
Conference Paper, Published Version

Piotrowski, Adam; Rowinski, Pawel; Napiorkowski, Jaroslaw
Uncertainty study of data-based models of pollutant
transport in rivers

Verfügbar unter/Available at: https://hdl.handle.net/20.500.11970/99839

Vorgeschlagene Zitierweise/Suggested citation:
Piotrowski, Adam; Rowinski, Pawel; Napiorkowski, Jaroslaw (2010): Uncertainty study of
data-based models of pollutant transport in rivers. In: Dittrich, Andreas; Koll, Katinka; Aberle,
Jochen; Geisenhainer, Peter (Hg.): River Flow 2010. Karlsruhe: Bundesanstalt für
Wasserbau. S. 1759-1766.

Standardnutzungsbedingungen/Terms of Use:

Die Dokumente in HENRY stehen unter der Creative Commons Lizenz CC BY 4.0, sofern keine abweichenden
Nutzungsbedingungen getroffen wurden. Damit ist sowohl die kommerzielle Nutzung als auch das Teilen, die
Weiterbearbeitung und Speicherung erlaubt. Das Verwenden und das Bearbeiten stehen unter der Bedingung der
Namensnennung. Im Einzelfall kann eine restriktivere Lizenz gelten; dann gelten abweichend von den obigen
Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

Documents in HENRY are made available under the Creative Commons License CC BY 4.0, if no other license is
applicable. Under CC BY 4.0 commercial use and sharing, remixing, transforming, and building upon the material
of the work is permitted. In some cases a different, more restrictive license may apply; if applicable the terms of
the restrictive license will be binding.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Hydraulic Engineering Repository

https://core.ac.uk/display/326239834?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 INTRODUCTION

The simplest and most popular approach of one
dimensional pollutant transport modelling in
engineering practice is that based on the
advection–dispersion equation (Taylor, 1953;
Fischer et al., 1979):

1
L

C C C
U AE

t x A x x

⎛ ⎞∂ ∂ ∂ ∂⎜ ⎟+ =
⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

 (1)

where x is the longitudinal axis, t denotes time,
C is the admixture concentration averaged over
the cross-section A, EL is the longitudinal disper-
sion coefficient and U is cross-sectional averaged
velocity. Great effort has been performed to de-
velop empirical methods allowing practitioners to
estimate longitudinal dispersion EL at particular
river reach without performing time consuming
and expensive tracer tests. Initially, mostly the re-
gression equations were considered as a predictive
tool – probably the most efficient ones were pro-
posed by Seo and Cheong (1998)

1.428 0.62

*

*

5.915P

L

U B
E HU

U H

⎛ ⎞ ⎛ ⎞
= ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 (2)

and Deng et al. (2001)

5/3 2

*

*

1.38

*

0.15

8

1
0.145

3520

P

L

B U
E HU

k H U

U B
k

U H

⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞⎛ ⎞⎛ ⎞= + ⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠

 (3)

In both equations B is the channel width, H is
the mean depth of flow, U

*
 is the shear velocity

and EL
P
 is predicted dispersion coefficient. More

detailed overview of the proposed equations may
be found in Wallis and Manson (2004). Over the
last 5 years neural networks have been given
much attention for this task (Kashefipour et al.
2002; Rowinski et al., 2005; Tayfur and Singh,
2005; Piotrowski et al. 2006; Toprak and Cigizog-
lu, 2008; Riahi-Madvar et al. 2009). However,
neural networks are usually applied somehow au-
tomatically as a predictive tool – without perform-
ing an uncertainty analysis, discussion on the
proper optimization criteria or verification of the
optimization algorithms used to find the proper
weights of the network. These issues cannot be
considered as technical details only (Rimer and
Martinez, 2006). In the present paper three Evolu-

Uncertainty study of data-based models of pollutant transport in rivers

Adam P. Piotrowski, Pawel M. Rowinski & Jarosław J. Napiorkowski
Institute of Geophysics, Polish Academy of Sciences, Ks. Janusza 64, 01-452 Warsaw, Poland

