an open question 
if it is due to very limited number of hidden 
nodes. We performed the experiments with 3 hid-
den nodes and they did not provide reduction of 
error for testing data.  
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