ABSTRACT: This study concerns the problem of pollution transport in rivers in situations when data is
scarce and no results from tracer tests are available. In such case approaches pertaining to numerous em-
pirical formulae or data-based methods allowing estimation of the longitudinal dispersion coefficient
based on hydraulic and morphometric characteristics are used. Different methods were proposed so far
depending on number of available river characteristics like nonlinear regression, neural networks or trans-
fer function. However, they are usually lacking the uncertainty analyzes. Moreover, the impact of the
used optimization method on the results has not been studied in detail. In the present paper we investigate
the uncertainty of the well-known regression based equation and neural networks models and assess per-
formance of neural networks trained with different techniques. We restrict our considerations to well stu-
died river reaches when most important river characteristics, including water velocity, shear velocity, bed
slope, depth, width and sinuosity are available for each river reach of interest.

Keywords: Pollutant transport, Longitudinal dispersion, Uncertainty, Neural networks, Differential evo-
lution

River Flow 2010 - Dittrich, Koll, Aberle & Geisenhainer (eds) - © 2010 Bundesanstalt für Wasserbau ISBN 978-3-939230-00-7

1759

tionary Computation optimization methods be-
longing to so called Differential Evolution family
are applied in order to optimize the simple multi-
layer perceptron neural network with objective
function designed specially to allow fitting the
model to data which differ by a few orders of
magnitude and consider input variables uncertain-
ty into optimization process. This study concen-
trates on the impact of the optimization method on
the results and shows the significant uncertainty
connected with longitudinal dispersion estimation.

2 DATA

The data set used in the present study is composed
of 81 experiments, 70 of them were collected by
Deng et al. (2002) and 11 by Sukhodolov et al.
(1997). Experiments were performed by various
researchers, mostly in moderate climatic condi-
tions of USA and Moldova. More detailed de-
scription of most of experiments performed in
USA may be found in Nordin and Sabol (1974)
and Godfrey and Frederick (1970).

It was verified that for almost every experiment
the distance to the location where complete hori-
zontal mixing over the river cross-section takes
place (Jirka and Weitbrecht, 2005) is shorter than
the distance to the first cross-sections where the
measurements were taken.

To estimate the value of longitudinal disper-
sion, the five independent variables were used in
this paper, namely B, H, U, U

*
 and river sinuosity

(sin), hence EL
P
 = f(B,H,U,U

*
,sin). All these va-

riables were available for the considered river
reaches. 50 out of 81 experiments were used as a
training set to optimize neural networks and the
remaining 31 were considered as testing set.

Testing examples were experiments number 3,
4, 6, 11, 13-15, 19, 20, 24, 26, 30, 37, 40, 41, 44,
46, 50, 51, 53, 54, 60-63, 67, 70 from Deng et al.
(2002) and reach numbers 2, 3, 6 (with Q = 0.465
only) and 9 from Sukhodolov et al. (1997). Note
that although there were 15 experiments in total
mentioned in Sukhodolov et al. (1997), 4 of them
were excluded from considerations in the present
paper since they were performed in almost iden-
tical conditions at the same cross-sections. Si-
nuosity of river reaches were not reported in Suk-
hodolov et al. (1997) – these were measured by
authors of the present paper based on available
maps (see Rowinski et al. (2005).

3 MULTI-LAYER PERCEPTRON
ARTIFICIAL NEURAL NETWORKS

From a number of types of neural networks, the

supervised multi-layer perceptron feed-forward
network (Haykin, 1999) is probably the most
extensively applied to variety of problems. They
approximate the values of output variable (y)
based on the set of input variables x1, x2, ..., xK.
Usually all input and output variables are
standardized to the [0,1] interval. To avoid the
possibility of obtaining negative values of
predicted dispersion, we set y = ln(EL) before
standardization (see Kashefipour et al., 2002 and
Rowinski et al., 2005). Artificial neural networks
are comprised of nodes arranged usually in three
layers – input, hidden and output one. The
example of neural network topology is presented
in Fig. 1. The number of input nodes is the same
as the number of input variables, the number of
hidden neurons should be found empirically for a

input layer

x1 w ij hidden layer

 vj

 x2 output layer

y

x3

x4
Figure. 1 Scheme of multi-layer perceptron neural network
scheme.

given problem. The nodes are linked via weighted
connections w and v. The values of these
connections are adaptively modified during the
process of training the network. Each node
performs a weighted sum of its inputs and filters it
through a given, so-called activation function.
Following a number of other authors, a sigmoidal
function was used for this purpose in the hidden
layer, i.e.:

1
()

1 e z
f z −=

+
 (4)

where z is the weighted sum

1

K

j ji i

i

z f w x
=

⎛ ⎞= ⎜ ⎟
⎝ ⎠
∑ (5)

Afterwards the weighted signals zj (multiplied
by proper weights vj), are transferred to the neuron
of the third layer, where the new weighted sum is
computed:

1 1

L K
P

j ji i

j i

y v f w x
= =

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∑ ∑ (6)

when L is the number of hidden nodes. Finally,
after re-standardization of y

P
, the predicted longi-

tudinal dispersion value may be obtained as
EL

P
(w,v) = exp(y

P
).

1760

Because of small number of training data (50
experiments only) and 5 input variables we were
forced to reduce the number of hidden nodes to 2.
It resulted in neural network structure of 5 inputs,
2 hidden units and 1 output (5-2-1) – leaving 15
parameters for optimization process.

4 SELECTION OF OBJECTIVE FUNCTION

The parameters v and w have to be optimized
based on the knowledge gained from training
examples according to the assumed criterion. It is
popular to use the objective function to be
minimized such as the mean square error

2

1
,

1

(,) min ((,))
m

P

L i Li
w v

i

J E E
=

= −∑w v w v (7)

which is differentiable and has good statistical
properties. Unfortunately it has a major drawback
– the weights w and v would be fitted to properly
reproduce the highest values of longitudinal
dispersion in the training set. When dealing with
dispersion coefficients which frequently differ by
4 orders of magnitude (see database in Deng et al.
2001) – it is very unfortunate behaviour. One may
see that sometimes the models are really fitted to
the highest examples only, what results in
outstandingly poor estimation of all lower
dispersion values (as in Tayfur, 2006). The
objective function in the form of

2
,

1

(,) min (,)
N

P

L i Li
w v

i

J E E
=

= −∑w v w v (8)

only partly mitigates this effect. One may of
course set a criterion of

2

3
,

1

(,) min ()
N

P

i i
w v

i

J y y
=

= −∑w v (9)

as for example in Kashefipour et al. (2002) and
Rowinski et al. (2005), what makes the impact of
different examples more even, but unfortunately,
due to nonlinear relation between y and EL, fre-
quently min J3 (w,v) ≠ min J1 (w,v) which means
that we perform optimization of neural network
not exactly to the task we are really interested in.
This is why we propose yet another objective
function J4 which is defined as:

2

4

1

(,)
(,) exp ln

0

PN
L i

i Li

Li

E
J

E

E

=

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

>

∑ w v
w v

 (10)

which was especially designed for cases when
all examples are of similar importance, no matter
how many orders of magnitude they span. This
expression takes into account the degree of over-
or underestimation of the measured values – the

predictions 10 and 0.1 when true value is 1, as
well as 3000 and 30 when true value is 300 are
similarly wrong. The second power is taken in or-
der to increase the significance of over- or unde-
restimation.

5 INCLUDING UNCERTAINTY INTO
OPTIMIZATION PROCESS

Although a series of papers have dealt with the
application of neural networks to estimate the
longitudinal dispersion coefficients, to the best of
our knowledge, none of them considered
uncertainty analysis. Simple analysis of the
sensitivity of the model results in 10% increase of
each of independent input variables were
performed for equation (3) in Deng et al (2001).
Helton et al (2006) suggests to perform
uncertainty analysis by generating a sample of
input variables and propagating it through a model
to estimate the model uncertainty. The sample
generation should be, if possible, based on expert
suggestions. Another options is the generation
from an assumed distribution either randomly or
by means of Latin Hypercube method. The second
method is suggested for computationally
demanding models to limit the number of the
generated samples, which is not important in the
case of simple neural networks.

It is difficult to define the uncertainty of EL, B,
H, U and sin – as it depends mostly on a quality of
on site measurements, performed by different re-
searchers in various conditions. Hence, in this pa-
per it is assumed that these 5 variables are realiza-
tions from the normal distribution with μij = uij
and σij = 0.1uij, where ui1 = yi, ui2 = xi1,…, ui5 = xi4;
i = 1, N represent each training example and j = 1,
5 represent input or output variables: EL, B, H, U
or sin. The coefficient of 0.1 used to define the va-
riance was estimated empirically. The smaller σij
indicates that the variable is less uncertain. If this
value was set as too small it would result in limit-
ing the neural network robustness, whereas too
high would make prediction very poor. Note that
the true distribution of a particular variable at
each experiment may differ from the Gaussian one
and the observed uij may even be an outlier far
from the true μij. However, we cannot find proper
distributions since the only information we have is
single realization. Note that shear velocity U

*
 not

considered above may be approximated by
*U gHs= (11)

where s is the bed slope. It seems reasonable to
assume that the bed slope – which is usually
measured rather than U

*
 – is a realization from

normal distribution with μij = sij and σij = 0.1sij.

1761

In the present paper at each iteration, any vari-
able for each individual (see section 6) and for
every experiment was generated 100 times from
pre-defined distributions. Together with the meas-
ured values it gave 101*50 training examples. All
of them were used for the determination of value
of objective function (Eq. (10)) of a particular in-
dividual at the given iteration. This process is sim-
ilar to the approach that is called noise injection
(jitter) in neural network literature (Bishop 1995;
Reed et al. 1995; Zhang 2007) and allows for in-
cluding the uncertainty of the measured training
examples into optimization process improving the
neural network robustness.

6 OPTIMIZATION ALGORITHMS BASED
ON DIFFERENTIAL EVOLUTION

In most of the applications the gradient-based
methods are used to train the neural network –
probably the most popular are simple gradients,
conjugant gradients (Haykinn, 1999) and the
Levenberg-Marquardt algorithms (Press et al.
1990). Such methods were also used in previous
papers applying neural networks to dispersion
assessment. However, they are only local search
methods which require many independent runs.
Different runs usually provide very different
results depending on the initial parameter values –
many of them are outstandingly poor when the
algorithm sticks in a shallow local optimum. They
also require a differentiable objective function,
what is very restrictive in many cases. Most
evolutionary computation (EC) techniques do not
suffer from such drawbacks and, as long as the
dimensionality of the problem is not too high,
almost always provide reasonable results.
Examples of EC methods recently used for neural
network training may be found in Sedeki et al.
(2009), Lin et al. (2009) and Aliev et al. (2009).
Among a variety of methods we chose three
algorithms belonging to Differential Evolution
(DE) family – the basic DE method (Storn and
Price, 1995), Self Adaptive DE (SaDE, Qin et al.,
2009) and Grouped Multi-Strategy DE (GMS,
Piotrowski and Napiorkowski, 2010). The basic
DE method has been applied to neural network
training several times, for example by Illonen et
al. (2003), Yu and He (2006), Jordanov and
Georgieva (2007), Rowinski and Piotrowski
(2008). The remaining two algorithms are recent
modifications which, until now have been tested
only on artificial test functions.

In all DE-based methods (in fact – most EC
ones) to find the optimal solution, the population
of P individuals pi (represented by vectors of M
parameters which are to be optimized) is search-

ing for the optimum in the M-dimensional space.
There are different opinions about the relation be-
tween P and M. Storn and Price (1995) suggested
P = 10M, but later various researchers, including
Weber et al. (2009) suggested smaller popula-
tions. Since the number of parameters in 5-2-1
neural network is 15, we set P to 60 for all 3 algo-
rithms (DE, SaDE and GMS). Usually EC tech-
niques need some stopping criteria – it may be the
maximum number of the objective function calls,
lack of sufficient improvement during the prede-
fined period or more complex stopping criteria
(used in GMS). In this paper maximum number of
function calls was used and set to a relatively high
value of 600000. In GMS, apart from maximum
number of iterations, the stopping technique pro-
posed by Piotrowski and Napiorkowski (2010)
was used to cease the algorithm when the popula-
tion structure does not justify further search.

In basic DE, at each iteration, for each of i = 1,
…, P individuals (pi), three other distinct points
(pa, pb, and pc) are randomly chosen. The new
point (pnew) is generated, according to the strategy
described as a weighted (w) perturbation of the lo-
cation of point pc:

()F= + −
new c a b

p p p p (12)

The value of F is the parameter of the algo-
rithm, suggested by Storn and Price (1995) to be
0.8. Then, in the basic DE, for each of j = 1, …, M
elements separately, the crossover of vectors pi
and pnew is performed, yielding the final offspring
poff. The probability of crossover (CR) – in other
words probability of adopting the location for
element j from pnew point – may vary depending
on the problem, but 0.5 is an average, usually suc-
cessful choice. In DE terminology the strategy
(12) with such binominal crossover is called
DE/rand/1/bin. The objective function value of
poff is compared with the objective function value
of pi. Only the better one is moved to the next ite-
ration.

In SaDE, instead of only one strategy, four dif-
ferent strategies are used together, each one with
adaptively changed probability. They include:
1. the basic strategy DE/rand/1/bin,
2. DE/target-to-best/2/bin, where pBEST is the best
individual in population

()
() ()

F

F F

⋅

⋅ + ⋅
new i BEST i

a b c d

p = p + p - p +

p - p p - p
 (13)

3. DE/rand/2/bin, where pd, and pe are two another
distinct individuals from population

()
()

F

F

⋅

⋅
new a b c

d e

p = p + p - p +

p - p
 (14)

4. and DE/current-to-rand/1/none (no crossover),
where F2 is an additional scaling factor, each time

1762

generated anew from standardized normal
distribution

() ()2F F= ⋅ + ⋅
off new i a i b c

p p = p + p - p p - p (15)

SaDE allows for adaptation of probability of
choosing each strategy by particular individual at
the given iteration according to the success rates
obtained during a number of previous generations.
Similarly, also CR parameter is adapted according
to the developed procedure and F values are gen-
erated from normal distribution with 0.5 mean and
0.3 standard deviation. For more details we refer
the reader to Qui et al. (2009). In our application
we followed the parameter setting and adaptation
methods developed in that paper.

An outline of GMS algorithm is as follows. It
also uses three strategies:
1. basic DE/rand/1/bin,
2. DE/rand/1/exponential – which is basic DE
strategy but with exponential crossover (for de-
tailed definition see Price et al., 2005 and
Piotrowski and Napiorkowski, 2010) and
3. DE/rand/1/Mod-either-or:

.(1.12) [0,1]

(2) (0,1)
i b c i

j

new jj

off j j j j j

new

p from Eq if rand CR
p

p p p p p RN otherwise

⎧ ≤⎪= ⎨
= + + − ⋅ ⋅⎪⎩

 (16)

where RN(0,1) is random value generated from
standardized normal distribution and rand[0,1]j is
random number from uniform [0,1] distribution
generated for each parameter j (j = 1, M) separate-
ly. In this strategy the parent pi does not take part
in the creation of an offspring. The parameters F
and CR are both equal 0.5, independent of the
strategy.

In GMS algorithm population is divided into 4
groups, 3 of them are most of the computing time
searching for the optimum separately (what means
that the individuals pa, pb, and pc are chosen only
from individuals belonging to the same group as a
parent pi) when the fourth one gains the know-
ledge from the entire population. The specific
conditions are defined when individuals from one
of 3 separate groups may learn from the whole
population, and the idea of “freezing” some of the
best individuals is introduced (“frozen” individu-
als are not considered as parents – hence they
cannot be lost from population but may be chosen
as pa, pb, and pc). For the detailed description and
pseudocode of the algorithm, see Piotrowski and
Napiorkowski (2010).

To perform a fair comparison, 20 neural net-
works were optimized by each algorithm, starting
from the randomly selected weight values within
the [-1,1] interval. The bound constrains for opti-
mized weights were set to [-1000,1000], rebound-
ing procedure was applied when an algorithm

proposed a solution outside the bound constrains
(Piotrowski and Napiorkowski, 2010).

7 RESULTS

The best (MIN), average (AVE) and worst (MAX)
values of objective function (10) obtained from 20
neural networks trained by each algorithm are
presented in Table 1. One may easily conclude
that networks are better trained by GMS and
SaDE algorithms than by the basic DE method.
Difference between GMS and SaDE algorithm is
rather small, especially comparing to the average
results. However, GMS is slightly better and fast-
er. While SaDE always performed 600000 itera-
tions, GMS stopped after 150000-575000 itera-
tions, with average of 285500.

Table 1. The performance of neural networks trained by
each algorithm: TR – training set, TE – testing set.

Obj

funct

DE SaDE GMS

TR TE TR TE TR TE

MIN 377.7 828.6 298.7 757.0 293.3 672.7

AVE 425.7 1138.9 314.1 867.9 309.1 837.2

MAX 515.1 1719.4 390.6 1148.2 332.1 1063.5

It is clear that the criterion values for testing set

are about 3 times higher than those obtained for
training examples. The reason may be seen in
Fig 2, which presents uncertain longitudinal coef-
ficient values predicted (101 black cases) and
measured (101 grey cases) for 31 testing data by
the example of moderately performed (objective
function value J4 for: training set – 304, testing set
– 792) network trained by GMS algorithm. These
plots would differ for different neural networks
trained by GMS or SaDE algorithms and the rela-
tion between the uncertain predicted and the
measured dispersion values would be poorer for
basic DE method, but general appearance would
remain the same.

It seems that 5 major issues may be noted from
the plots 1) predicted uncertain values are almost
always more scattered than the measured ones, 2)
in most cases substantial part of the measured val-
ues are within an interval covered by the predicted
ones but 3) for 6 cases all the predicted values are
over- or underestimated, 4) in 2 cases (number 9
and 11) the under- or over estimation is very sig-
nificant, and finally 5) the quality of longitudinal
dispersion estimation does not depend on the or-
der of magnitude of longitudinal dispersion.

1763

Figure 2. Uncertain longitudinal dispersion coefficient val-
ues predicted by neural network (black cases) and measured
(grey cases) for testing data collected in 31 rivers.

The mentioned 2 very poorly predicted testing
cases (nr 9 and 11) contribute significantly to the
poorer objective criterion for testing data. Of
course the precise number of poor cases may dif-
fer depending on the used neural network and the
training algorithm, but always some testing exam-
ples are over- or underestimated.

Comparing the neural network results with the
one obtained from the regression equations (2)
and

Figure 3. Uncertain longitudinal dispersion coefficient val-
ues predicted from Deng et al (2001) equation (black cases)
and measured (grey cases) for testing data collected in 31
rivers.

(3) shown in Table 2, one may see some im-
provement. Both equations make constant error of
overestimation of the longitudinal dispersion. Fig-
ure 2 presents the uncertain longitudinal disper-

1

2

3

4

5

6

7

8

9

10

0 100 200 300

te
s
ti

n
g

 e
x
p

e
ri

m
e
n

ts

longitudinal dispersion

m2/s

11

12

13

14

15

16

17

18

19

20

0 100 200 300 400 500 600

te
s
ti

n
g

 e
x
p

e
ri

m
e
n

ts

longitudinal dispersion m2/s

21

23

25

27

0 100 200 300 400 500 600

te
s
ti

n
g

 e
x
p

e
ri

m
e
n

ts

longitudinal dispersion

m2/s

28

29

30

31

0 1 2 3 4

te
s
ti

n
g

 e
x
p

e
ri

m
e
n

ts

longitudinal dispersion

m2/s

1

2

3

4

5

6

7

8

9

10

0 100 200 300 400

te
s

ti
n

g
 e

x
p

e
ri

m
e

n
t

longitudinal dispersion

`

m2/s

11

12

13

0 10000 20000 30000 40000 50000

te
s
ti

n
g

 e
x
p

e
ri

m
e
n

t

longitudinal dispersion

m2/s

14

15

16

17

18

19

20

0 100 200 300 400 500 600 700 800 900

te
s
ti

n
g

 e
x
p

e
ri

m
e
n

t

longitudinal dispersion

m2/s

21

22

23

24

25

0 1000 2000 3000 4000 5000 6000 7000

te
s
ti

n
g

 e
x
p

e
ri

m
e
n

t

longitudinal dispersion

m2/s

26

27

28

29

30

31

0 50 100 150 200 250

te
s
ti

n
g

 e
x
p

e
ri

m
e
n

t

longitudinal dispersion

m2/s

1764

sion coefficients estimated from Deng et al.
(2001) equation. The significant difference with
the neural network prediction trained for uncertain
data is obvious.

Table 2. The performance of empirical equations with divi-
dion into two sets like in Table 1: TR – training set, TE –
testing set.

 Seo Cheong Deng

TR TE TR TE

Obj

funct

1368292.4 135865.5 88039.2 33665.6

8 CONCLUDING REMARKS

The final results seem to restrained optimistic. Al-
though properly trained neural networks may sig-
nificantly outperform the well known regression
equations from the literature, the confidence in
their results remains limited. It is an open question
if it is due to very limited number of hidden
nodes. We performed the experiments with 3 hid-
den nodes and they did not provide reduction of
error for testing data.

REFERENCES

Aliev, R.A., Guirimov, B.G. Fazlollahi, B., Aliev, R.R.
2009. Evolutionary algorithm-based learning of fuzzy
neural networks. Part 2: Recurrent fuzzy neural net-
works. Fuzzy sets and systems 160, 2553-2566.

Bishop, C.M. 1995. Training with Noise is Equivalent to
Tikhonov Regularization. Neural Computation 7(1),
108-116

Deng, Z.Q., Singh, V.P., Bengtsson, L. 2001. Longitudinal
dispersion coefficient in straight rivers. J. Hydraul.
Engng. ASCE 127(11), 919-927.

Deng, Z.Q., Bengtsson, L., Singh, V.P. 2002. Longitudinal
dispersion coefficient in single-channel streams. J. Hy-
draul. Engng. ASCE 128(10), 901–916.

Fischer, H.B., List, E.J., Koh, R.C.Y., Imberger, J., Brooks,
N.H. 1979. Mixing in inland and coastal waters. Aca-
demic, New York, N.Y., 104-138

Godfrey, R.G., and Frederick, B.J. 1970. Stream dispersion
at selected sites. U.S.Geological Survey Professional
Paper, 433–K.

Haykin, S. 1999. Neural Networks, a Comprehensive Foun-
dation. Macmillan College Publishing Co., New York,
USA.

Helton, J.C., Johnson, J.D., Sallaberry, C.J., Storlie, C.B.
2006. Survey of sampling-based methods for uncertainty
and sensitivity analysis. Reliability Engineering and Sys-
tem Safety 91, 1175-1209.

Ilonen, J., Kamarainen, J. K., Lampinen, J. 2003. Differen-
tial Evolution training algorithm for feed-forward neural
networks. Neural Processing Letters 17, 93–105.

Jirka, G.H., Weitbrecht, V. 2005. Mixing Models for Water
Quality Management in Rivers: Continuous and Instan-
taneous Pollutant Releases. In: Water Quality Hazards.

Jordanov, I., Georgieva, A. 2007. Neural network learning
with global heuristic search. IEEE Transactions on
Neural Networks 18(3), 937-942.

Kashefipour Kashefipour, S. M., Falconer, R. A., Lin, B.
2002. Modeling longitudinal dispersion in natural chan-
nel flows using ANNs. In: River Flow 2002 (ed. By D.
Bousmar & Y. Zech), 111–116. A.A. Balkema/Swets &
Zeitlinger, Lisse, The Netherlands.

Lin, S.W., Chen, S.S., Wu, W.J., Chen, C.H. 2009. Parame-
ter determination and feature selection for back-
propagation network by particle swarm optimization.
Knowl. Inf. Syst. 21, 249-266.

Nordin, C.F., Sabol, G.V. 1974. Empirical data on longitu-
dinal dispersion. US Geol. Survey Water Resour. Inves-
tigations 20–74.

Piotrowski, A., Rowiński, P.M., Napiórkowski, J.J. 2006.
Assessment of longitudinal dispersion coefficient by
means of different neural networks. In: 7th Int. Conf. on
Hydroinformatics, HIC 2006, Nice, France, (ed by P.
Gourbesville, J. Cunge, V. Guinot & S. Y. Liong), Re-
search Publishing.

Piotrowski, A.P. Napiorkowski, J.J. 2010. Grouping diffe-
rential evolution algorithm for multi-dimensional opti-
mization problems. Control and Cybernetics – accepted
for publication.

Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling,
W.T. 1990. Numerical Recipes in C. The Art of Scientif-
ic Computing. Cambridge University Press, Cambridge,
UK.

 Qin, A.K. Huang, V.L., Suganthan, P.N. 2009. Differential
Evolution Algorithm With Strategy Adaptation for
Global Numerical Optimization. IEEE Transactions on
Evolutionary Computation 13(2), 398-417.

Reed, R., Marks, R.J. and Oh, S. 1995. Similarities of Error
Regularization, Sigmoid Gain Scaling, Target Smooth-
ing and Training with Jitter. IEEE Transactions on
Neural Networks 6(3), 529-538.

Riahi-Madvar, H., Ayyoubzadeh, S.A., Khadangi, E., Ebad-
zadeh, M.M. 2009. An expert system for predicting lon-
gitudinal dispersion coefficient in natural streams by us-
ing ANFIS. Expert Ststems with Applications 36(4),
8589-8596.

Rimer, M. Martinez, T. 2006. Classification based objective
functions. Machine learning 63(2), 183-2005.

Rowinski, P.M., Piotrowski, A., Napiórkowski, J.J. 2005.
Are artificial neural network techniques relevant for the
estimation of longitudinal dispersion coefficient in riv-
ers?. Hydrol. Sci. J., 50(1), 175–187.

Rowinski, P.M., Piotrowski, A. 2008. Estimation of parame-
ters of transient storage model by means of multi-layer
perceptron neural networks. Hydrol. Sci. J., 53(1), 165-
178.

Sedeki, A., Ouazar, D., El Mazoudi, E. 2009. Evolving
neural network using real coded genetic algorithm for
daily rainfall-runoff forecasting. Expert systems with
Applications 36, 4523-4527.

Seo, I.W., Cheong, T.S. 1998. Predicting longitudinal dis-
persion coefficient in natural streams. J. Hydraul. Engng.
ASCE, 124(1), 25-32.

Storn, R. Price, K.V. 1995. Differential Evolution – a sim-
ple and efficient adaptive scheme for global optimization
over continuous spaces. Tech. Report TR-95-012, Inter-
national Computer Sciences Institute, Berkeley, Califor-
nia, USA.

Sukhodolov, A. N., Nikora, V. I., Rowiński, P. M.,
Czernuszenko, W. 1997. A case study of longitudinal
dispersion in small lowland rivers. Water Environ. Res.
69(7), 1246–1253.

1765

Tayfur, G. and Singh, V.P. 2005. Predicting longitudinal
dispersion coefficient in natural streams by artificial
neural network. Journal of Hydraul. Engng. ASCE
131(11), 991-1000.

Tayfur, G. 2006. Fuzzy, ANN and regression models to
predict longitudinal dispersion coefficient in natural
streams. Nord. Hydrol., 37(2), 143-164.

Taylor, G.I. 1953. Dispersion of soluble matter in solvent
flowing slowly through a tube. Proc. R. Soc. London.
Ser. A, 219, 186-203.

Toprak, Z.F., Cigizoglu, H.K. 2008. Predicting longitudinal
dispersion coefficient in natural streams by artificial in-
telligence methods. Hydrol. Process., 22, 4106---4129.

Wallis, S.G., Manson, J.R. 2004. Methods for predicting
dispersion coefficients in rivers. Water Manage.,
157(WM3), 131–141.

Weber, M., Neri, F., Tirronen, V. 2009. Distributed diffe-
rential evolution with exlplorative-exploitative popula-
tion families. Genet. Program. Evolvable Mach. 10, 343-
371.

Yu, B., He, X. 2006. Training radial basis function networks
with differential evolution. Transactions on Engineering,
Computing and Technology V11, 157–160.

Zhang, G.P. 2007. A neural network ensemble method with

jittered training data for time series forecasting. Informa-

tion Sciences 177, 5329-5346.

1766

